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1 Introduction

Economists have traditionally addressed the problem of causal inference by specifying

and estimating structural models. This approach was pioneered in the 1920s and 1930s,

then rigorously pursued in in
uential work by the Cowles Commission, and later en-

riched with more sophisticated dynamics.1 Theil has made important contributions to

this literature, notably the two-stage least-squares estimator (Theil, 1953), and the three-

stage least squares estimator (Zellner and Theil, 1962). Theil's (1971) classic text book

has taught many econometricians, among other things, the principles underlying these

methods. This paper gives an exposition of some closely related recent developments in

micro-econometrics, with a focus on e�orts to develop robust methods for dynamic policy

evaluation.

The paper is organized as follows. Section 2 sets the stage with a brief discussion

of the static treatment-e�ect approach to program evaluation and recent work on non-

parametric structural models. We stress the close connection between a stability concept

used in statistics and the concept of autonomy used in econometric structural-equations

modelling. We brie
y consider what can be learned from inference on non-parametric

structural models. We conclude that reduced-form analysis has gained importance relative

to structural analysis with the move away from parametric, linear models.

In Section 3, we critically analyze the dynamic treatment-e�ects approach to policy

evaluation adopted from statistics. We stress the importance of accounting for the in-

formation structure of the programs evaluated. In particular, the Lucas (1976) critique

of early structural econometrics applies to the current generation of dynamic treatment-

e�ects models. Methods for computing the optimal dynamic assignment of programs

developed in statistics are not directly useful to economic policy makers.

Section 4 reviews an alternative, event-history approach to the microeconometric eval-

uation problem. We clarify some of the fundamental problems that arise in the analysis

of such models by rephrasing a canonical version as a simultaneous-equations model.

Finally, Section 5 concludes.

1See Heckman (2000), who re
ects extensively on the twentieth-century history of causal analysis, in

particular policy evaluation, in economics. Goldberger (1972) provides a historical account of structural-

equations methods.
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2 Some background

2.1 A continued interest in structural-equations models

The early structural-equations models were typically not based on explicit models of

the behavior of individual agents. Also, strong restrictions were placed on functional

forms| models were typically linear with normal errors. Over time, structural models

have gained considerably in economic-theoretic sophistication. In particular, dynamic

structural models with forward-looking agents and heterogeneity are routinely used now.

However, for the sake of tractability and computational convenience, they have mostly

remained low-dimensional.2

The recent \treatment-e�ects" literature in econometrics seeks to evaluate programs

without making the strong functional-form assumptions that are typically made in struc-

tural econometrics. Most of this literature focuses on static problems and econometri-

cians have developed a wide variety of robust statistical methods based on instrumental-

variables and conditional-independence assumptions for this case.3 Their statistical ro-

bustness has brought these methods wide popularity, but the lack of economic-theoretical

foundations has sparked discussions on their economic relevance.4

Along with the treatment-e�ects literature, a closely related literature on explicit non-

parametric structural models has developed. Again, the focus is on robust analysis of

relatively simple, static problems. This literature is, more explicitly than the treatment-

e�ects literature, grounded in the earlier literature on structural-equations models. Among

its advances are the development of non-parametric two-stage methods that are closely

related to Theil's (1953) two-stage least squares method.5

2.2 Randomized experiments

The static potential-outcome framework of Neyman (1923) and Rubin (1974) is extensively

used in the statistical and econometric evaluation literature. We brie
y discuss it here to

introduce some basic concepts and notation.

Suppose we are interested in the causal e�ect of a treatment on some outcome. The

2Rust (1994) discusses the estimation of sophisticated, but usually highly parametric, dynamic struc-

tural models. More recently, structural econometrics has turned to the speci�cation and identi�cation

of dynamic structural models that are less tightly speci�ed. For example, Taber (2000) and Magnac

and Thesmar (2002) discuss identi�cation of dynamic discrete-choice models under general conditions.

Another example is Abbring and Campbell (2003), who discuss identi�cation of structural models of �rm

growth, learning, and survival.
3Heckman, LaLonde and Smith (1999) provide a review of the use of such methods in labor economics.
4See e.g. Heckman (1997), Heckman and Vytlacil (2000a), and Rosenzweig and Wolpin (2000).
5See e.g. Angrist and Imbens (1995), Blundell and Powell (2000), and Imbens and Newey (2001).
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treatment takes its values in some set D. In the most basic setup, D = f0; 1g. Then,

the point 1 represents assignment to a treatment group and the point 0 assignment to

a control group. Alternatively D could be R+ := [0;1), representing a continuum of

doses of some medication. To each treatment d 2 D corresponds a random variable Yd,

the potential outcome in the case that we would intervene and assign treatment d. The

randomness of Yd may represent both ex ante heterogeneity between individuals and ex

post shocks.

Causal inference is concerned with contrasting potential outcomes corresponding to

di�erent treatments. Because the treatments are mutually exclusive, we can never observe

potential outcomes corresponding to di�erent treatments simultaneously. In the words of

Dawid (2000), potential outcomes are complementary. This is what Holland (1986) calls

the \fundamental problem of causal inference".

Suppose that treatment is assigned according to aD-valued random variableD. Again,

the randomness in D may re
ect both ex ante heterogeneity that a�ects the assignment of

treatment, and ex post shocks like those arising from explicit randomization of treatment

assignment. The actual outcome Y and the potential outcomes fYdg are linked by a

natural consistency condition,6

Assumption 1. Consistency. Y = YD.

Assumption 1 states that the actual outcome is simply the potential outcome correspond-

ing to the treatment actually assigned to the individual.

In a randomized experiment, which is the focus of Neyman (1923) and Rubin (1974),

D??fYdg. For now, we maintain this assumption. Suppose that we are interested in the

e�ect of the treatment on the means �(d) := E [Yd ], d 2 D. In a randomized experiment,

�(D) = E [Y jD] almost surely. So, under some additional smoothness assumptions, we

can estimate � by standard non-parametric regression techniques.

The consistency condition in Assumption 1 is closely connected to Rubin's (1986)

stable-unit-treatment-value assumption (SUTVA). SUTVA requires that potential out-

comes for any given subject are independent of the treatment assignment mechanism and

of the treatments assigned to other subjects. Thus, SUTVA ensures that we do not have

to index potential outcomes by treatments assigned to other subjects or by the assignment

mechanism used. More generally, it requires that all (versions of) treatments are repre-

sented in D. In economics, violations of SUTVA typically arise if we only index treatments

by the agents' own treatment and there are (e.g. strategic) interactions between agents

6We assume that fYd; d 2 Dg is a measurable stochastic process. This ensures that YD is a random

variable (by application of Billingsley, 1995, Theorem 13.1). In the binary-treatment case this is trivial.

In the sequel, we will implicitly assume that such measurability issues are settled.
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or equilibrium e�ects of the program under study. We will argue later that equilibrium

e�ects are particularly important in dynamic econometric program evaluation.

SUTVA ensures that we can specify fYdg independently of the treatment assignment

rule D. Economists would rather say that fYdg is autonomous, or structurally invariant

(Frisch, 1938; see also Aldrich, 1989, and Hendry and Morgan, 1995). Indeed, under

randomized assignment and SUTVA, we can interpret the Neyman-Rubin framework as

a completely speci�ed non-parametric structural model.7 First, the process fYdg is, of

course, simply a random function d 2 D 7! Yd and therefore, under SUTVA, a non-

parametric structural equation with non-separable errors. Second, the most obvious in-

terpretation of randomized assignment is that treatment is not causally a�ected by the

outcome and that there are no common determinants of treatment and outcome. For-

mally, we could posit a second autonomous function y 2 Y 7! Dy that gives the treat-

ment for each hypothetically assigned outcome, and add a consistency condition D = DY .

Then, in our interpretation randomized assignment boils down two the assumptions that

(i) fDyg??fYdg and (ii) Dy = Dy0 for all y; y0 2 Y. Altogether, this gives a recursive

structural model (fYdg; D) with independent, non-separable errors.

The Neyman-Rubin model can be enriched by including covariates X that are not

causally a�ected by either treatment or outcomes, but that may a�ect both treatment

and outcomes. Analogously to the simple model above, we can assume that treatment

assignment is randomized conditional on X. In obvious notation, this gives a model

(fYdxg; fDxg; X) with fYdxg, fDxg and X independent. This framework allows for the

evaluation of policies that involve pro�ling on X in the assignment of D. Even this

extended framework, however, does not cover data nor policies that involve (self-)selection

on unobservables. These are typically of considerable importance in economics, and the

applicability of this framework is therefore limited (e.g. Heckman and Smith, 1995 and

1997). We postpone further discussion of observed covariates to Section 3, and �rst discuss

some models that allow for selection on unobservables.

2.3 Instrumental variables

In response to the limitation of the basic Neyman-Rubin framework to (strati�ed) ran-

domized experiments, statisticians and econometricians have extended the framework to

include instrumental variables. Here, we follow the expositions of Imbens and Angrist

(1994) and Heckman and Vytlacil (2000b), which cover the case of a binary treatment

(i.e. D = f0; 1g).

The Neyman-Rubin model with instrumental variables Z can be represented as (fYdg; fDzg; Z),

7The close link between the potential-outcomes model and structural models has been discussed by

e.g. Pearl (2000).
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with Dz = I(p(z) � U), Z??(fYdg; U), and consistency of potential and actual treatments

and outcomes:

Assumption 2. Consistency. D = DZ and Y = YD.

Here, p(Z) = Pr(D = 1jZ) is the propensity score at Z, and U is a uniformly distributed

random variable. Z causally a�ects treatment D, but does not a�ect the outcome Y

directly and is not related to the error in the structural equation fYdg. The latent-variable

representation of fDzg embodies Imbens and Angrist's (1994) monotonicity assumption

without imposing additional structure on the model (Vytlacil, 2002).

Unlike the model of the previous subsection, this model allows for dependence of fYdg

and fDzg. However, it does not specify the source of this dependence. The most ob-

vious interpretation of the model is that it is a reduced form of a recursive structural

model (fYdvg; fDzvg; Z; V ) with fYdvg, fDzvg, Z, V all independent and V some random

variable that is unobserved to the analyst (e.g. Heckman and Vytlacil, 2000a).8 How-

ever, in closely related settings with a continuous D, econometricians have entertained a

simultaneous-equations interpretation of the dependence of fYdg and fDzg (e.g. Blundell

and Powell, 2000). Without imposing further structure, we can learn about the causal

e�ects of the instrument Z on Y from the reduced form (f(YDz ; Dz)g; Z) in which Y and

D are jointly determined by Z.9 If Z is a policy instrument, and not just a statistical in-

strument, the reduced-form e�ect of Z on Y is of direct policy interest. However, without

further structure, an empirical analysis of the model is not informative on the e�ects of

manipulations of the treatment D that cannot be expressed in terms of Z. In this sense,

the traditional objective of linear instrumental-variables analysis seems to have been lost

in the drive to non-parametric methods, in favor of reduced-form analysis.

The debate on this issue has focused on the multiplicity of treatment-e�ect parameters

that can be de�ned in the present context, and the lack of invariance of certain parameters

to the choice of instruments Z (see Heckman, 1997, and the discussion following it). In

this light, Heckman and Vytlacil (2001) argue that econometric interest should focus on

policy-relevant treatment e�ects (PRTEs). A PRTE can be de�ned as the mean causal

e�ect on the outcome Y of changing the distribution of the instrument Z from some

8The vector V may include observed covariates, which we ignore for now. Even then, V is typically in

part unobserved as it has include suÆciently many variables to make all assumed independencies hold.

Heckman and Vytlacil (2000a) ensure this by taken V so large that fYdvg and fDzvg are degenerate.

Alternatively, one may leave scope for external ex post random shocks.
9It is a text-book fact that the reduced form is a useful tool for analyzing the e�ect of an \exogenous"

variable (e.g. Theil, 1971, Section 9.1). In the present general setting, this has been pointed out by

Heckman (1997). Angrist, Imbens and Rubin (1996) discuss the case in which Z is an intention-to-treat

variable under control of the analist, and D is actual treatment. Also, Blundell and Powell (2000) discuss

this issue in their slightly di�erent framework.
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distribution G to some other distribution G�,

PRTEG;G� :=

Z
�(z)dG�(z)�

Z
�(z)dG(z);

with �(z) now de�ned as E [YDz ]. Because Z??fYDzg, we have that E [�(Z)] = E [Y jZ]

almost surely, in analogy to the case of a randomized experiment. Therefore, under some

obvious support conditions, the PRTE of changing the distribution of Z from G to G�

can be directly identi�ed from the reduced form regression E jY jZ], and is given by

PRTEG;G� :=

Z
E [Y jZ = z]dG�(z)�

Z
E [Y jZ = z]dG(z):

Ichimura and Taber (2000) develop direct estimators of PRTEs based on this idea.

Clearly, even if we focus on treatment-e�ects analysis that is policy-relevant in the

sense discussed above, we need instrumental variables| to span a non-trivial policy space.

We can, however, do without instrumental-variable estimators. This raises the question

what instrument-variable methods are good for in the present non-parametric context.

The answer has to be that a PRTE is an e�ect of Z on Y that is channelled through

participation D, and that it is natural and informative to analyze this PRTEs in terms

of fYdg and fDzg (i.e. p(z)). The instrumental-variables approach to policy evaluation

provides such an alternative cut of the data. Heckman and Vytlacil (2000b, 2001) show

that both the PRTE and all (non-PRTE) treatment-e�ect parameters that are usually

de�ned on fYdg can be expressed in terms of the marginal treatment e�ect

MTE(U) := E [Y1 � Y0jU ]

at propensity U (see Bj�orklund and MoÆt, 1987).10 They develop estimators of the PRTE

based on local instrumental-variables estimators of MTEs.

Provided that Z has some structural meaning, which it presumably should have if its

use has to successfully defended, the margins of participation on which the MTEs are

de�ned are of structural interest. Then, the alternative cut of the data is of interest as

well. Nevertheless, the main role of the instruments is now to span the set of policies

that can be considered. An analyst that has access to a richer set of instruments can

compute treatment e�ects at a �ner partition of margins of participation. This superiorly

informed analist can therefore compute the e�ects of a wider range of policies that a�ect

participation through the instruments. But, if the policy of interest involves manipulation

of only a subset of instruments that are available to both analysts, both can compute the

relevant PRTEs| from their own MTEs if they like| and would come to exactly the same

policy conclusions. Unlike the MTE, the PRTE is invariant to the choice of instruments.

This choice only a�ects the range of policy interventions that can be considered.

10Imbens and Angrist's (1994) LATE can be expressed in MTEs provided certain di�erentiability

conditions hold. With a truly binary instrument, for example, a LATE can be de�ned, but not an MTE.
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Example 1. Suppose that Z = (Q;R) with Q??R both scalar and p(Z) = F (Q+R), for

some distribution function F . Suppose that (fYdg; fDzg; Z) satis�es the Neyman-Rubin

framework with instrumental variables Z = (Q;R). Now suppose there is a second analyst

that only observes R and not Q. This analyst could compute a propensity score ~p(R) =

Pr(D = 1jR) = E [F (Q + R)jR] and de�ne Dr = I(~p(r) � ~U) for some uniform random

variable ~U??(fYdg; fDrg). The resulting model (fYdg; fDrg; R) satis�es the Neyman-

Rubin framework with instrumental variables R and is consistent with the original model

if we take ~U = ~p(r)�F (Q+ r)+U . The MTEs that can be measured by the second, less

informed analyst are E [Y1 � Y0j ~U ] = E [MTE(U)j ~U ]. Note that �( ~U) � �(U) (strictly),

so that E [Y1 � Y0j ~U ] is an aggregate of the MTEs identi�es by the �rst observer (here,

�(U) is the �-algebra generated by U , etcetera). Nevertheless, both analysts can compute

PRTEs that involve a change in the distribution of R only, either from their reduced-form

regressions or from their respective MTEs.

2.4 Stability and autonomy

Clearly, SUTVA in statistics is closely related to the concept of autonomy in structural-

equations modelling. In economic applications, violations of SUTVA can therefore be

expected for the same reasons that autonomy has been disputed. We illustrate this with

an example, the Roy model.

Example 2. This example closely follows Heckman and Honor�e (1989) and Heckman and

Vytlacil (2000a). The basic Roy model can be written as (fYdg; D), with D = I(Y1 � Y0)

and consistency as in Assumption 1. Clearly, fYdg and D are dependent. The model is

typically interpreted as a reduced form of (fYdvg; fDvg; V ); with Dv = I(Y1v � Y0v) and

fYdvg, fDvg and V independent (Heckman and Vytlacil, 2000a). For the model to be

fully structural, we need autonomy of all three equations of the model (implying SUTVA

on fYdvg as before). This is not guaranteed in economic applications. Suppose that Y

are earnings and D is sectoral choice, as in the original Roy model. Let V be skills.

The sector choice Dv is based on the earnings in both sectors for a given set of skills

v. Now, if the distribution of skills V changes, this may a�ect skill prices and therefore

both fYdvg and fDvg. This is an example of the most typical violation of autonomy

in economic applications of the treatment-e�ects approach, market equilibrium e�ects

(Heckman, LaLonde and Smith, 1999). It should be noted though that autonomy may

even fail to hold if skill prices are exogenous, but agents have rational expectations. This

is a manifestation of Lucas's (1976) critique. It can be resolved by including skill prices

in V . This, however, either greatly increases data requirements, or reduces applicability

of the model| to experiments that do not change the aggregate skill distribution.
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The example links violation of SUTVA, an assumption explicitly made in statisti-

cal treatment-e�ects analysis, to the well-known violation of autonomy due to rational-

expectations e�ects (Lucas, 1976). This will be particularly relevant in the dynamic case.

3 Treatment e�ects in discrete time

3.1 Introduction

One problem that has mostly been ignored in the econometric treatment-e�ects litera-

ture and the related literature on non-parametric structural models is the fact that policy

evaluation problems are usually dynamic. Economic programs are announced and imple-

mented in real time. Economic agents act, in particular enroll in programs, dynamically.

In some evaluation studies it may be possible to phrase the problem and organize the data

such that it �ts the static setup. More often, the proper economic interpretation of pa-

rameters and identifying assumptions is hard if a dynamic problem is framed as a static

problem. Standard statistical approaches may fail to estimate or test anything useful.

This is particularly true if outcomes are inherently dynamic variables like unemployment

durations (Abbring and Van den Berg, 2003).

Biostatisticians face similar problems in the analysis of the causal e�ects of complex

dynamic medical treatments on health outcomes. In response, they have developed meth-

ods based on dynamic extensions of the Neyman-Rubin potential-outcome model that

underlies the static treatment methods (e.g. Robins, 1986, 1997, 1998a, 1998b; Gill and

Robins, 2001; Lok, 2001). Econometricians have recently explored the possibility of using

these models in dynamic economic policy evaluation (e.g. Lechner and Miquel, 2002).

Because the more recent treatment literature is explicitly dynamic, it does not su�er from

the fundamental problems associated with the application of static models to dynamic

problems. Of course, a dynamic structural model with explicit and precise assumptions

about behavior, information and market conditions would not su�er from such problems

anyhow. It generates potential outcomes and program assignment rules as a by-product.

However, the dynamic treatment-e�ect setup allows a more generic discussion of statis-

tical methods and may lead to the development of robust statistical methods as for the

static model (e.g. Lechner, 2003).

In a dynamic version of the Neyman-Rubin framework, the risk of under-representation

of treatments| violation of SUTVA| is considerable. Not only should we account for

all relevant aggregate conditions; we should also include all informational events related

to the treatment under study in the treatment index. We will discuss this in more detail

next.
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3.2 Sequential randomization

In a series of papers, Robins has extended the static Neyman-Rubin model with selection

on observables to a dynamic setting. Here, we brie
y review this extension, following the

exposition of Gill and Robins (2001). We slightly rephrase their setup to highlight some

dynamic features that are of particular interest to economics. We point out that SUTVA,

considered to be pivotal in the statistical literature, is particularly likely to be violated in

econometric applications.

Consider an evaluation study in which measurements are taken and treatment decisions

are made at T +1 <1 distinct times 0; 1; 2; : : : ; T . Let T := f0; 1; : : : ; Tg. At each time

t 2 T , \prognostic" factors W (t) are measured and a treatment decision D(t) is made.

The prognostic factors W (t) = (Y (t); X(t)) consist of Rk -valued intermediate outcomes

of interest Y (t) and other prognostic factors X(t). The only di�erence between Y (t) and

X(t) is that we are interested in causal inference on the e�ects of treatment on the former,

but only include the latter to control for dynamic selection on observables. Some time

after T , say at time T + 1, some �nal Rk -valued outcome Y (T + 1) is measured. Denote
�W (t) := (W (0); : : : ;W (t)), �D(t) := (D(0); : : : ; D(t)), and �Y (t) := (Y (0); : : : ; Y (t)). Let
�W := �W (T ), �D := �D(T ), and �Y = �Y (T + 1). For expositional convenience, let �W and �D

be discrete.11

As discussed at the end of Subsection 2.2, we will contrast outcomes between policies

that assign treatments contingent on (the history of) covariates. In the treatment-e�ects

literature, such policies are called treatment regimes or plans. A treatment regime g

speci�es a treatment given available data �w(t) at each time t 2 T . So, it is a collection of

(non-random12) functions (gt; t 2 T ) such that d(t) = gt( �w(t)) is the treatment assigned at

time t if prognostic factors �w(t) are observed. De�ne �gt( �w(t)) := (g0( �w(0)); : : : ; gt( �w(t))).

If there is no risk of confusion, we abbreviate gt and �gt as g. Denote the set of all treatment

plans by G. A static treatment regime is a plan g 2 G such that �w(t) 7! g( �w(t)) is a trivial

function of the covariates (w(1); : : : ; w(t)) for all t 2 T . Note that we do allow treatments

speci�ed by static plans to be contingent on the \initial conditions" w(0). Denote the set

of static treatment plans by G0 � G.

Example 3. If T = 0, we are back in the static model. There are only static treatment

plans, i.e. G = G0, which are (possibly trivial) mappings w(0) 7! g(w(0)).

We restrict attention to treatment regimes that are observable.

11Gill and Robins (2001) show that the analyses can be straightforwardly extended to the case of

continuous �W and �D under some auxiliary regularity conditions.
12It is straightforward to generalize the analysis to random plans (e.g. Gill and Robins, 2001). Such

plans randomize treatment choices conditional on the treatment and covariate histories. See also Subsec-

tion 3.5.
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Assumption 3. Observability of treatment regimes. For all treatment regimes g 2 G

Pr
�
�W (t) = �w(t); �D(t� 1) = �d(t� 1)

�
> 0 =) Pr

�
�W (t) = �w(t); �D(t) = �d(t)

�
> 0 (1)

for all �d(t) and �w(t) such that �d(t) = g( �w(t)), t 2 T .

Here and in the sequel it is implicitly understood that events like �D(�1) = �d(�1)

should be ignored. So, for t = 0 the �rst probability in equation (1) should be read

as Pr
�
�W (0) = �w(0)

�
.

We attach a vector of potential outcomes �Yg to each treatment plan g. Each �Yg is

an R
k(T+2) -valued random variable. The potential outcomes are again connected to the

actual outcomes by a consistency condition,

Assumption 4. Consistency. �Y = �Yg on the event f �D = g( �W )g.

This condition is usually strengthened, either implicitly or explicitly, by adding

Assumption 5. No anticipation. �Y (t) = �Yg(t) on the event f �D(t � 1) = g( �W (t � 1))g

for all t 2 T .

Assumption 4 is the direct equivalent of the consistency condition in the static Neyman-

Rubin model. Assumption 5 is discussed extensively below. Its suggestive name is not

taken from statistics, but follows Abbring and Van den Berg (2003).

Statistical inference typically relies on a sequential randomization assumption,

Assumption 6. Sequential randomization. For all t 2 T

D(t)??(Yg(t+ 1); : : : ; Yg(T + 1))j( �W (t); �D(t� 1) = g( �X(t� 1))):

Assumption 6 is a sequential version of the conditional independence assumption that

underlies e.g. statistical matching. It does allow for so called observed \dynamic con-

founders", variables that both are intermediate outcomes of past treatment and a�ect

future treatment decisions. With Assumption 6, the dynamic potential-outcome model

set up so far is a natural dynamic extension of the Neyman-Rubin model for a static

(strati�ed) randomized experiment.

Under Assumptions 3{6, the g-computation formula can be used to compute the

(marginal) distribution of the potential outcome Yg from the joint distribution of the

factual data ( �X; �D; �Y ).

Proposition 1. G-computation formula. If Assumptions 3{6 hold, the distribution of �Yg
follows from

Pr
�
�Yg 2 B

�
=
X
w(0)

� � �
X
w(T )

Pr
�
�Y 2 Bj �W (T ) = �w(T ); �D(T ) = g( �w(T ))

�

�
TY
t=0

Pr
�
W (t) = w(t)j �W (t� 1) = �w(t� 1); �D(t� 1) = g( �w(t� 1))

� (2)
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for any Borel set B � Rk(T+2) .

For any (Assumption 3) observable treatment g, Proposition 1 ensures identi�cation of

the joint distribution of �Yg from the distribution of ( �X; �D; �Y ) under Assumptions 4, 5,

and 6.

Assumptions 4 and 5 impose a natural recursive structure on the potential-outcomes

model. In particular, they demand that outcomes �Yg(t) and �Yg0(t) corresponding to treat-

ment plans g and g0 coincide if the treatments actually assigned under the plans coincide

up to time t � 1, i.e. �gt�1( �W (t � 1)) = �g0t�1( �W (t � 1)). In particular, Assumption 5

requires that Yg(0) = Yg0(0) = Y (0) for all treatment plans g; g0 2 G. So, we do not

allow for causal e�ects of treatment on Y (0). This is natural as Y (0) is a pre-treatment

variable.

In the g-computation formula (1) in Proposition 1, Assumptions 4 and 5 allow an

attractive (semi-)causal interpretation of the factor

Pr
�
W (t) = w(t)j �W (t� 1) = �w(t� 1); �D(t� 1) = g( �w(t� 1))

�
as

Pr
�
Yg(t) = y(t); X(t) = x(t)j �W (t� 1) = �w(t� 1); �D(t� 1) = g( �w(t� 1))

�
:

Note that Assumption 4 is not suÆcient for this to be true, because, unlike Assumption 5,

it does not guarantee that outcomes at time t 2 T are not a�ected by future treatment.

Also note that we could trivially generate a full causal interpretation by assuming the

existence of counterfactuals �Xg and imposing conditions like Assumptions 4 and 5 on �X

and �Xg as well (or, equivalently, including all covariates in �Y (T ) and none in �X).

Assumption 5 is particularly natural if the outcome is survival of a patient. In this

case, let Y = Y (T + 1) be a nonnegative continuous survival time. Let Y (t) := I(Y > t)

indicate survival up to measurement time t, t 2 T . Then, Assumption 5 imposes that

treatment after death does not a�ect survival. The g-computation formula (2) reduces to

Pr (Yg > y) =
X
x(0)

� � �
X
x(Ty)

Pr
�
Y > yj �X(Ty) = �x(Ty); �D(Ty) = g( �w(Ty)); Y > Ty

�

�

TyY
t=0

Pr
�
X(t) = x(t)j �X(t� 1) = �x(t� 1); �D(t� 1) = g( �w(t� 1)); Y > t

�
� Pr

�
Y > tj �X(t� 1) = �x(t� 1); �D(t� 1) = g( �w(t� 1)); Y > t� 1

�
for all y 2 (0;1), where Ty := maxft 2 T : t < yg is the last measurement time before

y. A simpli�cation of equation (2) arises because (i) only the covariate and treatment

history up to Ty matters for inference on the probability of the event fYg > yg and (ii)
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only covariate paths �w(Ty) = (�y(Ty); �x(Ty)) such that �y(Ty) = 1 produce nonzero terms

in the g-computation formula.

Propositions 1 establishes identi�cation under Assumptions 3{6. We also have

Proposition 2. Given any distribution of the factual data ( �X; �D; �Y ), random variables
�X, �D, �Y and �Yg, g 2 G, can be constructed that satisfy Assumptions 4{6.

Proof. See Gill and Robins (2001, Section 6). Their analysis only involves causal inference

on a �nal outcome (i.e. our Y (T + 1)) and does not rest on Assumption 5. Their proof

does however apply directly here.

Gill and Robins conclude that the model assumptions are \neutral", \for free", or \harm-

less". As we will argue later, from an econometric perspective some of the model assump-

tions, notably| as its name suggests| Assumption 5, can be interpreted as substan-

tial behavioral/informational assumptions. In this sense, econometricians may prefer to

phrase the neutrality result more negatively as a non-identi�cation result (Abbring and

Van den Berg, 2003).

3.2.1 Path analysis

The dynamic model of the previous section may seem disappointing to an econometrician

used to dynamic econometric models. First, even though the extended model explicitly

recognizes causal e�ects of treatment on intermediate outcomes| one aspect of dynamic

confounding| it leaves the second aspect of dynamic confounding, the e�ect of interme-

diate outcomes on treatment choice, implicit. In biostatistics an asymmetric treatment{

outcome setup may indeed be the most natural. In economics, however, we may be as

interested in the e�ects of outcomes on treatment choices. Indeed, more often than not,

the \treatment" versus \outcome" terminology does not do justice to the problem at hand

and a more symmetric, \simultaneous-equations" approach is more appropriate. Second,

even though we have pursued a dynamic outcomes model, we have ended up with a frame-

work that is essentially a trivial extension of the static potential-outcomes model. After

all, we have not speci�ed a dynamic model of the outcomes per se. Rather, we have

focused on the joint determination of the outcome path by the treatment path. Thus,

this model does not allow for the type of dynamic causal path analysis that economic

problems often call for.

Example 4. Consider the evaluation of a system of government labor market programs

that dynamically provides agents with access to various training programs, job search

assistance schemes, etcetera. The model set up so far suggests de�ning sequences of la-

bor market outcomes (wages, labor market status, earnings) and (treatment) indicators
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of program participation over the course of the agents' labor market careers. An under-

lying causal structure follows by de�ning appropriate program plans and corresponding

potential outcomes. Under the standard assumptions, such a framework would allow for

inference on the outcomes that would have occurred under any one speci�c participation

plan.

Now consider the problem faced by a policy maker who only controls part of the partic-

ipation plan. For example, the policy maker could be in charge of a youth general training

program for school-leavers that do not �nd jobs quickly. The present framework would

allow the policy maker to contrast potential outcomes between hypothetical participation

and non-participation in the youth training program evaluated at the actual participation

status in the remainder of their careers (see Lechner and Miquel, 2002, for an example of

this approach). However, this contrast would not re
ect the overall e�ect of the youth

training program on labor market outcomes, because it disables any e�ects of participa-

tion in the program on future participation in programs that are not under the control

of the policy maker. Thus, the measured e�ect is a direct e�ect only. Alternatively, the

policy maker could index potential outcomes by the participation in the program under

his control only.13 Such a model would allow for inference on the overall e�ect of the

youth program, but not on the causal pathways leading there.

Typically, policy makers will be interested in such pathways. For example, the youth

training program may bene�t the agent through direct employability e�ects or may rather

facilitate later participation in programs that have such e�ects. A full dynamic causal

analysis therefore requires a complete causal model of the dynamic determination of out-

comes and program participation.

Structural econometrics often delivers such models, but the basic asymmetric treatment{

response setup does not. However, as noted before, potential-outcome models can be

seen as non-parametric structural models (in this context, see Robins, 1997, and Pearl,

2000). We could simply enrich the asymmetric setup to the level of a standard structural

model by modelling the causal determination of treatment. Rather than distinguishing

treatments and responses, we can model all causal relations within the collection of vari-

ables fD(0); : : : ; D(T );Y (0); : : : ; Y (T +1)g. The natural extension of the basic potential-

outcomes setup is a model in which (i) all causal relations are backward-looking, with

D(t) temporarily ordered after Y (t) in each period t 2 T , and (ii) the structural errors

are mutually independent. Such a fully recursive system is trivially identi�ed and imposes

no structure on the factual data.
13Obviously, such potential outcomes would not be stable under changes in the process of later program

enrollment. This is not a problem, as long as the evaluation results are used in an, in this dimension,

unchanged environment.
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The use of recursive systems, usually represented by directed acyclic graphs (DAGs),

is standard in statistical causal modelling (e.g. Pearl, 2000). The result that the factual

data can be represented by a recursive causal system with independent errors is, because of

the lack of structure, trivial. It could be seen as a non-parametric variant on Wold's more

substantial result for the linear normal model in economics. In this context, economists

have worried about simultaneity and the autonomy (and therefore causal interpretation)

of the equations in a (non-unique) recursive representation.14 Statisticians seem to worry

less about such issues, presumably because they are non-statistical problems.

3.3 The information structure of economic programs

In economic program evaluation, �Y typically consists of wage, employment or earnings

outcomes (see e.g. Heckman, LaLonde and Smith, 1999, for a review). The programs

under evaluation can be anything from training and job search assistance programs to

unemployment bene�ts programs.

The problem of program heterogeneity is well-understood in the context of the static

framework. If multiple versions of programs are o�ered, it is important to represent all

versions in the potential-outcomes model. If versions are aggregated into broad categories,

SUTVA is violated because potential outcomes depend on the mechanism used to assign

treatment versions (Rubin, 1986). Program heterogeneity will plague dynamic evaluation

studies in the same way. We will now argue that in dynamic econometric program evalua-

tion, we should in particular worry about the incomplete speci�cation of the informational

structure of programs under study.

A naive speci�cation of treatment plans would be sets of static or dynamic rules for

participation in training or job search assistance and varying the bene�ts level, respec-

tively. Static rules simply stipulate times at which agents (are o�ered to) participate in

certain programs or bene�ts are changed. Dynamic rules would make these events contin-

gent on the covariate and outcome history. Either way, treatment plans would be de�ned

in terms of actual participation in programs. Such a naive speci�cation is incomplete in

the context of economies inhabited by rational forward-looking agents.

Assumption 5 is usually read as requiring that each cause should precede its e�ect.

Outcomes �Y (t) up to time t are not causally a�ected by treatment choices after t. In

the econometric setup sketched above, this seems to exclude anticipatory e�ects of future

participation in training or job search assistance and future changes in bene�ts. Such

e�ects are routinely predicted by economic-theoretic models with forward-looking agents.

However, this is a false impression due to an incomplete account of causes and, as a

14See e.g. the discussion of work by Marshak, Havelmoo and Wold on simultaneous equations in Hendry

and Morgan (1995).
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consequence, an incomplete characterization of treatments. Anticipatory e�ects of future

events are not caused by those events, but are triggered by signals containing information

about these events. Once we include all causes, both signals and actual participation in

programs, in the model, the recursive structure of Assumption 5 is natural. In terms

of Rubin (1986), we have di�erent versions of the treatments corresponding to di�erent

signals. We have to ensure that all versions of the treatments are represented to guarantee

stability.

Example 5. Let T = 1. Suppose that the outcome Y (t) in period t is (discretized)

earnings, t = 0; 1; 2, and that there are no covariates �W . At time 1, agents are either

o�ered a slot in a training program at a school (d(1) = 1) or they are not (d(1) = 0). All

agents that are o�ered a slot actually enroll in the program and there are no substitute

programs available to agents that are not o�ered a slot at the school under study.

The training program is not fully characterized by specifying the assignment of slots

at time 1. At time 0 the school sends letters to the agents. The letters state whether the

agents will be o�ered a slot in the program at time 1 or not. This can be modelled as a

binary signal, i.e. d(0) = 1 if the letter claims that a slot will be available and d(0) = 0

otherwise.

If we would have naively indexed treatments by d(1) only, we would have multiple

versions of each treatment. Within classes of treatments de�ned by d(1) = 0 and d(1) = 1,

respectively, we can distinguish treatments such that d(0) = 0 and treatments such that

d(0) = 1. If the signals are informative (see below), this would lead to a violation of

SUTVA.

We are interested in causal inference on the e�ect of the training program, consisting

of the letter at time 0 and the training slot at time 1, on pre-program wages Y (0) and Y (1)

and post-program wages Y (2). Without covariates �X, the relevant training (treatment)

plans g = (g0; g1) specify a signal d(0) = g0(y(0)) for each wage y(0) 2 supp(Y (0)) and

a training o�er d(1) = g1(�y(1)) for each pair of wages �y(1) 2 supp( �Y (1)). As we have

included all signals in the model, it is natural to impose Assumption 5.

Black et al. (1999) illustrate the relevance of this example. They analyze the e�ect of

compulsory training and employment services provided to unemployment insurance (UI)

claimants in Kentucky on the exit rate from UI and earnings. In the program under

study, letters are sent out to notify agents some time ahead whether they are selected to

participate in the program. This information is recorded in a database and is available

to Black et al. The main empirical �nding of the paper is that the threat of future

mandatory training conveyed by the letters is more e�ective in increasing the UI exit rate

than training itself.

The data used by Black et al. carefully record the signals provided to agents. In
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general, if full records are kept of all interactions between administrators of programs and

the agents to which the programs are provided and if we are able to properly translate these

records in program sequences that include all relevant signals the standard framework with

Assumption 4 can be applied.

In many econometric applications, the information on the program under study is less

rich. Data sets may provide information on actual participation in training programs and

some background information on how the program is administered in general. Typically,

however, data do not keep track of all letters sent to agents nor of each phone conversation

between administrators and agents. In this case, we can make various assumptions on how

agents collect information on the program. Possibly, allocations of slots in the program

are announced a �xed period of time ahead of actual enrollment and agents respond to

the announcement. Alternatively, no advance notice is given at all.

We can only guarantee SUTVA if we make explicit assumptions on the informational

structure of the program. Such assumptions are unavoidable by Proposition 2, which

implies that we can impose the recursive structure of Assumption 5 without restricting

the factual data. This is equivalent to assuming that no advance notice is given. In many

application, general institutional information can be used to justify speci�c informational

assumptions.

Example 6. Abbring, Van den Berg and Van Ours (1997) analyze the e�ect of punitive

bene�ts reductions, or sanctions, in Dutch UI on re-employment rates. In the Nether-

lands, UI claimants have to comply with certain rules concerning search behavior and

registration. If a claimant violates these rules, a sanction may be applied. A sanction

is a punitive reduction in bene�ts for some period of time and may be accompanied by

increased levels of monitoring by the UI agency. See Grubb (1999) for a review of sanction

systems in the OECD. The data used in Abbring et al. are administrative and provide

the re-employment duration, the duration at which a sanction is imposed if a sanction is

imposed and some background characteristics for each UI case.

Without any prior knowledge of the Dutch UI system, one can make a variety of

informational assumptions. In one extreme, UI claimants know at the start of their UI

spells that bene�ts will be reduced at some speci�c duration if they are still claiming UI

at that duration. This results in a UI system with entitlement periods that are tailored

to individual claimants and that are set and revealed at the start of the UI spells. In this

case, claimants will change their labor market behavior from the start of their UI spell

in response to the future bene�ts reduction (e.g. Mortensen, 1977). In another extreme,

claimants receive no prior signals of impending sanctions and there are no anticipatory

e�ects of actual bene�ts reductions. However, agents may still be aware of the properties

of the sanctions process and to some extent controlling this process. Abbring et al.

17



analyze a search model with these features. The data cannot distinguish between both

informational assumptions (see Subsection 4.2 for details). However, Abbring et al. use

institutional background information to argue in favor of the latter assumption.

3.4 Equilibrium e�ects

The discussion in the previous section is partial in the sense that it does not specify

how signals are interpreted by agents. The same signal may be interpreted di�erently in

di�erent environments. In rational expectations equilibrium, the informational content

attached to signals depends on the actual relation of signals to future treatment options

in the population. This implies that potential outcomes are not invariant to the choice

of the assignment mechanism. If we would consider a parametric class of assignment

mechanisms, the distributions of the potential outcomes would depend on the parameters

of the assignment process. In the terminology of Engle, Hendry and Richard (1983),

the assignment mechanism is not exogenous to the potential outcomes. Without further

quali�cations we have a violation of Rubin's (1986) SUTVA. Macroeconomists recognize

the Lucas (1976) critique.

This is akin to the problem of equilibrium e�ects of large-scale programs on prices

that has been discussed by Heckman et al. (1999) within the context of the static binary-

treatment potential-outcome model. They di�erentiate between the no-treatment out-

come in a world with treatments and outcomes in a world without treatments. These are

not the same if the program under study is large and a�ects market outcomes. We have

discussed the example of the Roy model in Section 2.

Such e�ects may occur for large-scale dynamic programs as well. The informational

equilibrium e�ects may also occur for well-established small-scale programs. In this sense,

equilibrium e�ects are more likely to plague dynamic econometric evaluation studies than

static studies.

Example 2. (continued). Suppose that the signals carried by the letters are not con-

tingent on initial earnings Y (0) and that the assignment of slots by the school is not

contingent on the earnings history �Y (1). At time 0, the school randomly allocates signals

such that Pr(D(0) = 0) = 1
2 . We consider two cases for the training slot allocation at

time 1.

(i) the school randomly allocates training slots (D(1)??D(0)) such that Pr(D(1) =

0) = 1
2 ;

(ii) the school allocates training slots to those agents who have received a letter claiming

that they will be o�ered a slot in the training program, i.e. D(1) = D(0).
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First note that in Case (i) all training plans g are observable, i.e. satisfy Assumption 3.

In Case (ii), however, only plans such that g0(y(0)) = g1(�y(1)) for some �y(1) 2 supp( �Y (1))

are observable. In particular, the only static training plans that are observable are (0; 0)

and (1; 1). In either case, the distributions of the potential outcomes �Yg(2) corresponding

to the observable training plans g 2 G can be computed using the g-computation formula.

We should expect di�erent outcomes in training programs (i) and (ii), even though

the programs have the same structure and treatments are indexed in the same way. In

rational equilibrium, the agent's expectations based on a signal d(0) should be consistent

with the conditional conditional distribution of training o�ers D(1)j(D(0) = d(0)) in the

population. So, in Case (i) all agents believe at time 0 that they will be o�ered a slot in

a program at time 1 with probability 1
2 . In this case, the signal is not informative and the

agents will not respond to it. In Case (ii), however, all agents will know for sure at time

1 whether they will be o�ered a slot in a program at time 2. Agents will respond to the

message in the letter from the school.

Example 2 shows that we should generally expect equilibrium e�ects to a�ect outcomes

in dynamic econometric evaluation studies. After all, agents can only value the signal

received at time 1 by rationally considering the relation between the signal and actual

assignment of training slots in the population. The potential outcomes thus depend on

the parameters of the assignment process. We further investigate this issue in a more

worked out example along the same lines.

Example 3. Again, let T = 1. Suppose that Y (t), t = 0; 1; 2, are binary employment

outcomes. More precisely, Y (t) = 0 if an agent is unemployed at time t and Y (t) = 1

if the agent is employed. For now, suppose that all agents are unemployed at time 0, so

that Y (0) = 0. Also, ignore covariates �X for the time being.

The agent operates in a simple job search environment. At the end of period 0, agents

receive a single job o�er characterized by a wageW1 drawn from a continuous distribution

F such that F (0) = 0. The agent can either accept the job or reject the job. If the agent

accepts the job o�er W1, he is employed at the wage W1 at both time 1 and time 2

(Y (1) = Y (2) = 1). If the agent rejects the job, he is unemployed at time 1 (Y (1) = 0).

An agent that is unemployed at time 1 receives another wage o�er W2 at the start of

period 2 that is drawn independently of W1 from the same distribution F . At time 2,

the time 1 job o�er W1 cannot be recalled and the agent only has to decide whether to

accept or reject the new wage o�er W2. If the agent accepts W2, he is employed at time

2 (Y (2) = 1) and receives compensation W2. Otherwise the agent is unemployed at time

2 (Y (2) = 0).

We are interested in evaluating the e�ect of a unemployment compensation program on

employment outcomes (suppose that wages are not observed). The program is organized
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as follows. All agents that are unemployed at time 1 receive unemployment bene�ts b > 0.

At time 2, some agents loose entitlement to their bene�ts (D(1) = 0), but others are still

entitled (D(1) = 1). Agents only actually receive bene�ts if they are unemployed.

At time 0, agents receive a phone call from the unemployment bene�ts agency in which

they are told whether they will (D(0) = 1) or will not (D(0) = 0) receive bene�ts if they

are unemployed at time 2. As in Example 2, we cannot analyze the e�ect of this phone

call without some assumption on the information that is revealed. So, assume that agents

have rational expectations, (D(0); D(1))??(W1;W2), and that

Pr(D(0) = 0) = p;

Pr(D(1) = 0jD(0) = 0] = q0 and

Pr(D(1) = 0jD(0) = 1] = q1

(3)

for some parameters 0 � p; q0; q1 � 1.

Agents choose to accept or reject W1 and, if unemployed at time 1, W2 so that total

income over times 1 and 2 is maximized. We ignore any income at time 0 because it cannot

be a�ected by behavior in our model. The agent's optimization problem is straightforward

to solve by backward induction.

If the agent is unemployed and entitled to bene�ts b at time 2, he will only accept a

job o�er W2 � b. If the agent is unemployed and not entitled to bene�ts at time 2, he

will accept any job o�er W2 � 0. Therefore, the continuation value in unemployment at

time 1 given that the agent is entitled to bene�ts at time 2 is

V1 = b+ bF (b) + (1� F (b))E [W2jW2 > b]

= 2b+

Z
1

b

(w � b)dF (w)

and the continuation value in unemployment at time 1 given that the agent is not entitled

to bene�ts at time 2

V0 = b + E [W2] < V1:

Now suppose that the agent believes at time 1 that he will be entitled to bene�ts in

period 2 (if unemployed) with probability 1 � q. With rational expectations, q = q0 if

d(0) = 0 and q = q1 if d(0) = 1. Let �V (q) := qV0 + (1 � q)V1. Then, the agent accepts

any time 1 job o�er W1 that exceeds the perceived per period continuation value �V (q)=2

in unemployment.

We can distinguish 4 static treatments, (0; 0), (1; 0), (0; 1) and (1; 1). All random-

ness in the corresponding potential outcomes originates in the o�ered wages W1 and W2.

The distributions of the potential outcomes are easy to derive because of the assumed

independence of W1 and W2.
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First, recall that we have assumed that Yg(0) is degenerate at 0 for all g. Next, at

time 0 agents that have received a signal d(0) have reservation wage �V (qd(0))=2. So, we

have that

Pr(Y(d(0);d(1))(1) = 0) = F

� �V (qd(0))

2

�

for d(0); d(1) = 0; 1.

Finally, agents that are employed at time 1 will be employed at time 2 for sure, i.e.

Pr( �Yg(2) = 1j �Yg(1) = 1) = 1

for all treatments g. Agents that are unemployed at time 1 and have d(1) = 0 lose their

bene�ts and will be employed for sure at time 2. Unemployed agents with d(1) = 1 will

accept a job at time 2 with probability 1� F (b). So, we have that

Pr(Y(d;0)(2) = 0jY(d;0)(1) = 0) = 1 and

Pr(Y(d;1)(2) = 0jY(d;1)(1) = 0) = F (b)

for d = 0; 1.

The distributions of the potential outcomes depend on the parameters of the as-

signment process. In particular, V 0(q) = V0 � V1 < 0. So, Pr(Y(0;d)(1) = 0) and

Pr(Y(1;d)(1) = 0) are decreasing in respectively q0 and q1. This implies that SUTVA

is violated. Causal inference on the e�ect of the UI program without explicit reference to

the assignment mechanism is impossible.

Depending on the evaluation problem that is to be solved, we may be willing to select

a class of assignment mechanisms within which the potential outcomes are invariant. We

should then have data on a population for which bene�t plans are assigned according to a

mechanism in this class. The causal analysis has to be quali�ed as only providing causal

contrasts between UI plans assigned according to mechanisms in this class.

Note that outcomes only depend on q0 and q1 and not on p. Two examples stand

out. First, suppose that q0 = q1 =: q. Then, Pr(D(1) = 0) = q and the signal at time

0 is non-informative about the bene�ts reduction. In this case, the outcomes are only

invariant if we �x Pr(D(1) = 0). Second, let q0 = 1 and q1 = 0. Then, D(1) = D(0)

almost surely and outcomes are invariant to changes of Pr(D(1) = 0) = p over [0; 1].

Agents have perfect foresight about bene�ts entitlement. Given the realized entitlement,

agents are not interested in the assignment mechanism.

In either case, we have to �x (q0; q1) to ensure consistency. If we are interested in

evaluating outcomes for di�erent values of (q0; q1), we have to index the potential outcomes

not only by �d(1) but also by (q0; q1). This would ensure that all versions of the treatment
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are represented and consistency holds. For this extended model to be operational, we

need variation of (q0; q1) in the data. Also, we have to consider a mechanism that assigns

(q0; q1) in a �rst stage before the assignment of �d(1). We should check whether the new

potential outcomes, indexed by both �d(2) and (q0; q1) are invariant to the choice of this

new assignment mechanism. Depending on the speci�c informational assumptions it is

thinkable that, for example, the initial conditions Y (0) are a�ected by the assignment

mechanism.

In general, we can always �x a class of assignment mechanisms within which potential

outcomes are invariant and contrast potential outcomes within this class. The actual

assignment mechanism should be in the class. Under perfect foresight we can allow the

assignment mechanism to vary arbitrarily. If we have suÆciently rich data, we can index

potential outcomes by the (parameters of the) assignment mechanism and contrast out-

comes between assignment mechanisms and assigned plans. This requires a speci�cation

of a \meta-mechanism" for the selection of assignment mechanisms.

3.5 Optimal policy estimation

In an interesting recent development, Murphy (2002) has developed methods to choose

an optimal treatment plan based on an empirical analysis of Robins' dynamic potential-

outcome model (see also Robins, 2002). This is of direct interest to economic policy

makers, provided that they accept Robins' framework as such.15 The key problem in di-

rectly applying Murphy's methods to dynamic economic decision problems lies, of course,

in the latter premise.

Our discussion implies that consistency Assumptions 4 and 5 are likely to fail in

economic applications. These assumptions require that di�erent dynamic policies yield

the same outcome at some point in time if they happen to deliver the same treatments

up to that time. This excludes anticipatory e�ects. Furthermore, policies that randomize

treatments| we have not considered these so far (see e.g. Gill and Robins, 2001)|

should yield the same outcomes as non-random static policies if they happen to realize

the same treatment paths. Thus, the choice of the optimal dynamic policy is bound

to ignore the potential expectations e�ects of di�erent dynamic assignment rules. The

dynamics of the plans only serve to dynamically allocate the treatments to those who

bene�t most. In doing so, the planner is forced to presume that outcomes are invariant

across di�erent policies that assign the same treatment paths. In this sense, the analysis

is essentially static and not very di�erent from a similar analysis with the static model

15From the perspective of this paper, it is interesting to note that such dynamic programming problems

certainly had the interest of H. Theil (e.g. Theil, 1957).
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of strati�ed randomized experiments at the end of Subsection 2.2. This seems perfectly

reasonable in the medical applications for which these methods are developed. In an

economic environment, however, we should expect that agents are aware of the actual

assignment rule and respond to that.

3.6 Selection on unobservables

In econometric program evaluation, randomization assumptions like Assumption 6 are not

very likely to be satis�ed. Observational economic data su�er from a lot of heterogeneity

between agents (e.g. Heckman, LaLonde and Smith, 1999). Some of this heterogeneity is

bound to be unmeasured. In a dynamic context, such unmeasured heterogeneity leads to

violations of randomization assumptions. This is true even if the unmeasured variables

only a�ect the availability of slots in programs but not outcomes directly. If agents are ra-

tional, forward-looking and, unlike the econometrician, observe the unmeasured variables,

they will typically respond to these variables because these a�ect future opportunities

to participate in programs (Abbring and Van den Berg, 2003 and 2004). Thus, there

may be indirect e�ects on outcomes even if there are no direct e�ects. In any case, the

randomization condition fails.

For the same reason, identi�cation based on instrumental variables is relatively hard in

dynamic models. If the candidate instruments only vary cross-sectionally, the argument

above implies that they are not likely to be valid instruments. Rather than instrumental

variables, we need instrumental processes (Robins, 1997) that yield some random variation

in treatment assignment at each point in time. In the context of continuously assigned

treatments, the implied data requirements seem onerous (Abbring and Van den Berg,

2003).

Possibly the most fruitful econometric approach to selection on unobservables is the

construction of explicit models of dynamic selection and outcomes. Carneiro, Heckman

and Hansen (2003) have recently developed such a model based on a dynamic factor

structure. Similar ideas underly the event-history approach to program evaluation, which

we will discuss next.

4 The event-history approach to policy evaluation

4.1 Introduction

Researchers facing the problem of analyzing the e�ect of dynamic programs on dynamic

outcomes have often resorted to event-history methods. Examples in economics include

Ridder (1986), Card and Sullivan (1988), Gritz (1993), Lillard (1993), Ham and Lalonde
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(1996), Lillard and Panis (1996), Eberwein, Ham and Lalonde (1997), Bonnal, Foug�ere

and S�erandon (1997), Abbring, Van den Berg and Van Ours (1997), and Van den Berg,

Van der Klaauw and Van Ours (2004). In �elds like epidemiology, the use of event-history

models to analyze treatment e�ects is widespread (see e.g. Andersen et al., 1993, and

Keiding, 1999).

The event-history approach to program evaluation is �rmly rooted in the econometric

literature on state-dependence and heterogeneity (Heckman and Borjas, 1980, and Heck-

man, 1981). Event-history models along the lines of Heckman and Singer (1984) are used

to jointly model transitions into programs and transitions into outcome states. Causal

e�ects of programs are modelled as the dependence of individual transition rates on the

individual history of program participation. Dynamic selection e�ects are modelled by

allowing for dependent unobserved heterogeneity in both the program and outcome tran-

sition rates. A typical, simple example is a mixed semi-Markov model in which the causal

e�ects are restricted to program participation in the previous spell (e.g. Bonnal, Foug�ere

and S�erandon, 1997).

The mainstream treatment-e�ects literature has recently stressed semi-parametric and

non-parametric methods of inference. Applied papers employing the event-history ap-

proach, on the other hand, usually estimate highly parameterized models. There is a

substantial literature on the identi�ability of state-dependence e�ects and heterogene-

ity in duration and event-history models (see Heckman and Taber, 1994, and Van den

Berg, 2001, for reviews). This literature can be exploited and extended to reconcile both

approaches.16 Here, we provide discussion for some canonical cases.

In Subsection 4.2, we discuss the simplest case of mutual dependence of events in

continuous time, involving only two binary events. This case is suÆciently rich to capture

the e�ect of a dynamically assigned binary treatment on a duration outcome. Binary

events in continuous time can be fully characterized by the time at which they occur

and a structural model for their joint determination is a simultaneous-equations model

for durations. We will develop such a model along the lines of Abbring and Van den

Berg (2003). Rephrasing their model explicitly as a simultaneous-equations model does

not only provide a link with Theil's work, but also highlights the fundamental problems

that arise if we try to infer the causal e�ects of a dynamically assigned treatment on

a duration outcome using techniques developed for static models. In Subsection 4.3, we

conclude with a short discussion of the event-history approach to program evaluation from

a more general (multiple-treatment, multiple-outcome) perspective.

16Abbring and Van den Berg (2004) discuss the relation between the event-history approach to program

evaluation and more standard latent-variable and panel-data methods, with a focus on identi�cation

issues.
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4.2 A simultaneous-equations model for durations

Consider two random durations Y and D that assume values in R+ := R+ [ f1g, where

R+ := [0;1). We refer to one of the durations, D, as the treatment (time) and to the other

duration, Y , as the outcome. Such an asymmetry arises naturally in many applications.

For example, in Abbring, Van den Berg and Van Ours (1997)'s study of unemployment

insurance, the treatment is a punitive bene�ts reduction (sanction) and the outcome re-

employment. The re-employment process continues after imposition of a sanction, but

the sanctions process is terminated by re-employment. The current exposition, however,

is symmetric and uni�es both cases. The point 1 represents the event that the outcome

or treatment never occur.

De�ne collections of nonnegative potential treatments fDy; y 2 R+g and potential out-

comes fYs; s 2 R+g. Here, Dy is the random treatment that would prevail if the outcome is

externally set to y. Similarly, Yd is the outcome resulting from setting the treatment time

to d. Suppose that fDy; y 2 R+g and fYd; d 2 R+g are measurable processes. Assume

that Dy and Yd are continuously distributed and denote the corresponding integrated

hazard rates by �Dy : R+ 7! R+ and �Ys : R+ 7! R+, respectively. These integrated

hazards fully determine the marginal distributions of Dy and Yd. For example, by the

well known exponential formula for the survival function, Pr(Dy > t) = exp(��Dy(t)).

For expositional convenience, we assume that both �Dy and �Ys are strictly increasing on

R+ . We also assume that the duration distributions are non-defective by requiring that

�Dy(1) = �Ys(1) =1.17

Di�erences in the integrated hazards between potential outcomes or between poten-

tial treatments can be given a causal interpretation. To see this, note that, under the

assumptions above, �Dy(Dy) and �Yd(Yd) are unit exponential for all y; d 2 R+ . So, we

can write

Dy = ��1
Dy
(EDy) and Yd = ��1

Yd
(EYd);

with EDy and EYd appropriate unit exponential random variables for all y; d 2 R+ . The

distributions of EDy and EYd are invariant to interventions. Thus, the integrated hazards

link the potential treatments and outcomes to errors that are invariant in distribution to

the interventions. Therefore, they have causal interpretations (see Freedman, 2002).

The model is again closed by requiring consistency of actual and potential outcomes

and treatments,

Assumption 7. Consistency. YD = Y and DY = D.

17Abbring and Van den Berg do allow for defects, which often have structural interpretations. See

Abbring (2002) for some discussion and results.
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We should be careful here, as our model may not be coherent: it may not have a solution

(Y;D).18 If it does, it is unique by consistency. Consider the following assumptions.

Assumption 8. No anticipation. For all t 2 R+ ,

�Yt = �Y1 and �Dt = �D1
on [0; t]:

Assumption 9. Strong invariance. For all t 2 R+, EYt = EY and EDt = ED for some

unit-exponential random variables EY and ED.

Assumption 8 implies that the hazard rates for any two potential outcomes Yd and Yd0

coincide almost everywhere until the smallest of the hypothetical treatments times d and

d0. We say that there are no e�ects of anticipation of the treatment on the outcome.

Similarly, Assumption 8 excludes anticipation e�ects of future outcomes on the treatment

hazard. Together, Assumptions 8{9 ensure

Lemma 1 (Coherency). Under Assumptions 7{9, there is a unique (Y;D) such that

Y = YD and D = DY .

Proof. Draw (EY ; ED) and compute (Y1; D1). If Y1 � D1, then Y = Y1 and D =

DY � Y . Otherwise, Y1 > D1, D = D1 and Y = YD > D.

To gain some more insight in the role of Assumption 9, we need some additional

notation. Let NYd(t) := I[0;t](Yd) be a binary random variable that indicates whether the

outcome event would have occurred at time t or before if a treatment was assigned at time

d. Then, fNYdg is a process that counts the number of such potential-outcome events|

at most one| up to and including each point in time. Similarly, de�ne fNDyg, fNY g

and fNDg. Assumption 9 essentially ensures that a strong version of Assumption 7, like

Assumption 5 in the discrete-time model, holds:

Lemma 2 (Strong no-anticipation). Assumptions 8 and 9 imply that for all t 2 R+ ,

NYt(�) = NY1(�) and NDt(�) = ND1
(�) for all � 2 [0; t].

Under Assumptions 7{9, our model is a fully recursive dynamic structural model (possibly

with dependent errors) for the processes fNY ; NDg even though it is not recursive in terms

of Y and D. Therefore, coherency problems do not arise.

We illustrate these ideas with two examples. We need

Assumption 10. Randomization. fDy; y 2 R+g??fYs; s 2 R+g.

18Abbring and Van den Berg (2003) do not explicitly model the (lack of) causal determination of D

by Y . Therefore, their structural model of Y and D is triangular and they do not have to worry about

coherency.
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Example 4. Consider a standard partial search model describing the job search behavior

of an unemployed individual (e.g. Mortensen, 1986). Job o�ers arrive at a rate � > 0 and

are random draws from a given distribution F . An o�er is either accepted or rejected.

A rejected o�er cannot be recalled at a later time. The individual initially receives a

constant 
ow of unemployment-insurance bene�ts. However, the individual faces the risk

of a sanction| a permanent reduction of his bene�ts to some lower, constant level| at

some point during his unemployment spell. During the unemployment spell, sanction

arrive independently of the job-o�er process at a constant rate � > 0. The individual

cannot foresee the exact time a sanction is imposed, but he does know the distribution of

these times.19 The individual chooses a job-acceptance rule as to maximize his expected

discounted lifetime income. Under standard conditions this is a reservation-wage rule:

at time t, the individual accepts each wage of w(t) or higher. The corresponding re-

employment hazard rate is �(1�F (w(t)). Apart from the sanction, which is not foreseen

and arrives at a constant rate during the unemployment spell, the model is stationary.

This implies that the reservation wage is constant, say equal to w0, up to and including

time d, jumps to some lower level w1 < w0 at time d and stays constant at w1 for the

remainder of the unemployment spell if bene�ts would be reduced at time d.

The model �ts our simultaneous-equations model for durations in the following way.

Let Y be the re-employment duration and D the sanction time. The potential-outcome

hazards are

�Yd(t) =

(
�0 if 0 � t � d

�1 if t > d

and the corresponding integrated hazards are

�Yd(t) =

(
�0t if 0 � t � d

�0d+ �1(t� d) if t > d;

where �0 := � [1� F (w0)] and �1 := � [1� F (w1)]. Similarly, the potential-treatment

hazards are

�Dy(t) =

(
� if 0 � t � y

0 if t > y

and the corresponding integrated hazards are �Dy(t) = �minft; yg. For de�niteness, we

have set the sanction hazard to 0 after re-employment.

19This is a rudimentary version of the partial search model with punitive bene�ts reductions, or sanc-

tions, of Abbring, Van den Berg and Van Ours (1997). The main di�erence is that in the present version

of the model the sanctions process cannot be controlled by the agent.
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Note that Assumption 7 follows naturally from the recursive structure of the economic

decision problem in this case in which we have properly accounted for all relevant events.

The model furthermore speci�es that fEYdg??fEDyg (Assumption 10), but is agnostic

about Assumption 9. Assumption 9 would imply a deterministic relation between the

potential re-employment times. If we hypothetically move the sanction back in time from

d to d0 < d, then the potential outcome would change from

Yd = min

�
EY

�0
; d

�
+
�0
�1

�
EY

�0
�min

�
EY

�0
; d

��

to

Yd0 =

8><
>:

Yd if Yd � d0;

d0 + �0
�1
(Yd � d0) if d0 < Yd � d; and

Yd �
�1��0
�1

(d� d0) if Yd > d:

Clearly, strong no-anticipation (as in Lemma 2) holds.

Example 5. We can add some perspective to an early example of a structural bivariate

duration model, the bivariate exponential model of Freund (1961), by restating it as a

special case of our simultaneous-equations model for durations. Freund considers the

survival of the components in a two-component system that can operate even if one of the

components has failed. One example is a plane with two engines. Failure of one engine

increases the stress on and therefore presumably the failure rate of the remaining engine.

Freund constructs a model for the failure times Y andD of the system's two components|

the asymmetric notation is less appropriate here| as follows. First, he considers the dis-

tribution of the failure time of either component in the hypothetical case in which failing

components are immediately replaced by new components. This intervention corresponds

to our \no-treatment" case 1 and the corresponding failure times are Y1 and D1. Fre-

und assumes that Y1 and D1 are independently and exponentially distributed, say with

hazard rates � and �.

Next, Freund considers the case of interest in which failed components are not replaced.

He assumes that the failure of the second component causes a change in the failure rate of

the �rst component from � to a possibly di�erent, constant level �0. Similarly, the failure

rate of the second component changes from � to � 0 when the �rst component fails. Freund

assumes that Y and D are only dependent through these causal e�ects, which is what we

have called randomization (Assumption 10). Clearly, this model satis�es no-anticipation

(Assumption 8). We can impose Assumption 9, without necessarily accepting its strong

causal implications, to ensure coherency and to facilitate an explicit construction of all

potential failure times.
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If we have data on (Y;D) and under Assumptions 7{10, we can identify �Yd and �Dy (up

to almost-sure equivalence) from standard hazard regressions (e.g. Andersen et al., 1993;

Fleming and Harrington, 1991). Moreover, the proof of Proposition 1 in Abbring and Van

den Berg (2003) can be directly extended to prove

Proposition 3 (Non-identi�ability). Let F be any distribution on R2
+ with strictly

positive Lebesgue density. Then, there exists some (fYdg; fDyg) that satis�es Assumptions

7{10 and such that (Y;D) = (YD; DY ) has distribution F .

Proposition 3 shows that no-anticipation (Assumption 8) and randomization (Assumption

10) can be imposed without restricting the data. In the words that Gill and Robins (2001),

used in the context of the closely-related Proposition 2, these assumptions are \free".

Abbring and Van den Berg point out that, from a substantial perspective, Proposition 3

implies that we cannot (i) disentangle selection e�ects and causal e�ects and (ii) identify

anticipation e�ects without imposing further structure on the model.

Economists are typically not willing nor interested to make the type of strong causal

statements that require Assumption 9. Interest usually focuses on weaker statements

based on the invariance of the distribution of shocks only. Proposition 3 however im-

plies that Assumption 9 has no empirical implications. We can therefore impose it as a

modelling tool, just to ensure coherency.

It is instructive to express the model as a simultaneous-equations model in terms of

Y and D. Note that we can write

Y = u(EY ; D)

D = v(ED; Y );
(4)

where u(e; d) := ��1
Yd
(e) and v(e; y) := ��1

Dy
(e) for e; d; y 2 R+ . The initial, dynamic

setup of the model was inspired by substantial economic considerations that we would

like to address in an empirical analysis. Its simultaneous-equations representation in (4)

better re
ects the data actually available for this analysis: at the very best an uncensored

sample from the distribution of (Y;D). Clearly, (4) is not identi�ed (and may not even

be coherent) even if we assume that EY??ED (Assumption 10). We have seen though

that it is identi�ed if, in addition, we impose Assumption 8, an assumption inspired by

substantial considerations.

We are willing to take the no-anticipation Assumption 8 as fundamental. In practice,

this requires that we measure all relevant informational events. We would however like

to relax the randomization Assumption 10. Equation (4) suggests that we �nd instru-

ments Z??(EY ; ED) that appear in one equation and not in the other, and apply some

instrumental-variables method to identify and estimate the model. However, as argued
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in Subsection 3.6, such static instruments are not likely to be valid in the present inher-

ently dynamic setting with forward-looking agents. Abbring and Van den Berg (2003),

who explicitly recognize this problem, analyze identi�cation in a model framework with

additional structure, but without exclusion restrictions.

4.3 More general event-history models

The results of Abbring and Van den Berg (2003) are in the vein of the approach to program

evaluation in which dynamic selection into programs and outcomes are jointly modelled

by event-history models. Causal e�ects of programs are modelled as genuine state de-

pendence. Dynamic selection e�ects are modelled by allowing for dependent unobserved

heterogeneity in both the program and outcome transition rates. Obviously, if we do not a

priori restrict the class of models that we consider, we can always formulate a model that

attributes all observed dependence of treatment and outcome events over time to state

dependence and that leaves no role for dynamic selection. This, in a nutshell, is the fun-

damental problem of distinguishing state-dependence and heterogeneity (Heckman, 1981,

and Heckman and Borjas, 1980).

In applied work, researchers avoid this problem by imposing additional structure.

Econometric research over the last 25 years has produced a variety of identi�cation results

for duration and event-history models (see Heckman and Taber, 1994, and Van den Berg,

2001, for reviews). Unfortunately, fairly little is known for some of the most popular

models for the empirical analysis of dynamically assigned programs. A typical example

is the mixed semi-Markov model, in which the causal e�ects are restricted to program

participation in the previous spell (e.g. Bonnal, Foug�ere and S�erandon, 1997). Abbring

(2000) provides some �rst results for this framework.

Of course, the importance of taking the information structure of programs into account

and concerns about the validity of instruments carry over to the general event-history

approach.

Example 6. An nice illustration of this point is o�ered by Eberwein, Ham and Lalonde

(1997), who study the e�ects of a training program on labor-market transitions. Their data

are particularly nice, as potential participants are randomized into treatment and control

groups at some baseline point in time. Compliance to this intention-to-treat is however

imperfect: some agents in the control group are able to enroll in substitute programs, and

some agents in the treatment group never enroll in a program. Those in the treatment

group are more likely to enroll though, which, together with randomization, suggests that

the intention-to-treat indicator can be used as an instrument for actual participation in a

training program.
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An important aspect of the data is that actual enrollment is dispersed over time. One

could maintain two hypotheses. First, agents could be informed about the actual time a

training slot will become available. Then, they will presumably anticipate future partic-

ipation in the program and change their behavior from the baseline time onwards (as in

Example 5). Eberwein et al., however, specify a model that excludes such anticipatory

e�ects. Thus, they seem to opt for the second hypothesis, which is that agents cannot

perfectly foresee the time at which training slots will be o�ered. In that case, agents will

presumably respond to their intention-to-treat status even before they actually enroll in

a training program. Then, intention-to-treat is not a valid instrument. Speci�c addi-

tional assumptions are needed to ensure that the intention-to-treat indicator is a valid

instrument.

In any case, a direct analysis of the e�ect of the intention-to-treat indicator on labor

market transitions is valid under very general conditions. Eberwein et al. provide such an

analysis, which is directly informative on the e�ect of o�ering a larger choice set of training

programs to the population under study. As in the static Neyman-Rubin framework with

instruments (Subsection 2.3), a reduced-form analysis of the e�ect of the instrument on

outcomes may be the more interesting one if policy makers only control the program

choice set, but not actual participation.

5 Conclusion

It is clear that the analysis of dynamically assigned programs on dynamic outcomes using

statistically robust methods is still in its infancy. The extensive set of tools developed for

this problem in statistics does not apply directly to evaluation of programs in economies

with forward-looking agents. Recent progress in econometrics focuses on phrasing and

robustly analyzing appropriate dynamic econometric selection models.
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