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ABSTRACT 
 

Employer Learning and the “Importance” of Skills 
 
We ask whether the role of employer learning in the wage-setting process depends on skill 
type and skill importance to productivity. Combining data from the NLSY79 with O*NET data, 
we use Armed Services Vocational Aptitude Battery scores to measure seven distinct types 
of pre-market skills that employers cannot readily observe, and O*NET importance scores to 
measure the importance of each skill for the worker’s current three-digit occupation. Before 
bringing importance measures into the analysis, we find evidence of employer learning for 
each skill type, for college and high school graduates, and for blue and white collar workers. 
Moreover, we find that the extent of employer learning – which we demonstrate to be directly 
identified by magnitudes of parameter estimates after simple manipulation of the data – does 
not vary significantly across skill type or worker type. Once we allow parameters identifying 
employer learning and screening to vary by skill importance, we find evidence of distinct 
tradeoffs between learning and screening, and considerable heterogeneity across skill type 
and skill importance. For some skills, increased importance leads to more screening and less 
learning; for others, the opposite is true. Our evidence points to heterogeneity in the degree 
of employer learning that is masked by disaggregation based on schooling attainment or 
broad occupational categories. 
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I.  Introduction 
The term “employer learning” is typically associated with a class of empirically testable models 
in which employers learn the productivity of workers over time.  In these models, employers are 
assumed to use schooling attainment and other readily-observed signals to predict productivity 
and set wages at the start of the career; as workers’ careers evolve, true productivity is revealed 
and the role of schooling in the wage-setting process declines.  Building on the work of Spence 
(1979) and others, Farber and Gibbons (1996) and Altonji and Pierret (2001) were the first to 
demonstrate that the relationship between a test score and wages is expected to increase with 
experience in the face of employer learning—where the test score can, in principle, be any 
measure that is correlated with pre-market productivity but unobserved by employers.  Variants 
of this test have been used by Lange (2007) to assess the speed of employer learning, by 
Pinkston (2009) and Schönberg (2007) to study asymmetric employer learning, and by 
Arcidiacono et al. (2010), Bauer and Haisken-DeNew (2001) and Mansour (2012) to investigate 
differences in employer learning across schooling levels, occupational type (blue versus white 
collar) and initial occupations, respectively.   

In the current study, we ask whether the role of employer learning in the wage-setting process 
depends on the type of skill potentially being learned over time as well as the skill’s importance, 
by which we mean its occupation-specific contribution to productivity.  Basic language skills 
might be readily signaled to potential employers via the job interview process or their strong 
relationship with schooling attainment, while other skills such as “coding speed” (the ability to 
find patterns of numbers quickly and accurately) might only be revealed over time in the absence 
of job applicant testing.  Moreover, the extent to which employers learn about pre-market skill 
over time—and, conversely, employers’ ability to screen for pre-market skill ex ante—is likely 
to hinge on the skill’s importance to the work being performed.  If the ability to solve arithmetic 
problems is irrelevant to the work performed by dancers and bulldozer operators, for example, 
then the true productivity their employers learn over time should be uncorrelated with a measure 
of arithmetic skill. Stated differently, the relationship between arithmetic test scores and wages 
should not increase with experience for dancers and bulldozer operators.  In reverse situations 
where a particular skill is essential to job performance, it is unclear whether signaling or learning 
will dominate the wage-setting process.  Given that arithmetic is critical to accountants’ job 
performance, for example, should we expect arithmetic ability to be a key component of what 
their employers learn over time?  Or do employers customize their screening methods to ensure 
that the most critical skills are accurately assessed ex ante?  

To address these questions, we begin by identifying the channels through which skill importance 
enters a standard employer learning model.  Using the omitted variable bias strategy of Altonji 
and Pierret (2001) we demonstrate that by using the portion of each test score (referred to as Z*) 
that is orthogonal to schooling and other regressors, the Z*-experience gradient in a log-wage 
model is expected to depend solely on the test score’s correlation with performance signals that 



2 
 

lead to learning, while the test score’s effect on log-wage levels is expected to depend both on 
skill importance and the extent to which the skill is signaled ex ante.  These derivations motivate 
our empirical strategy:  First, we empirically assess the role of employer learning for alternative 
skills by inserting skill-specific test scores (Z*) into a log-wage model and comparing the 
magnitudes of their estimated experience gradients.  Second, we allow coefficients for Z* and Z*-
experience interactions to depend nonlinearly on skill importance (which we measure directly) to 
determine whether learning and screening depend on the skill’s importance to productivity.   

We implement these extensions of conventional employer learning tests using data from the 
1979 National Longitudinal Survey of Youth (NLSY79) combined with data from the 
Occupational Information Network (O*NET).  To proxy for pre-market skills that are 
unobserved by employers, we use test scores for seven components of the Armed Services 
Vocational Aptitude Battery (ASVAB).  The use of narrowly-defined test scores distinguishes 
our approach from the existing literature, where most analysts rely on scores for the Armed 
Forces Qualifications Test (AFQT)—a composite score based on four ASVAB components that 
we use individually.1  By using several skill-specific test scores, we can determine whether 
employer learning plays a different role for arithmetic ability, reading ability, coding speed, etc.  
We further extend the analysis by using O*NET data to construct “importance scores” 
representing the importance of each skill in the three-digit occupation associated with the current 
job. These additional variables enable us to determine whether skill-specific screening (a 
component of the test score coefficient) and employer learning (which determines the coefficient 
for the test score-experience interaction) are themselves functions of skill importance.  

By exploring the extent to which screening and employer learning differ across jobs, we build 
directly on the work of Arcidiacono et al. (2010), Bauer and Haisken-DeNew (2001) and 
Mansour (2012).  Using NLSY79 data, Arcidiacono et al. (2010) find evidence of employer 
learning for men with 12 years of schooling, but not for men with 16 years of schooling.  Using 
data from the German Socioeconomic Panel, Bauer and Haisken-DeNew (2001) find evidence of 
employer learning for men in low-wage, blue-collar jobs, but not for other men.  Mansour (2012) 
also uses NLSY79 data for male workers, and finds that employer learning is positively 
correlated with life-cycle wage dispersion in the initial two-digit occupation.  To interpret their 
findings, Arcidiacano et al. (2010) and Bauer and Haisken-DeNew (2001) surmise that highly-
schooled or higher-skilled workers are able to signal their productivity to employers at the outset 
of their careers (abrogating the need for employer learning), while Mansour (2012) concludes 

                                                           
1We also use AFQT scores in our log-wage models for comparison with existing studies.  To our 
knowledge, no prior study reports estimates based on a cognitive test score other than the AFQT, 
although Pinkston (2006) notes (p. 279, footnote 23) that he used two ASVAB test scores and obtained 
results that “resembled” his AFQT-based estimates.  As alternatives to test scores, analysts have used 
parental schooling attainment (Altonji and Pierret 2001; Arcidiacono et al. 2010; Pinkston 2006; Bauer 
and Haisken-DeNew 2001), sibling wages (Altonji and Pierret 2001; Pinkston 2006) or the presence of 
library cards in the household at age 14 (Farber and Gibbons 1996; Altonji and Pierret 2001).   
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that the speed of employer learning varies across occupations.  Each of these studies makes an 
important contribution to the literature, but our approach adds two innovations:   First, we 
explicitly examine the tradeoff between employer learning and screening, rather than simply 
infer that any absence of learning must be due to increased screening.  Second, we allow for a 
richer form of heterogeneity in screening and learning than is permitted with two schooling 
categories, two occupational categories, or wage dispersion across two-digit occupations.  By 
allowing learning and screening to differ across seven skill types and, for each skill type, across 
skill-specific importance scores that vary with three-digit occupation, we identify heterogeneity 
in employer learning that is masked by broader disaggregation of the data.   

Prior to bringing importance scores into the analysis, we find evidence of employer learning for 
all seven skill types.  We also find that differences across skill types in the degree of learning are 
uniformly insignificant, as are differences across “worker type” (12 vs. 16 years of schooling, or 
blue collar vs. white collar) for most skills; in contrast to Arcidiacano et al. (2010) and Bauer 
and Haisken-DeNew (2001), this initial evidence points to little heterogeneity across skills or 
workers in the role of employer learning.  Once we incorporate measures of skill importance, our 
findings change dramatically.  We identify distinct tradeoffs between screening and employer 
learning for most skill types, and we find that the effect of skill importance on screening and 
learning differs by skill type. For some skills (mathematics knowledge, mechanical 
comprehension), screening increases and learning decreases in skill importance; for word 
knowledge the opposite pattern exists, while for numerical operations employer learning 
(screening) is least (most) pronounced in the middle of the “importance” distribution.  These 
patterns suggest that the role of employer screening in wage determination depends intrinsically 
on the type of skill being assessed and the nature of the job being performed.   

II.  Model 
The employer learning test proposed by Altonji and Pierret (2001) (hereafter referred to as AP) 
relies on an assessment of expected values of estimators in the log-wage model that we, the 
econometricians, estimate. The econometrician’s model is misspecified because (a) we 
necessarily exclude factors that employers use to set wages, but that are unavailable in our data; 
and (b) for the purpose of studying employer learning, we intentionally include in the model 
measures such as test scores that we observe but employers do not.  In II.A, we overview the AP 
model, derive the relevant omitted variable bias, and highlight key aspects of AP’s test for 
employer learning.  In II.B we turn to the primary goal of this section, which is to demonstrate 
how AP’s test can be extended to assess the role of employer learning for a range of alternative 
test scores (i.e., skill measures that we observe but employers do not) that differ across jobs in 
their productivity-enhancing “importance.”  In II.C, we consider how departures from the 
model’s key assumptions affect our ability to identify the role of skill importance in employer 
learning. 
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A.  The Altonji and Pierret (AP) Employer Learning Model 
A.1.  Productivity 
Following AP, we decompose the true log-productivity of worker i at time t (𝑦𝑖𝑡) into its 
components: 

 𝑦𝑖𝑡 = 𝑟𝑆𝑖 + 𝛼1𝑞𝑖 + 𝜆𝑧𝑍𝑖 + 𝑁𝑖 + 𝐻(𝑋𝑖𝑡)                                                                    (1) 
where 𝑆𝑖 represents time-constant factors such as schooling attainment that are observed ex ante 
(at the time of labor market entry) by employers and are also observed by the econometrician; 𝑞𝑖 
represents time-constant factors such as references that are observed ex ante by employers, but 
are unobserved by the econometrician; 𝑍𝑖 are time-constant factors such as test scores that the 
econometrician observes but employers do not; 𝑁𝑖 are time-constant factors that neither party 
observes; and 𝐻(𝑋𝑖𝑡) are time-varying factors such as work experience that both parties observe 
over time.  In a departure from AP, we explicitly define 𝜆𝑧 as the importance of the uni-
dimensional, pre-market skill represented by 𝑍𝑖. 2  While 𝑍𝑖 can be any correlate of productivity 
that employers do not observe, once we use a specific test score (arithmetic reasoning, coding 
speed, etc.) as its empirical representation, we are considering that skill’s importance to 
productivity as well as employer learning with respect to that specific skill.3 

Employers form prior expectations of factors they cannot observe (𝑍𝑖 and 𝑁𝑖) on the basis of 
factors they can observe (𝑆𝑖 and 𝑞𝑖): 

𝑧𝑖 = 𝐸(𝑍𝑖|𝑆𝑖, 𝑞𝑖) + 𝜈𝑖 = 𝛾1𝑞𝑖 + 𝛾2𝑆𝑖 + 𝜈𝑖                                                                     
𝜂𝑖 = 𝐸(𝑁𝑖|𝑆𝑖, 𝑞𝑖) + 𝑒𝑖 = 𝛼2𝑆𝑖 + 𝑒𝑖                                                                                

After incorporating these observed signals, at t=0 employers believe productivity to be: 
 𝐸(𝑦𝑖0|𝑆𝑖, 𝑞𝑖) = (𝑟 + 𝜆𝑧𝛾2+𝛼2)𝑆𝑖 + (𝜆𝑧 𝛾1 + 𝛼1)𝑞𝑖 + 𝐻(𝑋𝑖0) 

where 𝜆𝑧𝜈𝑖 + 𝑒𝑖  is the initial error in the employers’ assessment of productivity.  

Over time, employers receive new information about productivity in the form of a performance 
history (𝐷𝑖𝑡) that they use to update their expectations about 𝑍𝑖 and 𝑁𝑖.  With this new 
information in hand, employers’ beliefs about productivity at time t are: 

𝐸(𝑦𝑖𝑡|𝑆𝑖, 𝑞𝑖,𝐷𝑖𝑡) = (𝑟 + 𝜆𝑧𝛾2+𝛼2)𝑆𝑖 + (𝜆𝑧𝛾1 + 𝛼1)𝑞𝑖 + 𝐻(𝑋𝑖𝑡) + 𝐸(λ𝑧𝜈𝑖 + 𝑒𝑖|𝐷𝑖𝑡).         (2) 

A.2.  Wages and Omitted Variable Bias 
Given AP’s assumption (used throughout the employer learning literature) that workers’ log-
wages equal their log-productivity, we obtain the log-wage equation used by employers directly 
from 2.  In a departure from AP’s notation, we write the log-wage equation as: 

𝑤𝑖𝑡 = 𝛽1𝑆𝑖 + 𝛽2𝑞𝑖  + 𝑔𝑖𝑡 + 𝜁𝑖𝑡                                                                                                 (3) 
                                                           
2Equation 1 imposes the restriction that 𝜆𝑧 is uniform across employers and occupations; we discuss the 
implications of relaxing this restriction in II.C.   
3In section III.B, we point to correlations among our seven test scores to argue that with two notable 
exceptions (paragraph comprehension and word knowledge; arithmetic reasoning and mathematics 
knowledge) the test scores appear to measure distinct skills.    
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where  𝛽1 = 𝑟 + 𝜆𝑧𝛾2 + 𝛼2,  𝛽2 = 𝜆𝑧𝛾1 + 𝛼1, 𝑔𝑖𝑡 = 𝐸(λ𝑧𝜈𝑖 + 𝑒𝑖|𝐷𝑖𝑡), and 𝐻(𝑋𝑖𝑡) is omitted for 
simplicity.  The econometrician cannot estimate (3) because 𝑞𝑖 and 𝑔𝑖 are unobserved.  Instead, 
we use productivity components for which data are available to estimate     

𝑤𝑖𝑡 = 𝑏1𝑆𝑖 + 𝑏3𝑍𝑖 + 𝜖𝑖𝑡.                                                                                                           (4) 

AP’s test of employer learning is based on an assessment of the expected values of estimators 
obtained with “misspecified” equation 4. Ignoring work experience and other variables included 
in the econometrician’s log-wage model (which we consider in II.C), these expected values are: 

𝐸(𝑏1) = 𝛽1 + 𝛽2𝛿𝑞𝑠 + 𝜃𝑡𝛿𝜐𝑠 = 𝛽1 + 𝛽2
𝑆𝑧𝑧𝑆𝑠𝑞−𝑆𝑧𝑠𝑆𝑧𝑞
𝑆𝑠𝑠𝑆𝑧𝑧−𝑆𝑧𝑠2 − 𝑆𝑧𝑠𝑆𝑧𝑔

𝑆𝑠𝑠𝑆𝑧𝑧−𝑆𝑧𝑠2                                    (5a)   

𝐸(𝑏3) = 𝛽2𝛿𝑞𝑧 + 𝜃𝑡𝛿𝜐𝑧 = 𝛽2
𝑆𝑠𝑠𝑆𝑧𝑞−𝑆𝑧𝑠𝑆𝑠𝑞
𝑆𝑠𝑠𝑆𝑧𝑧−𝑆𝑧𝑠2

+ 𝑆𝑠𝑠𝑆𝑧𝑔
𝑆𝑠𝑠𝑆𝑧𝑧−𝑆𝑧𝑠2

 .                                                (5b) 

The 𝛿𝑠 in 5a-b are from auxiliary regressions 𝑞𝑖 = 𝛿𝑞𝑠𝑆𝑖 + 𝛿𝑞𝑧𝑍𝑖 and 𝑣𝑖 = 𝛿𝑣𝑠𝑆𝑖 + 𝛿𝑣𝑧𝑍𝑖, where 

𝑣𝑖 is now “shorthand” for initial error  λ𝑧𝜈𝑖 + 𝑒𝑖, 𝜃𝑡 = 𝑆𝑧𝑔
𝑆𝑧𝑣

, 𝑆𝑧𝑔 = ∑(𝑍𝑖 − 𝑍̅)(𝑔𝑖𝑡 − 𝑔̅), and 

𝑆𝑧𝑣 = ∑(𝑍𝑖 − 𝑍̅)(𝑣𝑖 − 𝑣̅); the remaining variance and covariance terms in 5a-b are defined 
similarly (𝑆𝑧𝑧 = ∑(𝑍𝑖 − 𝑍̅)2, etc.). 

In 5a, the first term (𝛽1) represents the true effect (per equation 3) of  𝑆𝑖 on log-wages, the 
second term represents the time-constant component of the omitted variable bias, and the third 
term (by virtue of its dependence on 𝑔𝑖𝑡) is the time-varying component of the omitted variable 
bias.  Similarly, in 5b—where there is no true effect because 𝑍𝑖 is not used by employers in the 
wage-generating process—the first (second) component of the omitted variable bias is constant 
(varying) over time.   

A.3 AP’s Test of Employer Learning 
AP’s primary test of employer learning amounts to assessing the sign of the time-varying 
components of the omitted variable biases in 5a-b.  Given the relatively innocuous assumptions 
that 𝑆𝑧𝑣 > 0, 𝑆𝑧𝑠 > 0, and 𝑍𝑖 and 𝑆𝑖 are scalars, it is apparent that (a) the time-varying 
component of 5a (the third term in the expression) is negative and (b) the time-varying 
component of 5b (the second term) is positive.  Stated differently, the expected value of the 
estimated 𝑆𝑖 coefficient in the econometrician’s log-wage model declines over time, while the 
expected value of the estimated 𝑍𝑖 coefficient increases over time.   

AP and subsequent contributors to the literature operationalize this test by modifying 
specification 4 as follows: 

𝑤𝑖𝑡 = 𝑏1𝑆𝑖 + 𝑏3𝑍𝑖 + 𝑏4𝑆𝑖 ∙ 𝑋𝑖𝑡 + 𝑏5𝑍𝑖 ∙ 𝑋𝑖𝑡 + 𝜖𝑖𝑡,                                                          (6) 

where 𝑆𝑖 is typically a self-reported measure of “highest grade completed,” 𝑍𝑖 is often a test 
score, and 𝑋𝑖𝑡 is a measure of cumulative labor market experience.  A positive estimator for 𝑏5 is 
evidence in support of employer learning; a negative estimator for 𝑏4 is evidence that employers 
use schooling to statistically discriminate regarding the unobserved skill, 𝑍𝑖.  
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B.  Assessing Employer Learning for Different Skills and Skill Importance 
B.1   Skill Type 
Our first goal is to estimate specification 6 using alternative, skill-specific test scores to represent 
𝑍𝑖 , and use the set of estimators for 𝑏3 and 𝑏5 to compare signaling and employer learning across 
skills.  To do so, we must assess the magnitudes of the time-varying components of the omitted 
variable biases in 5a-b.  This constitutes a departure from AP, who did not seek to make 
comparisons across alternative test scores; as discussed in II.A.3, AP’s objective simply required 
that they sign each time-varying component. 

Inspection of 5a-b reveals that the time-varying components (i.e., the right-most terms) depend 
on 𝑆𝑧𝑔, which represents the covariance between the test score used in estimation (𝑍𝑖) and the 
employer’s updated information about productivity (𝑔𝑖𝑡 = 𝐸(λ𝜈𝑖 + 𝑒𝑖|𝐷𝑖𝑡)),  as well as 𝑆𝑧𝑠, 𝑆𝑧𝑧, 
𝑆𝑠𝑠.  While 𝑆𝑧𝑔 is a direct measure of employer learning, two of the remaining three terms (the 
covariance between Z and S and the variance of Z) also vary across test scores and can confound 
our ability to interpret 𝑏�5 for each test score as a skill-specific indication of employer learning. 

To address this issue, we follow Farber and Gibbons (1996) by constructing skill-specific test 
scores that are orthogonal to schooling.  We define 𝑍𝑖∗ as the residual from a regression of 𝑍𝑖 on 
𝑆𝑖 and a vector of other characteristics (𝑅𝑖): 4 

𝑍𝑖∗ = 𝑍𝑖 − 𝐸∗(𝑍𝑖|𝑆𝑖,𝑅𝑖).                                                                                             (7) 
If we normalize each 𝑍𝑖∗ to have unit-variance (𝑆𝑧𝑧 = 1) and replace 𝑍𝑖 with this standardized 
residual in specification 6, then the time-varying components of the omitted variable biases in 
5a-b reduce to:  

𝐵1𝑡 = −
𝑆𝑧𝑠𝑆𝑧𝑔

𝑆𝑠𝑠𝑆𝑧𝑧 − 𝑆𝑧𝑠2
= 0 and  𝐵3𝑡 =

𝑆𝑠𝑠𝑆𝑧𝑔
𝑆𝑠𝑠𝑆𝑧𝑧 − 𝑆𝑧𝑠2  

= 𝑆𝑧𝑔.                                        (8) 

The simplified expression for 𝐵3𝑡 indicates that by using standardized, residual test scores, the Z-
X slope in specification 6 is determined entirely by employer learning.5  This suggests that if we 
use a 𝑍𝑖∗ about which the performance history is particularly revealing, then we can expect the 
coefficient for 𝑍𝑖∗ ∙ 𝑋𝑖𝑡  identified by 6 to be particularly large.  To summarize our first extension 
of AP’s test:  we use alternative measures of 𝑍𝑖∗ in specification 6 and compare the magnitudes of 
𝑏�5 to judge which skills employers learn more about.6   

                                                           
4We defer discussion of the “other” characteristics (𝑅𝑖) to II.C and III.B.  
5𝑆𝑧𝑔 in 8 now refers to the covariance between 𝑍𝑖∗ (not 𝑍𝑖) and productivity signals.  We use 𝑍𝑖∗ 
(standardized, residual test scores) throughout our empirical analysis, but in the remainder of this section 
we often leave implicit that 𝑍𝑖 is, in practice, transformed into 𝑍𝑖∗.  
6The expression for 𝐵1𝑡 in 8 indicates that once we replace 𝑍𝑖 with 𝑍𝑖∗, we should expect 𝑏�4 in 
specification 6 to be zero because 𝑆𝑖 does not serve as a signal for the portion of 𝑍𝑖 that is orthogonal to 
schooling.  This testable hypothesis originates with Farber and Gibbons (1996) who, in contrast to AP, 
also used 𝑍𝑖∗ rather than 𝑍𝑖 as a regressor.   
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The time-constant components of the omitted variable biases in 5a-b are also of interest, given 
that these terms represent the extent to which 𝑍𝑖 is tied to initial wages via signaling.  After 
replacing 𝑍𝑖 by 𝑍𝑖∗ and standardizing, the time-constant components of the omitted variable 
biases are given by: 

𝐵10 = 𝛽2
𝑆𝑧𝑧𝑆𝑠𝑞 − 𝑆𝑧𝑠𝑆𝑧𝑞
𝑆𝑠𝑠𝑆𝑧𝑧 − 𝑆𝑧𝑠2

= 𝛽2
𝑆𝑠𝑞
𝑆𝑠𝑠

 and  𝐵30 = 𝛽2
𝑆𝑠𝑠𝑆𝑧𝑞 − 𝑆𝑧𝑠𝑆𝑠𝑞
𝑆𝑠𝑠𝑆𝑧𝑧 − 𝑆𝑧𝑠2  

= 𝛽2𝑆𝑧𝑞 .             (9) 

The expression for 𝐵30 reveals that the time-invariant relationship between 𝑍𝑖∗  and log-wages 
increases in 𝑆𝑧𝑞 , the covariance between the skill and productivity signals (q) observed ex ante 
by the employer but not the econometrician. All else equal, we expect the estimated coefficient 
for 𝑍𝑖∗ in specification 6 to be larger for test scores that are relatively easy to assess ex ante via 
their correlation with signals other than 𝑆𝑖; unsurprisingly, the skills measured by such test scores 
would contribute relatively more to initial wages under these circumstances. 

However, we cannot apply this argument to our interpretation of 𝑏�3 because “all else” is not held 
constant as we substitute alternative test scores into the regression.  In particular, 𝐵30 (as well as 
𝐵10) depends on 𝛽2 which, in turn, depends on structural parameters 𝛼1, λ𝑧 , and 𝛾1. As 
discussed in II.A.1, 𝜆𝑧 reflects the “importance” of 𝑍𝑖  to productivity.  If 𝑏�3 changes magnitude 
as we substitute alternative test scores into specification 6, we cannot determine whether the 
change reflects cross-skill differences in signaling (𝑆𝑧𝑞) or skill importance (λ𝑧).  As explained 
below, we can make this distinction in select circumstances by using data on skill importance. 
More generally, we simply view the combined effect of 𝑆𝑧𝑞 and λ𝑧 (what employers learn via 
screening combined with how they weight that ex ante information) as the screening effect. 

B.2  Skill Importance 
Building on the preceding discussion, we consider three avenues through which skill importance 
can affect the wage-generating process and, therefore, the omitted variable biases shown in 8-9.  
First, importance affects 𝐵30 directly through 𝛽2, which is a function of 𝜆𝑧, so the estimated 
coefficient for 𝑍𝑖∗ (𝑏�3) in 6 will depend in part on the skill’s importance.  Second, importance 
affects 𝐵30 indirectly if employers’ ability to screen for a particular skill is itself a function of 
importance—that is, if 𝑆𝑧𝑞 depends on 𝜆𝑧, presumably because employers screen more 
intensively (or efficiently) for those pre-market skills that matter the most.  For example, dancing 
skill is critical for a dancer while arithmetic skill is not, so dancers’ employers are likely to hold 
dance auditions (a component of q) prior to hiring but not administer an arithmetic test.   Third, 
importance affects 𝐵3𝑡 directly because the covariance ( 𝑆𝑧𝑔) between skill and time-varying 
productivity signals that give rise to learning—i.e., the covariance between 𝑍𝑖∗ and 𝑔𝑖𝑡 =
𝐸(λ𝑧𝜈𝑖 + 𝑒𝑖|𝐷𝑖𝑡)—depends on skill importance, and not just the skill itself.  This implies that the 
estimated coefficient for 𝑍𝑖∗ · 𝑋𝑖𝑡 �𝑏�5� in specification 6 will depend on skill importance.7   
                                                           
7Altonji (2005) proposes a model in which the rate at which employers learn is directly related to the 
overall level of skill importance in an occupation.  He does not pursue this extension empirically. 
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To assess the role of skill importance on learning and screening, we augment specification 6 to 
allow 𝑏3 and 𝑏5 to depend nonlinearly on skill importance:  

𝑤𝑖𝑡 = 𝑎1𝑆𝑖 + �𝑑𝑖𝑗

3

𝑗=1

𝑎3𝑗𝑍𝑖 + 𝑎4𝑆𝑖 ∙ 𝑋𝑖𝑡 + �𝑑𝑖𝑗

3

𝑗=1

𝑎5𝑗𝑍𝑖 ∙ 𝑋𝑖𝑡+𝑎6𝐼𝑆𝑖𝑡𝑧 + 𝜖𝑖𝑡,                      (10) 

where 𝐼𝑆𝑖𝑡𝑧   is an “importance score” representing the importance of the skill measured by test 
score 𝑍𝑖∗ for the occupation held by worker i at time t; we view 𝐼𝑆𝑖𝑡𝑧  as a direct measure of 𝜆𝑧.  
The three 𝑑𝑖𝑗  are dummy variables indicating whether 𝐼𝑆𝑖𝑡𝑧  falls in region j (quartile 1, quartiles 
2-3, or quartile 4) of the empirical distribution of importance scores.  After extensive 
experimentation, we determined that this specification—which extends 6 by identifying separate 
coefficients for 𝑍𝑖∗ and 𝑍𝑖∗ ∙ 𝑋𝑖𝑡 depending on whether the skill measured by 𝑍𝑖∗ is of “high,” 
“low” or “medium” importance—adequately captures the patterns in the data.  

Because the time-varying component of the relationship between 𝑍𝑖∗ and 𝑤𝑖𝑡 (𝑏5 in specification 
6 and 𝑎5𝑗 in 10) is a function only of 𝑆𝑧𝑔, we can interpret any 𝐼𝑆𝑖𝑡𝑧 -pattern in the 𝑍𝑖∗-𝑋𝑖𝑡 slope as 
representing the effect of skill importance on employer learning.  In principle, learning can 
increase, decrease, or change non-monotonically with importance.  Estimates for  𝑎3𝑗  are 
potentially more difficult to interpret because the time-constant component of the relationship 
between 𝑍𝑖∗ and 𝑤𝑖𝑡 (𝑏3 in specification 6 and 𝑎3𝑗 in 10) is a function of both 𝑆𝑧𝑞 and 𝜆𝑧.  Given 
that 𝜆𝑧 tautologically increases in its empirical analog 𝐼𝑆𝑖𝑡𝑧 , a finding that the estimated 𝑍𝑖∗ 
coefficient declines in skill importance is unequivocal evidence that screening (𝑆𝑧𝑞) declines in 
skill importance.  If the estimated 𝑍𝑖∗ coefficient increases in skill importance, we cannot 
determine whether 𝑆𝑧𝑞 increases or decreases in importance.  We illustrate this ambiguity by 
considering the case where 𝑍𝑖∗ measures arithmetic ability and “increased importance” 
corresponds to moving from a dance company to an accounting firm.  The scenario where 𝑆𝑧𝑞 
increases in importance corresponds to accounting firms screening for arithmetic skill more 
effectively than dance companies; in addition, accounting firms necessarily put more weight on 
arithmetic skill in the initial wage-setting process, so a given amount of arithmetic skill translates 
into higher initial log-wages for accountants than for dancers because both 𝑆𝑧𝑞 and 𝜆𝑧 are larger.  
In the alternative scenario, accounting firms screen less effectively than dance companies for 
arithmetic skill but place a greater weight (𝜆𝑧) on whatever arithmetic skill they are able to 
identify ex ante; a given amount of skill continues to translate into a higher initial log-wage for 
accountants than for dancers because the smaller 𝑆𝑧𝑞 is offset by a larger 𝜆𝑧.  We cannot 
distinguish empirically between the two scenarios, but in interpreting our estimates we view the 
“total” effect of  𝐼𝑆𝑖𝑡𝑧   on the estimated 𝑍𝑖∗ coefficient as the screening effect of interest. 

 To summarize, our second extension of AP’s test involves using 𝐼𝑆𝑖𝑡𝑧 , which is our empirical 
analog to 𝜆𝑧, to determine whether the level and slope effects of 𝑍𝑖∗ on log-wages vary with skill 
importance.  The model does not predict the signs of these “importance effects,” but we 
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conjecture that there might be a tradeoff between screening and learning:  if employers can 
readily screen for a given skill (resulting in a relatively large 𝑏�3 in 6 or 𝑎�3𝑗 in 10), then the need 
to learn over time about that skill is reduced (resulting in a relatively small 𝑏�5  in 6 or 𝑎�5𝑗 in 
10).8  Whether this tradeoff is more pronounced at the bottom, middle, or top of the importance 
distribution is an empirical question. 

C. Mobility and Labor Market Experience 
In this subsection, we consider three factors that potentially affect our ability to relate the 
magnitude of estimated Z·X coefficients in specifications 6 and 10 directly to the extent of 
employer learning associated with skill Z:  job mobility, on-the-job training, and the simple fact 
that we include more regressors in specifications 6 and 10 than were brought to bear in deriving 
expected parameter values.   

Log-productivity equation 1 and log-wage specification 4 assume that 𝜆𝑧, which represents the 
importance of 𝑍𝑖 , is constant over time and across occupations. As a result, when we derive the 
expected value of the estimated coefficient for 𝑍𝑖 in specification 4, the only source of time-
variation in the omitted variable bias (per equation 8) is 𝑆𝑧𝑔, which represents employer learning.  
In contrast to the simplified assumptions of AP’s model, the marginal productivity of a given 
skill is expected to vary across jobs (Burdett 1978; Jovanovic 1979; Mortensen 1986).  Life-
cycle job mobility, therefore, introduces an additional source of time variation in the relationship 
between 𝑍𝑖 and log-wages that cannot be distinguished from employer learning within the AP 
framework.  If workers tend to move to jobs that place more (less) importance on a given skill 
than did their previous jobs, then we will over-estimate (under-estimate) employer learning.  
However, if workers change jobs but the relative importance of skill does not change over time 
in the sample, then our estimates are less likely to be affected by mobility.  To assess the 
potential effect of mobility on our estimates, we re-estimate specifications 6 and 10 using 
subsamples of workers who remain in the same occupation or, alternatively, who remain in 
occupations placing comparable importance on a given skill. In section IV we demonstrate that, 
in fact, mobility does not substantially influence our estimates. 

In equations 1-2, 𝐻(𝑋𝑖𝑡) represents the fact that wages evolve over time as workers augment 
their pre-market skill via on-the-job training (Becker 1993; Mincer 1974).  The omitted variable 
biases in equation 8 are derived under the assumption that this additional human capital is 
orthogonal to 𝑆𝑖 and 𝑍𝑖, which ensures that its effect on log-wages is entirely captured by the 
experience profile when we estimate specifications 6 and 10. As noted by Farber and Gibbons 
(1996), if instead complementarities exist between 𝑍𝑖∗ (the component of pre-market skill that is 
orthogonal to schooling) and the subsequent acquisition of productivity-enhancing human 
capital, then we will be unable to separate employer learning from the effects of these 
                                                           
8Here the term “screen” refers to the total effect of learning about a skill ex ante via its covariance with q 
and placing an importance weight on that information.   
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complementarities.  A likely scenario is that these skill investments are complementary with 𝑆𝑖, 
which implies that E(𝑏4) > 0 in specification 6 (and E(𝑎4) > 0 in 10), in contrast to the 
prediction (per equation 8) that the S-X slope is zero.  In section IV, we find evidence for such 
complementarities.   

The third and final issue provides our rationale for including 𝑅𝑖, which represents factors other 
than 𝑆𝑖, in regression equation 7 that we use to convert raw test scores (𝑍𝑖) to standardized, 
residual test scores (𝑍𝑖∗ ).  Following AP, we derived the omitted variable biases in equations 8-9 
for specification 4, which ignores regressors other than 𝑆𝑖 and 𝑍𝑖.  When we estimate 
specifications 6 and 10, however, we control for additional factors, including race and ethnicity, 
cumulative labor market experience (𝑋𝑖𝑡), and skill importance (𝐼𝑆𝑖𝑡𝑧).   In order to draw 
inferences based on the notion that 𝑆𝑧𝑔 is the sole determinant of estimated Z-X slopes (i.e., the 
sole determinant of 𝑏�5 in specification 6 and 𝑎�5𝑗 in specification 10), we must recognize that 
variances and covariances involving all remaining regressors not only affect those estimates, but 
can contribute (along with 𝑆𝑧𝑔) to differences across test scores.  We address this problem by 
using 𝑍𝑖∗ that are orthogonal to 𝑆𝑖, 𝑋𝑖𝑡, 𝐼𝑆𝑖𝑡𝑧 , and every other regressor in 6 and 10.9   

III.   Data 
A.   Sample Selection 
We estimate the log-wage models described by equations 6 and 10 using data from the 1979 
National Longitudinal Survey of Youth (NLSY79).  We also use data on workers’ attributes and 
job requirements from the Occupational Information Network (O*NET) to construct occupation-
specific importance scores for select skills; background information on O*NET data is provided 
in appendix A. 

The NLSY79 began in 1979 with a sample of 12,686 individuals born in 1957-1964.  Sample 
members were interviewed annually from 1979 to 1994 and biennially from 1996 to the present.  
Data are currently available for 1979 through 2010, but we use data through 2000 only.10 

In selecting a sample for our analysis, we adhere as closely as possible to the criteria used by AP 
to facilitate comparison with their study.  We begin by dropping the 6,283 female NLSY79 

                                                           
9In equation 7 we use initial and final values of time-varying regressors, and assume that this effectively 
reduces their covariances with 𝑍𝑖 to zero. Letting X represent a single component of R for illustration, 
once we construct residual test scores in this fashion, 𝑆𝑧𝑥 = 0 and the expected value of 𝑏5 is reduced to a 
function of 𝑆𝑧𝑔 and sample moments 𝑆𝑧,𝑧∗𝑥, 𝑆𝑠,𝑧∗𝑥 ,  𝑆𝑧,𝑠∗𝑥,  𝑆𝑧∗𝑥,𝑥, etc., as well other sample moments that 
do not involve 𝑍𝑖 (and therefore do not vary across Z).  We can use the law of iterated expectations to 
show that each population covariance involving 𝑍𝑖 equals zero or equals a value that does not vary with 
𝑍𝑖; e.g., 𝑆𝑠,𝑧∗𝑥=0 and 𝑆𝑧,𝑧∗𝑥 = 𝐸(𝑋).  The sample moments will not be exactly zero because we have a 
finite and unbalanced sample, but we expect them to contribute little to cross-Z variation in estimated 
slope parameters.  
10Farber and Gibbons (1996), Altonji and Pierret (2001), Lange (2007) and Arcidiacono et al. (2010) use 
data through 1991, 1992, 1998 and 2004, respectively. 
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respondents who make up roughly half the original sample.  Among the 6,403 male NLS79 
respondents, we drop from our sample 428 men who did not take the 10-component ASVAB test 
in 1980, given that we rely on these test scores to represent productivity factors that employers 
learn over time.  We then drop 2,075 men whose initial exit from school precedes January 1978 
because Census three-digit occupation codes were not systematically identified for jobs held 
prior to then, and we require such codes to construct occupation-specific importance scores 
based on O*NET data.11  We delete an additional 30 men whose reported “highest grade 
completed” at the time of initial school exit is less than eight.  Another 799 men are deleted from 
the sample because we lack at least one valid wage (an average hourly wage between $1/hour 
and $200/hour for which a 1970 Census three-digit occupation code is available) for what the 
NLSY79 calls a “CPS job,” which is typically the current or most recent job at the time of each 
interview.  The relevant observation window for the selection of wages begins at initial school 
exit and ends at the earliest of three dates: (i) subsequent school reenrollment; (ii) the 
respondent’s last NLSY79 interview through 2000; or (iii) 15 years after initial school exit.  Of 
these 799 deletions, only 51 men report an otherwise-valid wage for which an occupation code is 
missing; most of the remaining 748 men drop out of the survey relatively soon after school exit.  
These selection rules leave us with a sample of 22,892 post-school wage observations 
contributed by 3,071 men.   

As discussed in II.C, we estimate select log-wage models using subsamples of non-mobile men 
to determine whether our estimates are influenced by job mobility.  We select observations for a 
subsample of “occupation stayers” by allowing each man to contribute wage observations as 
long as his three-digit occupation remains unchanged relative to his initial observation.  We 
select subsamples of “importance score stayers” in a similar manner, by retaining each sample 
member as long as his raw skill-specific importance score does not change by more than 0.10 
relative to his initial occupation’s score.  Each subsample has the same number of men (3,071) as 
the full sample.  The subsample of “occupation stayers” has 8,776 wage observations; sample 
sizes for “importance score stayers” are tied to the skill measure being used, but range from 
9,666 for coding speed to 10,079 for word knowledge (see table 5B).   

We also estimate select specifications for a subsample of men with exactly 12 or 16 years of 
schooling, and for a subsample of observations corresponding to blue collar or white collar 
occupations.12  These subsamples are used for comparison with the findings of Arcidiacono et al. 

                                                           
11AP apply a similar selection rule for the purpose of constructing an actual experience measure based on 
weekly employment arrays that exist for January 1978 onward.  However, they relax the rule for a subset 
of respondents for whom weekly information can be “filled in” prior to January 1978.  
12Following U.S. Census Bureau definitions, we define a wage observation as white collar if the three-
digit occupation corresponds to professional, technical and kindred workers; managers and 
administrators, except farm; sales workers; or clerical and kindred workers.  A wage observation is 
classified as blue collar if the three-digit occupation corresponds to craftsmen and kindred workers; 
operatives, except transport; transport equipment operatives; or laborers, except farm.  
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(2010) and Bauer and Haisken-DeNew (2001) although, unlike those authors, we use pooled 
samples (S=12 and S=16; blue collar and white collar) and use interactions to allow each 
parameter to vary by type.   Our schooling sample consists of 11,944 observations for 1,461 men 
with 12 years of schooling and 3,312 observations for 480 men with 16 years of schooling; our 
occupation sample consists of 12,278 observations for 1,516 men in blue collar occupations and 
6,188 observations for 953 men in white collar occupations.  

B.   Variables 
Table 1 briefly defines the variables used to estimate our log-wage models and presents summary 
statistics for the full sample; appendix table B1 contains summary statistics for select subsamples 
described in the preceding subsection.  Our dependent variable is the natural logarithm of the 
CPI-deflated average hourly wage, which we construct from the NLSY79 “rate of pay” variables 
combined with data on annual weeks worked and usual weekly hours.    

For comparability across specifications, we always use a uniform set of baseline covariates.  We 
follow convention in using highest grade completed (S) as a measure of productivity that 
employers observe ex ante.13  Our schooling measure is based on “created” NLSY79 variables 
identifying the highest grade completed in May of each calendar year, and identifies the 
schooling level that prevails at each respondent’s date of initial school exit.  Because we truncate 
the observation period at the date of school reentry for respondents seen returning to school, our 
schooling measure is fixed at its pre-market level for all respondents, as required by the model; 
discontinuous schooling is a relatively common phenomenon among NLSY79 respondents 
(Light 1998, 2001) and can dramatically affect the estimates as we note in footnote 20.  We also 
control for potential experience (X)—defined as the number of months since school exit, divided 
by 12—X,2 X,3 two dummy variables indicating whether the individual is black or Hispanic (with 
nonblack, non-Hispanic the omitted group), interactions between S and the two race/ethnicity 
dummies and X, a dummy variable indicating whether the individual resides in an urban area, 
and individual calendar year dummies.  This baseline specification mimics the one used by AP. 

In a departure from prior research on employer learning (e.g., AP; Arcidiacono et al. 2010; 
Farber and Gibbons 1996; Lange 2007; Pinkston 2009), we control for productivity correlates 
that employers potentially learn over time (Z) with eight alternative measures of cognitive skills.  
Our first measure is the one relied on throughout the existing literature:  an approximate Armed 
Forces Qualifications Test (AFQT) score constructed from scores on four of the 10 tests that 
make up the Armed Services Vocational Aptitude Battery (ASVAB).14 Our remaining measures 
                                                           
13Highest grade completed is used to represent S throughout the employer learning literature, but we 
suspect this measure is not directly observed by employers: resumes, job applications, and school 
transcripts typically report degree attainment, credit completion, and enrollment dates, but not highest 
grade completed.  See Flores-Lagunes and Light (2010), Frazis et al. (1995) and Kane et al. (1999) for 
discussions of why highest grade completed and highest degree might capture distinct information. 
14NLSY79 respondents were administered the ASVAB in 1980. All respondents were targeted for this 
testing—which was conducted outside the usual in-person interviews—and 94% completed the test.   
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are scores from seven individual components of the ASVAB:  arithmetic reasoning, word 
knowledge, paragraph comprehension, numerical operations, coding speed, mathematical 
knowledge, and mechanical comprehension.  We use the first four ASVAB scores because they 
are used to compute the AFQT score; we include the remaining scores because, along with the 
first four, they can be mapped with minimal ambiguity to O*NET importance scores.  We 
provide the formula for computing AFQT scores and a mapping between ASVAB skills and 
O*NET measures in appendix table A1. 

As detailed in section II, our use of alternative test scores presents us with a challenge not faced 
by analysts who rely exclusively on AFQT scores as a proxy for Z:  in order to compare 
estimated coefficients for Z·X and Z across test scores and attribute those differences to skill-
specific employer learning and screening, we have to contend with the fact that each Z is 
correlated with S, X, and other regressors, and that these correlations differ across test scores.  
Table 2 shows correlations between each (raw) test score and S, black, Hispanic, X and IS; 
because X and IS are time-varying, we use each worker’s initial and final values.  Unsurprisingly, 
each test score is highly correlated with S.  These correlations range from a high of 0.644 for 
mathematics knowledge to a low of 0.425 for mechanical comprehension, which is arguably the 
most vocationally-oriented of our skill measures.  Each test score is negatively correlated with 
black and Hispanic, and with both initial and final values of X—and for each variable, the degree 
of correlation again varies considerably across test score.15  Scores for the more academic tests 
(mathematics knowledge, arithmetic reasoning, work knowledge, etc.) tend to be highly 
correlated with skill importance, while scores for vocationally-oriented tests (coding speed, 
mechanical comprehension) are much less—and even negatively—correlated with importance. 

To net out these correlations we regress each raw test score, using one observation per person,  
on each time-invariant regressor (S and the two race/ethnicity dummies) as well as initial and 
final values for urban status, X, S·X, black·X, Hispanic·X, and the importance score 
corresponding to the particular test.  Because NLSY79 respondents ranged in age from 16 to 23 
when the ASVAB was administered, we also include birth year dummies in these regressions. 
We then standardize score-specific residuals to have a zero mean and standard deviation equal to 
one for the “one observation per person” sample of 3,071 men.  As shown in table 1, the standard 
deviations continue to be very close to one in the regression sample consisting of 22,892 person-
year observation. 

Our use of alternative test scores also compels us to consider whether the seven ASVAB 
components measure distinct skills, or whether they simply provide alternative measures of a 
single, general skill.  In the top panel of table 3 we demonstrate that correlation coefficients 
among raw scores for the seven tests range from 0.54 to 0.84, with the largest correlations 
                                                           
15The pronounced, negative correlation between skill and Xf  (final potential experience) reflects the fact 
that less skilled individuals leave school earlier, and are therefore more likely than their more skilled 
counterparts to contribute an observation at (or close) to the maximum experience level of 15 years.   
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belonging to two pairs: word knowledge and paragraph comprehension, and arithmetic reasoning 
and mathematics knowledge.  The bottom panel of table 3 shows that most of these correlations 
fall to 0.30-0.50 when we use residual scores, although they remain at 0.69 for the two pairs just 
mentioned. Clearly, much of the correlation in the raw scores reflects the fact that sample 
members who are older and/or more highly-schooled tend to perform better on all tests.  Once 
those factors are netted out, the dramatically lower correlation coefficients in the bottom panel 
suggest that we are not simply measuring “general skill” with seven different tests—although the 
skills measured by word knowledge and paragraph comprehension are undeniably similar, as are 
those measured by arithmetic reasoning and mathematics knowledge.   

In another departure from the existing literature, our covariates include occupation-specific 
importance scores (ISz) for each skill measure except AFQT scores.  These scores, which we 
construct from O*NET data, represent the importance of each skill (or type of knowledge) 
measured by the given ASVAB component in the three-digit occupation associated with the 
current job (employer spell); we use the first-coded occupation for each job, so ISz is time-
invariant within job .   For example, the score for arithmetic reasoning reflects the importance in 
one’s occupation of being able to choose the right mathematical method to solve a problem, 
while the score for mathematics knowledge measures the importance of knowing arithmetic, 
algebra, geometry, etc.16  The “raw” importance scores range from zero to five, but we 
standardize all seven scores using the full sample of 22,892 person-year observations. 

To substantiate that the O*NET-based measures of each skill’s occupation-specification 
importance conform to expectations, in table 4 we present (nonstandardized) scores for six 
familiar occupations.  Unsurprisingly, the importance scores for “word knowledge” and 
“paragraph comprehension” are highest for lawyers and lowest for dancers, bulldozer operators, 
and auto mechanics.  Similarly, importance scores for “arithmetic reasoning” and “numerical 
operations” are highest for mathematicians and lowest for dancers.  Coding speed, which is the 
ability to find matching numbers in a table quickly and accurately, is more important for key 
punch operators than for other occupations in our selected group, while mechanical knowledge is 
most important for auto mechanics.  If any surprise is revealed by table 4, it is that basic reading, 
language, and mathematical skills are deemed to be fairly important in each of these disparate 
occupations.  

IV.   Findings 
Table 5A reports estimates for eight versions of specification 6, which is the standard log-wage 
model used by AP, Lange (2007), and others to test for employer learning.   The first column of 
estimates uses AFQT scores to represent Z, the skill component that is unobserved by employers. 
The next seven columns replace AFQT scores with scores for individual components of the 

                                                           
16 In appendix A we explain how O*NET creates “importance” measures and how we use O*NET data to 
construct our IS variables.   



15 
 

ASVAB.  In the top panel, we transform each raw test score by regressing it on birth year 
dummies to account for age differences when the tests were taken, and then standardize the 
residual scores to have unit variance.  In the bottom panel—as well as in all subsequent tables in 
this section—we switch to the construction method described in II.B.1 and III.B in which 
residuals are obtained from regressions that also include S, X, and other covariates. 

We begin by noting that the AFQT-based estimates reported in the top panel of table 5A are 
qualitatively similar to those obtained by AP using an identical specification.17  Our estimated 
coefficient for Z·X (0.091) is larger and more precisely estimated than the estimate reported by 
AP (0.052), while our estimated coefficient for S·X (-0.003) is smaller in absolute value and 
equally imprecise compared to AP’s estimate of -0.019.   Because our AFQT-based estimated 
coefficients for Z·X (S·X) are positive (negative), however, we join AP in finding support for 
employer learning in the presence of statistical discrimination. 

When we replace AFQT scores with individual ASVAB scores in the top panel of table 5A, the 
estimated coefficients for Z·X range from 0.053 for coding speed to 0.073 for word knowledge.  
It is difficult to interpret these differences because, as discussed in II.B, each estimated 
coefficient reflects covariances between Z and other regressors, including S; as indicated by table 
2, these covariances differ substantially across test scores.  If we were to ignore these 
confounding covariances we would conclude that employer learning is most pronounced for 
word knowledge and least pronounced for coding speed and mechanical comprehension, which 
are the only two tests under consideration that measure vocational skill rather than general verbal 
and quantitative skills.   This “straw man” result is surprising insofar as we might expect word 
knowledge to be a skill that workers can accurately signal to employers ex ante, while vocational 
skills would be among the skills employers learn over time by observing performance. 

However, such judgments should be based on the bottom panel of table 5A, where we use the 
portion of Z that is orthogonal to S, X, and other regressors.  We can now apply the expression 
for 𝐵3𝑡 in equation 8, which tells us that a positive estimated coefficient for Z·X is consistent with 
employer learning and that the magnitude of each estimate is a direct measure of employer 
learning.  While each estimated Z·X coefficient continues to be positive in the bottom panel, we 
cannot reject the null hypothesis that all eight estimates are identical.  Stated differently, we find 
evidence of employer learning for all eight skill measures, but no evidence that the degree of 
employer learning is skill-specific.   The (statistically significant) difference seen in the top panel 
between the smallest estimated Z·X coefficient and the largest is entirely attributable to the fact 
that coding speed and mechanical comprehension have the smallest correlations with S while 
word knowledge has the largest correlation (table 2).18   
                                                           
17As reported in their table I, column 4, AP’s estimates (robust standard errors) for Z, Z·X, S and S·X are 
0.022 (.042), 0.052 (.034), 0.079 (.015) and -0.019 (.012), respectively. 
18When we construct standardized, residual test scores from regressions of Z on birth year dummies and S 
(but no additional regressors), we obtain estimates (not reported) that are virtually identical to those in the 
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The estimates in the bottom panel of table 5A are noteworthy for two additional reasons.  First, 
the estimated coefficients for Z range from a statistically insignificant 0.007-0.012 for paragraph 
comprehension and word knowledge to a precisely estimated 0.034 for numerical operations.  As 
shown by expression 𝐵30 in equation 9, these estimates reflect the extent to which pre-market 
information other than schooling is correlated with Z (𝑆𝑧𝑞) and the importance of Z in 
determining productivity (𝜆𝑧).   We can conclude, therefore, that word knowledge and paragraph 
comprehension are either less-screenable or less important than other skills.  Second, the 
estimated coefficients for S·X are small in magnitude, but uniformly positive and statistically 
significant.  This contradicts the model’s prediction (per the expression for 𝐵1𝑡 in equation 8) 
that the relationship between S and log-wages should not change with experience.  As noted in 
II.C. (following Farber and Gibbons, 1996), a positive S-X slope is consistent with a feature of 
wage determination abstracted from in the model—viz., that highly-schooled workers invest 
more intensively than their less schooled counterparts in on-the-job training and/or receive a 
higher return to these skill investments.19   

Before proceeding to a discussion of how skill importance affects our inferences, we assess the 
robustness of the estimates reported in the bottom panel of table 5A.   Table 5B shows estimates 
for specification 6 based on subsamples of “occupation stayers” and “importance score stayers” 
described in III.A.  Given that job mobility—especially toward jobs that place greater 
importance on the skill measured by test score Z—can produce a positive estimated Z-X slope in 
the absence of employer learning, our goal is to assess the potential influence of mobility on our 
“full sample” estimates (table 5A) by comparing them to estimates based on subsamples of 
workers who do not change occupations, or who do not change occupations “enough” for the Z-
specific importance score to change.  Both sets of estimates in table 5B reveal that job mobility 
has virtually no effect on the full sample estimates. In particular, the estimated coefficients for 
Z·X range from 0.040 to 0.053 in the “occupation stayer” subsample and from 0.041 to 0.057 in 
the “importance stayer” subsample (versus 0.043-0.054 in the bottom panel of table 5A).  The 
magnitude of each estimated slope coefficient is largely invariant to whether we include mobile 
workers in the sample, and the finding that employer learning does not differ significantly across 
test scores continues to hold. 

In table 5C, we present estimates for specification 6 based on a subsample of men with S=12 or 
S=16, and a subsample of observations associated with blue collar or white collar occupations; 
for each subsample, we allow every parameter in the model to differ by “type.”  These estimates 
                                                                                                                                                                                           
bottom panel of table 5A.  Thus, we conclude that differences between the top- and bottom-panel 
estimates in table 5A are due to 𝑆𝑧𝑠.   
19 Farber and Gibbons (1996) include interactions between S and year dummies in their wage model to net 
out secular increases in the price of skill.  When we add similar interactions terms, our estimated S·X 
coefficients fall to zero or, in some cases, become negative.  Because we use a narrow birth cohort and 
measure experience as elapsed time since school exit, we believe that skill-price effects cannot be 
distinguished from the effects of post-school skill acquisition.    
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permit comparison with the findings of Arcidiacono et al. (2010), who identify positive Z·X 
coefficients for men with S=12 but not S=16 using the NLSY79, and Bauer and Haisken-DeNew 
(2001), who identify positive Z·X coefficients for (low-wage) blue collar but not white collar 
workers using German data. 

The top panel of table 5C reveals that estimated Z·X coefficients are larger for men with 12 years 
of schooling than for men with 16 years of schooling for each test score, but p-values for a test of 
equality for each score-specific pair of slope coefficients are always greater than 0.15.  This 
finding contrasts starkly to evidence in Arcidiacono et al. (2010), who report an imprecisely 
estimated AFQT·X coefficient equal to 0.01-0.02 for the S=16 sample, and a precisely estimated 
coefficient that is ten times larger for the S=12 sample.   While they conclude that employer 
learning occurs only for less-schooled men, we find no evidence that employer learning differs 
across the two schooling groups.20   

When we compare estimated Z·X coefficients for blue collar and white collar workers in the 
bottom panel of table 5C, an interesting pattern emerges:  the point estimate is larger for blue 
collar workers than for white collar workers when we use word knowledge or mathematics 
knowledge, but the opposite is true when we use numerical operations, coding speed, or 
mechanical comprehension.  Although the difference in each pair of estimates is statistically 
significant only for numerical operations, the pattern points to relatively more employer learning 
with respect to general academic skills for blue collar workers, but more employer learning with 
respect to vocational skills for white collar workers.  This contradicts the conclusions of Bauer 
and Haisken-DeNew (2001), who find evidence of employer learning for low-wage, blue collar 
workers only.  However, the two studies are not strictly comparable, given that Bauer and 
Haisken-DeNew use German data and a measure of parental schooling in lieu of test scores to 
represent Z.    

As a group, our estimates for specification 6 reveal that employer learning exists for each skill 
type, for both S=12 and S=16 workers, and for both blue collar and white collar workers, but that 
the degree of learning does not vary across skills and worker types.  In table 6 we report 
estimates for specification 10, in which coefficients for Z and Z·X are allowed to vary with skill 
                                                           
20Using data and programs provided by the authors (available at http://www.aeaweb.org), we determined 
that the findings reported by Arcidiacono et al. (2010) are driven by individuals whose S varies over time.  
Once we eliminate individuals with time-varying S from their samples, the estimated Z·X coefficient 
(S.E.) for the S=16 sample changes from 0.020 (.047) (as reported in column 4 of table 2 in Arcidiacono 
et al. 2010) to 0.103 (.050); the corresponding estimate for the S=12 sample changes from 0.118 (.017) to 
0.109 (.019).  Individuals with time-varying S account for 42% of the S=16 sample used by Arcidiacono 
et al., and the majority of these men began their work lives long before reaching 16 years of schooling;  
e.g., they average 3.66 years of potential experience the first time they appear in the sample, versus 1.69 
years for men who do not change S.   We suspect Arcidiacono et al. (2010) find no evidence of employer 
learning among college-educated men because many workers in their S=16 sample were past the point in 
their careers when employer learning takes place.   
 

http://www.aeaweb.org/
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importance (ISz).  As discussed in II.B, we use specification 10 to determine whether skill-
specific employer learning and screening are themselves functions of the skill’s importance to 
productivity.   

In assessing the table 6 estimates, we begin by noting that the estimated coefficients for ISz range 
from 0.037 for mechanical comprehension to 0.076 for mathematics knowledge.  This variable 
represents the skill’s importance for productivity in the current three-digit occupation, and is 
positively correlated with Z for every skill but mechanical comprehension (table 2).  Therefore, it 
is unsurprising that estimated ISz coefficients are positive and precisely estimated for each test 
score, but smaller in magnitude for mechanical comprehension than for other scores; these 
estimates represent a portion of each Z’s effect on log-wages.   

Next, we turn to the right-most columns in table 6 and observe that for mathematics knowledge 
and mechanical comprehension, the estimated coefficient for Z increases from zero at the bottom 
quartile of the importance distribution to roughly 0.03 in the remaining three quartiles, while the 
estimated coefficient for Z·X decreases monotonically from a high of about 0.10 in quartile 1 to a 
low of about 0.02 in quartile 4.21 As discussed in II.B.2, we cannot tell whether the positive 
effect of skill importance on the estimated Z coefficient represents a positive effect of importance 
on 𝑆𝑧𝑞, but we interpret this total effect as increased screening. For these two skills, therefore, we 
find a distinct tradeoff between screening and learning, and we find that this tradeoff varies with 
skill importance:   when mathematics or mechanical ability is relatively unimportant to the three-
digit occupation (quartile 1), employers do not screen and instead rely on performance histories 
to reveal over time whether workers possess the necessary skill; when mathematics or 
mechanical ability is relatively important to the job (quartile 4), employers rely more on 
screening and less on learning.  We find a qualitatively similar pattern for coding speed, although 
for this skill the estimated coefficients for Z and Z·X do not change as much across the ISz 
distribution; moreover, using conventional significance levels, we fail to reject the null 
hypothesis that pair-wise differences among the three estimated Z·X coefficients equal zero.     

We see evidence of tradeoffs between screening (as revealed by the estimated Z coefficient) and 
learning (as revealed by the estimated Z·X coefficient) for each remaining skill in table 6 except 
arithmetic reasoning.  For word knowledge and paragraph comprehension, employer learning 
increases in importance while screening decreases in importance.  (As discussed in II.B.2, a 
finding that the estimated Z coefficient decreases in importance necessarily means that 𝑆𝑧𝑞 
decreases in importance.)  Pair-wise differences in these parameter estimates are not statistically 
distinguishable from zero for paragraph comprehension, but for word knowledge the estimated Z 
coefficient decreases from a precisely estimated 0.04 when importance scores are in the bottom 
quartile of the distribution to zero at other points in the distribution, while the estimated Z·X 
                                                           
21 For each of these four triads of parameter estimates, we fail to reject the null hypothesis that the quartile 
2-3 and 4 interactions are identical (p-value≥0.37) and we reject the null that the quartile 1 interaction is 
identical to the other two (p-value<0.05). 
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coefficient increases from an imprecisely estimated 0.03 at quartile 1 to roughly 0.06 at higher 
levels of importance.  In short, we find a distinct screening-learning tradeoff that is the opposite 
of what is seen for the right-most three columns:  when word knowledge is important to the job 
(quartile 4), employers rely on learning rather than screening.   For numerical operations, it 
appears that screening is most pronounced and employer learning is least pronounced (i.e., the 
estimated Z coefficient is largest and the estimated Z·X coefficient is smallest) when this 
particular skill is of “medium” importance to the three-digit occupation (i.e., ISz falls in quartiles 
2-3 of the distribution).22 

V.   Conclusions 
In light of the potential centrality of employer learning to economists’ understanding of life-
cycle wage paths, numerous analysts have focused on the task of testing for the existence of 
employer learning across schooling levels (Arcidiacono et al. 2010), for blue collar and white 
collar workers (Bauer and Haisken-DeNew 2001), across starting occupations (Mansour 2012) 
and for broad samples of male workers (Altonji and Pierret 2001; Lange 2007; Pinkston 2009; 
Schönberg 2007).  However, existing studies have relied exclusively on a single cognitive test 
score (AFQT scores), which means they have focused exclusively on identifying employer 
learning with respect to the basic language and quantitative skills measured by this test. 

In the current study, we use seven cognitive test scores—each measuring a well-defined skill 
such as mathematical knowledge or coding speed—to determine whether employers learn more 
about some skills than others.  We also use direct measures of skill importance to identify effects 
of employer screening, to determine whether tradeoffs exist between the degree of learning and 
screening, and to investigate the extent to which learning and screening vary with skill 
importance.  We are able to accomplish these objectives by combining test score data from the 
NLSY79 with O*NET data on each skill’s importance on each three-digit occupation, and by 
identifying conditions under which the magnitudes (and not simply the signs) of parameter 
estimates are directly tied to the extent of screening and employer learning. 

We identify four key results.  First, employer learning exists for each skill type and, within each 
skill type, for high school graduates, college graduates, blue collar workers, and white collar 
workers.  Second, before the role of skill importance is brought to bear, we find little evidence 
that the degree of employer learning differs across skill types or worker types.  Third, upon 
incorporating information on skill importance, we find distinct tradeoffs between employer 
learning and screening for several skills.  Fourth, we find that the effect of skill importance on 
employer learning and screening differs across skills.  When mathematics knowledge and 

                                                           
22Appendix table B3 contains estimates for a modified version of specification 10 in which we constrain 
the effects of IS on coefficients for Z and Z·X to be linear.  For mathematics knowledge and mechanical 
comprehension, statistically significant estimates for the Z·IS and Z·X·IS parameters capture the patterns 
seen in table 6.   For other skills (e.g., word knowledge and numerical operations), the restrictions serve to 
conceal the nonlinear patterns seen in table 6.   
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mechanical comprehension are relatively unimportant for a given occupation, employers do not 
screen for these skills but instead learn about them over time; in occupations where mathematics 
knowledge and mechanical comprehension are relatively important, screening becomes more 
pronounced and employer learning less pronounced.  In contrast, when word knowledge is 
important to occupational productivity, employer learning is pronounced and screening is 
nonexistent.   These findings suggest that the manner in which worker ability is revealed to their 
employers depends intrinsically on the interplay between skill type and skill importance.  Studies 
that focus on a single, general skill and/or explore heterogeneity in employer learning across 
broad types of workers have masked much of this variation. 

Having developed an approach (building on Farber and Gibbons (1996)) that facilitates a 
comparison of how employer learning differs across skills, we conclude by suggesting two 
dimensions in which our analysis can be extended.  First, an examination of employer learning 
with respect to noncognitive skills seems warranted.  We have focused exclusively on cognitive 
skills that range from basic verbal and quantitative skills to vocationally-oriented skills.  Ignoring 
skill importance, we conclude that employer learning does not differ across these skill types; a 
different conclusion might be reached if measures of conscientiousness, agreeableness, locus of 
control, etc. are considered.  Second, existing evidence (Pinkston 2009; Schönberg 2007) that 
employer learning is largely public rather than private might not hold up in an analysis that 
considers both alternative skill types and the role of occupation-specific skill importance. 
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Appendix A:  O*NET Data 
We use O*NET data to associate seven skill-specific importance scores (IS) with each unique 
job (defined as a spell with a given employer) in our NLSY79 data.   These importance scores 
are used directly as regressors in select specifications of the log-wage model, and are used to 
compute the skill-specific importance-weighted experience measures (IWX) used in all 
specifications.   

O*NET refers to the Occupational Information Network, which is a data collection and 
dissemination project sponsored by the Employment and Training Administration of the U.S. 
Department of Labor and conducted by the North Carolina Employment Security Commission.  
Details on the project and the data used for our analysis are available at www.onetcenter.org.  
O*NET replaces the Dictionary of Occupational Titles (DOT). 

The O*NET database has descriptive information for 1,102 distinct occupations defined by the 
O*NET-SOC occupational taxonomy, which is modeled after the Standard Occupational 
Classification (SOC) taxonomy.  The descriptive variables (referred to in O*NET documentation 
as “descriptors”) consist of 277 distinct measures of the abilities, knowledge, skills and 
experience needed in the workplace as well as the tasks and activities associated with various 
types of work.  These descriptors comprise the O*NET content model, which decomposes the 
various dimensions of work into three worker-oriented domains (worker characteristics, worker 
requirements, and experience requirements) and three job-oriented domains (occupational 
requirements, workforce characteristics, and occupation-specific information).  Each domain 
contains a large set of measurable characteristics (descriptors).  For example, the worker 
characteristics domain contains numerous measures of abilities that influence performance on the 
job, ranging from written comprehension to selective attention to explosive (physical) strength; it 
also contains measures of preferences for different work environments (artistic, social, etc.)  and 
work styles that affect job performance (persistence, initiative, attention to detail, etc.).  The 
worker requirements domain contains numerous types of knowledge, ranging from economics to 
mathematics to telecommunications, while the experience requirements domain contains 
measures of the amount of experience (in writing, mathematics, programming, time 
management, etc.) needed to enter each occupation.  Some descriptors measure the importance of 
an ability or type of knowledge to each occupation, others measure the frequency with which a 
type of knowledge is used or a task is performed, while others measure the impact of decisions, 
amount of experience needed, etc.   We focus exclusively on descriptors that identify—using a 
scale from one to five—the importance of select abilities and types of knowledge for each 
occupation. 

O*NET data are updated on a “rolling” basis by conducting a survey approximately every six 
months that focuses on a subset of occupations in the O*NET database.  Each data collection 
effort involves randomly sampling businesses that are likely to employ workers in the selected 

http://www.onetcenter/
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occupations, randomly sampling workers within those businesses, and then randomly assigning 
the sampled workers questionnaires designed to elicit occupation-specific information  
associated with a subset of O*NET descriptors.  The data collected from surveyed workers are 
used to score descriptors for their occupations.   

We face a number of challenges in combining O*NET data with NLSY79 data and constructing 
occupation-specific importance scores (IS).  First, we require a reasonably clear-cut mapping 
between our chosen NLSY79 skill measures and the associated O*NET importance scores.  
Table A1 briefly describes the skill that is measured by each of the seven ASVAB scores that we 
use to characterize NLSY79 respondents’ hard-to-observe productivity, and describes the 
O*NET descriptor we use to measure the skill’s “importance” on the job.  Using word 
knowledge as an example, we are measuring sample members’ “ability to select the correct 
meaning of words presented in context,” and measuring the importance in their current job of 
knowing “the meaning of words” as well as other language-related components.23   

Second, we require uniform occupation codes in order to merge O*NET data with NLSY79 data.  
The O*NET database only contains O*NET-SOC codes, while for our observation period the 
NLSY79 provides both 1970 and 1980 3-digit Census occupation codes.   We use a cross-walk 
to convert O*NET-SOC codes to DOT codes, and then another cross-walk to convert from DOT 
codes to 3-digit 1970 Census codes.  In cases where multiple O*NET-SOC categories map into a 
given Census category, we compute the average O*NET importance score for that Census 
category.   

Third, we need to associate each job reported in the NLSY79 with a single occupation code.  In 
fact, longer jobs that are reported by NLSY79 respondents in multiple interviews can have time-
varying occupation codes.  This may reflect a “true” change in the respondent’s work 
assignment, or it may reflect the fact that verbatim job descriptions recorded in each interview 
are coded differently across interview rounds.  To skirt the spurious, within-job variation in 
occupation codes, we associate each job in the NLSY79 with the first-coded occupation; we also 
confirmed that using the modal or last-coded occupation does not affect our findings. 

                                                           
23We do not use the three remaining ASVAB scores (general science, auto/shop knowledge, electronics 
information) or the noncognitive skill measures available in the NLSY79 (Rotter Locus of Control, etc.) 
because it is much less obvious which O*NET descriptor would measure the importance of those skills on 
the job. 
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Table A1:  Description of NLSY79 Skill Measures and Corresponding O*NET Importance Scores 
NLSY79 skill measure (Z) Descriptiona O*NET score (ISz) Descriptionb 

AFQT score Composite of 4 raw ASVAB 
scores: AR+WK+PC+½∙NO 

— — 

Arithmetic reasoning (AR)  
ASVAB score 2 

Ability to solve arithmetic 
word problems. 

Mathematical 
reasoningc 

Ability to choose the right mathematical 
methods or formulas to solve a problem. 

Word knowledge (WK) 
ASVAB score 3 

Ability to select the correct 
meaning of words presented 
in context. 

English languaged Knowledge of the structure and content 
of the English language including the 
meaning and spelling of words, rules of 
composition, and grammar. 

Paragraph comprehension (PC) 
ASVAB score 4 

Ability to obtain information 
from written passages. 

Written 
comprehensionc 

Ability to read and understand 
information and ideas presented in 
writing. 

Numerical operations (NO) 
ASVAB score 5 

Speed test of simple 
numerical calculations. 

Number facilityc Ability to add, subtract, multiply, or 
divide quickly and correctly. 

Coding speed 
ASVAB score 6 

Speed test of finding numbers 
in a table. 

Perceptual speedc Ability to quickly and accurately compare 
similarities and differences among sets 
of letters, numbers, objects, pictures, or 
patterns. 

Mathematics knowledge  
ASVAB score 8 

Knowledge of high school 
mathematics principles. 

Mathematicsd Knowledge of arithmetic, algebra, 
geometry, calculus, statistics, and their 
applications. 

Mechanical comprehension 
ASVAB score 9 

Knowledge of mechanical and 
physical principles. 

Mechanicald Knowledge of machines and tools, 
including their designs, uses, repair, and 
maintenance. 

aSource and NLSY79 User’s Guide available at http://www.nlsinfo.org/nlsy79/docs/79html/tableofcontents.html 
bSource: O*NET® Content Model: Detailed Model with Descriptions available at http://www.onetcenter.org/dl_files/ContentModel_DetailedDesc.pdf. 
cAbility measure from the Worker Characteristics section of the O*NET Content Model; abilities are defined as enduring attributes of the individual that 
influence performance. 
dKnowledge measure from the Worker Requirements section of the O*NET Content Model; knowledge is defined as an organized set of principles and facts 
applying in general domains.  
 

http://www/
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Appendix B:  Supplemental Tables 

Table B1:  Summary Statistics for Subsamples 
 Occ. stayers S=12 S=16 Blue collar White collar 
Variable Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 
Log real wage 2.01 .56 1.90 .46 2.44 .56 1.92 .47 2.24 .61 
S 13.09 2.30 12.00 0 16.00 0 11.81 1.50 14.56 2.31 
X 4.58 3.88 7.08 4.12 5.98 3.94 6.89 4.12 6.27 4.05 
S·X/10 6.05 5.30 — — — — 81.23 49.73 90.28 59.65 
1 if black .23  .29  .15  .25  .19  
black∙X 1.08 2.74 2.17 4.03 .98 2.79 1.79 3.73 1.28 3.16 
1 if Hispanic .15  .15  .07  .17  .14  
Hispanic∙X .72 2.32 1.11 3.05 .84 .37 1.23 3.20 .94 2.78 
1 if urban .75  .73  .84  .72  .83  
AFQT scorea .02 1.05  .07 1.09 -.01 .73 -.04 1.01 .12 .90 
ASVAB scoresa           

Arith. reason. .02 .99 .06 1.04 .03 .94 -.01 .98 .05 1.00 
Word know. .00 .96 .06 1.08 -.03 .65 -.01 1.03 .08 .85 
Paragr. comp. -.01 .98 .07 1.09 -.04 .68 -.02 1.03 .08 .89 
Numer. oper. .03 .99 .08 1.08 -.06 .83 -.02 1.01 .06 .94 
Coding speed .05 .98 .06 1.02 -.04 .94 -.04 .98 .13 .98 
Math. know. .02 .99 -.04 1.00 .15 .97 -.04 .93 .16 1.03 
Mech. comp. .02 .99 .09 1.04 -.02 .93 -.01 1.01 .07 .99 
No. obsns. 8,776 11,944 3,313 12,278 6,188 
No. men 3,071 1,461 480 1,516 953 

aSummary statistics for standardized residual AFQT and ASVAB scores are reported. 
Note:  See table 1 and section II for additional information on subsample definitions, variable 
definitions, and additional covariates included in each specification. 

 
  



 

27 
 

Table B2:  Additional Estimates Corresponding to the Bottom Panel of Table 4A (Full Sample) 

 
 
Variable 

Skill measure used as regressor (Z) 

AFQT Arith. 
Reason. 

Word  
Know. 

Paragr. 
Comp. 

Numer. 
Oper. 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

Constant .261 
(.081) 

.254 
(.081) 

.253 
(.081) 

.242 
(.081) 

.250 
(.080) 

.252 
(.081) 

.246 
(.081) 

.251 
(.081) 

X2/10 -.070 
(.013) 

-.069 
(.013) 

-.069 
(.013) 

-.068 
(.013) 

-.069 
(.013) 

-.069 
(.013) 

-.069 
(.013) 

-.068 
(.013) 

X3/100 .016 
(.006) 

.016 
(.006) 

.016 
(.006) 

.016 
(.006) 

.016 
(.006) 

.016 
(.006) 

.016 
(.006) 

.016 
(.006) 

black -.079 
(.017) 

-.078 
(.017) 

-.080 
(.017) 

-.078 
(.017) 

-.079 
(.017) 

-.078 
(.017) 

-.077 
(.017) 

-.079 
(.017) 

black·X/10 -.013 
(.002) 

-.014 
(.002) 

-.013 
(.002) 

-.014 
(.002) 

-.014 
(.002) 

-.014 
(.002) 

-.014 
(.002) 

-.014 
(.002) 

Hispanic -.019 
(.024) 

-.017 
(.024) 

-.018 
(.024) 

-.017 
(.024) 

-.017 
(.024) 

-.016 
(.024) 

-.018 
(.024) 

-.015 
(.024) 

Hispanic·X/10 .001 
(.003) 

.000 
(.003) 

.001 
(.003) 

.000 
(.003) 

-.000 
(.003) 

.000 
(.003) 

.001 
(.003) 

.000 
(.003) 

Urban .089 
(.013) 

.092 
(.013) 

.089 
(.013) 

.090 
(.013) 

.092 
(.013) 

.093 
(.013) 

.090 
(.013) 

.091 
(.013) 

Note:  The full sample consists of 22,892 observations for 3,071 men.  Estimated coefficients for year 
dummies are not shown.  Standard errors (in parentheses) are robust to clustering on individuals.   
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Table B3:  Estimates for Modified Model 10 Using Alternative Skill Measures   
(Full Sample) 

 
 
Variable 

Skill measure used as regressor (Z) 
Arith. 

Reason.a 
Word  

Know.a 
Paragr. 
Comp.a 

Numer. 
Oper.a 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

ISz .062 
(.007) 

.055 
(.008) 

.072 
(.008) 

.054 
(.007) 

.060 
(.006) 

.075 
(.007) 

.037 
(.006) 

Z .010 
(.007) 

.008 
(.007) 

.003 
(.008) 

.031 
(.008) 

.025 
(.007) 

.022 
(.007) 

.017 
(.008) 

Z·ISz -.004 
(.007) 

-.014 
(.008) 

-.012 
(.008) 

-.013 
(.006) 

.004 
(.007) 

.011 
(.008) 

.015 
(.007) 

Z·X/10 .049 
(.011) 

.053 
(.011) 

.047 
(.011) 

.053 
(.010) 

.041 
(.011) 

.049 
(.011) 

.051 
(.011) 

Z·X·ISz /10  -.005 
(.012) 

.003 
(.013) 

.006 
(.012) 

.000 
(.011) 

-.007 
(.012) 

-.025 
(.012) 

-.034 
(.011) 

S .084 
(.005) 

.081 
(.005) 

.077 
(.005) 

.086 
(.005) 

.092 
(.004) 

.086 
(.005) 

.101 
(.005) 

S·X/10 .002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.003 
(.001) 

.002 
(.001) 

X .087 
(.013) 

.087 
(.013) 

.086 
(.013) 

.090 
(.013) 

.084 
(.013) 

.082 
(.013) 

.088 
(.013) 

Root MSE .447 .449 .448 .445 .447 .444 .449 
 aThese four ASVAB scores are used to compute AFQT scores. 
Note:  The full sample consists of 22,892 observations for 3,071 men.  All specifications include 
controls for X2, X3, black, Hispanic, black∙X, hispanic∙X, urban, and year dummies; the Z are 
standardized, residual test scores. Standard errors (in parentheses) are robust to clustering on 
individuals. 
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 Table 1:  Summary Statistics (full sample) 
Variable Mean S.D. Mean S.D. 
Log of CPI-deflated average hourly wage 1.99 .54   
Highest grade completed (S) 12.59 2.17   
Years of potential experience (X)a 6.69 4.11   
S·X/10 8.36 5.30   
1 if black .26    
black∙X 1.79 3.71   
1 if Hispanic .16    
Hispanic∙X 1.11 3.04   
1 if urban .75    
  

Raw scores 
Standardized 

scores  
AFQT score (Z)b 63.83 22.58 .02 1.08 
ASVAB scores (Z)b     

Arithmetic reasoning (AR) 16.33 7.39 .01 .99 
Word knowledge (WK) 22.88 8.62 .01 1.01 
Paragraph comprehension (PC) 9.45 3.79 .01 1.01 
Numerical operations (NO) 30.43 11.25 .01 1.01 
Coding speed 38.19 15.63 .01 1.00 
Mathematical knowledge 12.18 6.30 .01 .97 
Mechanical comprehension 14.09 5.59 .01 1.00 

Importance scores (ISz)c     
Arithmetic reasoning 2.33 .47 .00 1.00 
Word knowledge 3.14 .45 .00 1.00 
Paragraph comprehension 3.13 .45 .00 1.00 
Numerical operations 2.37 .41 .00 1.00 
Coding speed 2.77 .24 .00 1.00 
Mathematical knowledge 2.91 .41 .00 1.00 
Mechanical comprehension 2.60 .75 .00 1.00 

Number of observations 22,892 
Number of men 3,071 
aElapsed months since first school exit, divided by 12. 
bRaw ASVAB scores reflect the number of correct answers, and the raw 
AFQT score equals AR+WK+PC+½·NO. Standardized AFQT and ASVAB 
scores are standardized residual scores; because one observation per person 
is used to construct and standardize the residuals, means (S.D.s) differ 
slightly from zero (one) in the sample of person-year observations. 
cRaw scores are O*NET importance ratings (ranging from zero to five) for 
the three-digit occupation corresponding to each observation; see appendix A 
for details.   
Note:  All specifications also control for Z·X, X2, X3, and calendar year 
dummies. 
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Table 2:  Pearson Correlation Coefficients for Skill Measures 

and Select Covariates 
Skill measure S Black Hisp. 𝑋0 𝑋𝑓  𝐼𝑆0𝑧

 𝐼𝑆𝑓𝑧
 

AFQT .608 -.401 -.107 -.063 -.200 —  
Arithmetic reasoning .574 -.374 -.113 -.079 -.190 .353 .346 
Word knowledge .546 -.395 -.091 -.052 -.193 .352 .382 
Paragraph comp. .533 -.333 -.104 -.047 -.171 .358 .370 
Numerical operations .501 -.297 -.071 -.041 -.144 .279 .270 
Coding speed .470 -.316 -.038 -.053 -.131 .101 .082 
Math knowledge .644 -.303 -.108 -.077 -.186 .291 .252 
Mechanical comp. .425 -.428 -.095 -.055 -.134 -.021 -.058 
Note:  Skill measures are raw (nonstandardized) scores. Potential experience 
(X) and importance scores (ISz) correspond to the first and last observation 
for each individual.  All correlation coefficients are statistically 
distinguishable from zero at 1% significance levels.   
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Table 3:  Pearson Correlation Coefficients for Skill Measures 

 Skill measure 
 
Skill measure 

Word 
Know. 

Paragr. 
Comp. 

Numer. 
Oper. 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

Raw scores       
Arithmetic reasoning .76 .74 .68 .62 .84 .72 
Word knowledge  .83 .65 .62 .72 .72 
Paragraph comp.   .64 .61 .70 .68 
Numerical operations    .72 .66 .54 
Coding speed     .62 .55 
Math knowledge      .66 

Residual scores       
Arithmetic reasoning .54 .54 .47 .38 .69 .54 
Word knowledge  .69 .43 .39 .47 .54 
Paragraph comp.   .42 .39 .47 .31 
Numerical operations    .58 .44 .31 
Coding speed     .37 .33 
Math knowledge      .47 

Note:  The top panel uses the raw (nonstandardized) scores summarized in the 
first columns in table 1.  The bottom panel uses standardized, residual scores 
summarized in the right-most columns of table 1. All scores are statistically 
distinguish from zero at 5% significance levels. 
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Table 4:  Importance Scores for Select Occupations 

  Importance Score 
 
Codea 

 
Occupation 

Arithmetic 
reasoning 

Word 
knowledge 

Paragraph 
comp. 

Numerical 
operations 

Coding 
speed 

Mathematical 
knowledge 

Mechanical 
comp. 

031 Lawyer 2.280 4.525 4.253 2.285 2.780 2.663 1.448 
035 Mathematician 3.875 3.875 3.690 3.565 2.690 4.260 1.490 
182 Dancer 1.630 2.780 3.315 1.755 2.625 1.630 1.200 
345 Key punch operator 2.630 3.710 4.250 2.380 3.750 2.950 1.480 
412 Bulldozer operator 1.875 2.880 2.565 1.815 2.815 2.940 3.100 
473 Auto mechanic 2.150 3.127 3.046 2.216 2.820 2.959 3.969 
a1970 Census 3-digit occupation code. 
Note:  High (low) scores for each column are in bold (italics).  See appendix A for details on O*NET scores. 
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Table 5A:  Estimates for Model 6 Using Alternative Skill Measures (Full Sample) 

 
 
Variable 

Skill measure used as regressor (Z) 

AFQT Arith. 
Reason.a 

Word  
Know.a 

Paragr. 
Comp.a 

Numer. 
Oper.a 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

Z independent of  birth year onlyb 

Z .037 
(.010) 

.036 
(.009) 

.014 
(.009) 

.009 
(.010) 

.048 
(.009) 

.033 
(.009) 

.041 
(.010) 

.023 
(.009) 

Z·X/10 .091 
(.014) 

.063 
(.013) 

.073 
(.013) 

.064 
(.014) 

.065 
(.013) 

.053 
(.013) 

.066 
(.014) 

.054 
(.012) 

S .088 
(.005) 

.089 
(.005) 

.095 
(.005) 

.096 
(.005) 

.088 
(.005) 

.092 
(.005) 

.085 
(.005) 

.093 
(.005) 

S·X/10 -.003 
(.008) 

.005 
(.008) 

.005 
(.008) 

.008 
(.007) 

.006 
(.007) 

.009 
(.007) 

.003 
(.008) 

.001 
(.007) 

X .117 
(.014) 

.107 
(.014) 

.107 
(.014) 

.107 
(.014) 

.108 
(.014) 

.103 
(.014) 

.111 
(.014) 

.096 
(.013) 

Root MSE .448 .445 .451 .452 .447 .451 .449 .451 

Z independent of birth year, S, and all other covariatesb  
Z .019 

(.006) 
.023 

(.008) 
.012 

(.007) 
.007 

(.008) 
.034 

(.008) 
.026 

(.008) 
.026 

(.008) 
.018 

(.008) 
Z·X/10 .055 

(.009) 
.049 

(.011) 
.052 

(.010) 
.048 

(.011) 
.054 

(.010) 
.043 

(.011) 
.048 

(.011) 
.050 

(.011) 
S .097 

(.004) 
.097 

(.004) 
.097 

(.004) 
.097 

(.004) 
.097 

(.004) 
.097 

(.004) 
.097 

(.004) 
.097 

(.004) 
S·X/10 .002 

(.001) 
.002 

(.001) 
.002 

(.001) 
.002 

(.001) 
.002 

(.001) 
.002 

(.001) 
.002 

(.001) 
.002 

(.001) 
X .094 

(.013) 
.092 

(.013) 
.092 

(.013) 
.093 

(.013) 
.093 

(.013) 
.092 

(.013) 
.090 

(.013) 
.090 

(.013) 
Root MSE .448 .450 .451 .452 .448 .451 .450 .451 

aThese four ASVAB scores are used to compute AFQT scores. 
bIn the bottom panel, all Z are standardized, residual test scores obtained by regressing each test score on 
birth year dummies and starting/ending values of all covariates (including IS), as detailed in section III.B.  
In the top panel, we use standardized, residual test scores obtained by regressing each test score on birth 
year dummies only.    

Note:  The full sample consists of 22,892 observations for 3,071 men.  All specifications include controls 
for X2, X3, black, Hispanic, black∙X, hispanic∙X, urban, and year dummies; see table B2 for additional 
parameter estimates corresponding to the bottom panel.  Standard errors (in parentheses) are robust to 
clustering on individuals.   
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Table 5B:  Estimates for Model 6 Using Alternative Skill Measures  
(Subsamples of occupation stayers and importance score stayers) 

 
 
Variable 

Skill measure used as regressor (Z) 
AFQT Arith. 

Reason.a 
Word  

Know.a 
Paragr. 
Comp.a 

Numer. 
Oper.a 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

Occupation         
Z .012 

(.008) 
.017 

(.008) 
.002 

(.009) 
.002 

(.009) 
.030 

(.009) 
.019 

(.009) 
.025 

(.009) 
.007 

(.009) 
Z·X/10 .053 

(.021) 
.053 

(.023) 
.044 

(.027) 
.040 

(.024) 
.047 

(.022) 
.041 

(.021) 
.046 

(.023) 
.043 

(.024) 
S .093 

(.005) 
.094 

(.005) 
.093 

(.005) 
.094 

(.005) 
.093 

(.005) 
.092 

(.005) 
.094 

(.005) 
.093 

(.005) 
S·X/10 .003 

(.001) 
.003 

(.001) 
.003 

(.001) 
.003 

(.001) 
.004 

(.001) 
.003 

(.001) 
.003 

(.001) 
.003 

(.001) 
X .107 

(.022) 
.109 

(.022) 
.106 

(.022) 
.107 

(.022) 
.102 

(.021) 
.102 

(.022) 
.111 

(.022) 
.106 

(.022) 
Root MSE .443 .443 .445 .447 .442 .444 .443 .444 

Import. Score         
Z  .019 

(.009) 
.004 

(.008) 
.001 

(.009) 
.031 

(.009) 
.019 

(.009) 
.026 

(.009) 
.010 

(.009) 
Z·X/10  .057 

(.020) 
.048 

(.022) 
.049 

(.020) 
.048 

(.019) 
.041 

(.019) 
.042 

(.021) 
.047 

(.020) 
S  .093 

(.005) 
.095 

(.005) 
.094 

(.005) 
.091 

(.005) 
.093 

(.005) 
.095 

(.005) 
.094 

(.005) 
S·X/10  .003 

(.001) 
.003 

(.001) 
.003 

(.001) 
.004 

(.001) 
.003 

(.001) 
.004 

(.001) 
.002 

(.001) 
X  .105 

(.020) 
.118 

(.019) 
.101 

(.020) 
.094 

(.020) 
.099 

(.020) 
.101 

(.020) 
.119 

(.019) 
Root MSE  .445 .446 .442 .446 .442 .444 .443 
Observations  9,972 10,079 9,922 9,933 9,666 9,948 10,073 

aThese four ASVAB scores are used to compute AFQT scores. 
The subsample of occupation stayers consists of 8,776 observations for the 3,071 men in the full sample; 
each man contributes observations as long as he maintains his initial three-digit occupation.  Each 
subsample of importance score stayers consists of observations for the 3,071 men in the full sample; each 
man contributes observations as long as his skill-specific importance score varies less than 0.1 relative to 
his initial score, so sample sizes are skill-specific.   All specifications include controls for X2, X3, black, 
Hispanic, black∙X, hispanic∙X, urban, and year dummies; the Z are standardized residual test scores. 
Standard errors (in parentheses) are robust to clustering on individuals. 
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Table 5C:  Estimates for Model 6 Using Alternative Skill Measures  
(Subsamples of men with schooling=12 or 16, and men in blue or white collar occupations) 

 
 
Variable 

Skill measure used as regressor (Z) 

AFQT Arith. 
Reason.a 

Word  
Know.a 

Paragr. 
Comp.a 

Numer. 
Oper.a 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

Schooling=12         
Z   .026 

(.010) 
.019 

(.010) 
.015 

(.010) 
.014 

(.011) 
.046 

(.010) 
.038 

(.011) 
.021 

(.010) 
.010 

(.010) 
Z·X/10  .067 

(.013) 
.054 

(.013) 
.060 

(.012) 
.047 

(.013) 
.053 

(.013) 
.047 

(.014) 
.054 

(.013) 
.058 

(.014) 
Schooling=16         
Z  .022 

(.025) 
.038 

(.018) 
-.013 
(.030) 

-.018 
(.028) 

.026 
(.025) 

.028 
(.019) 

.054* 
(.019) 

.036 
(.019) 

Z·X/10  .055 
(.036) 

.033 
(.026) 

.012 
(.045) 

.024 
(.046) 

.046 
(.035) 

.023 
(.038) 

.038 
(.026) 

.020 
(.031) 

Root MSE .448 .450 .450 .452 .446 .449 .449 .451 
Blue collar         
Z   .026 

(.010) 
.025 

(.010) 
.012 

(.010) 
.005 

(.011) 
.046 

(.010) 
.031 

(.011) 
.025 

(.010) 
.018 

(.010) 
Z·X/10  .054 

(.013) 
.042 

(.014) 
.051 

(.012) 
.045 

(.013) 
.030 

(.013) 
.021 

(.014) 
.044 

(.014) 
.038 

(.013) 
S   .080 

(.007) 
.082 

(.007) 
.081 

(.007) 
.082 

(.007) 
.079 

(.007) 
.081 

(.007) 
.082 

(.007) 
.081 

(.007) 
S·X /10 
 

.000 
(.010) 

.003 
(.010) 

.001 
(.010) 

.000 
(.010) 

.001 
(.010) 

.003 
(.010) 

.009 
(.009) 

.004 
(.010) 

White collar         
Z   .038 

(.015) 
.026 

(.014) 
.028 

(.016) 
.035* 
(.017) 

.035 
(.016) 

.037 
(.014) 

.047 
(.013) 

.039 
(.015) 

Z·X/10  .077 
(.026) 

.042 
(.014) 

.039 
(.028) 

.046 
(.026) 

.076**  
(.025) 

.042 
(.025) 

.030 
(.022) 

.042 
(.024) 

S  .113*** 

(.009)  
.111*** 

(.009) 
.113*** 

(.008) 
.114*** 

(.008) 
.111*** 

(.009) 
.112*** 

(.009) 
.111*** 

(.008) 
.112*** 

(.009) 
S·X/ 10  .022 

(.001) 
.020 

(.013) 
.019 

(.013) 
.019 

(.013) 
.024* 
(.012) 

.022 
(.013) 

.020 
(.013) 

.022 
(.013) 

Root MSE .446 .448 .449 .449 .446 .449 .448 .448 
aThese four ASVAB scores are used to compute AFQT scores. 
*, **, and *** indicate that the p-value for the null hypothesis that the two parameters are equal across types 
(S=12 and S=16, or blue and white collar) is less than or equal to 0.15, 0.10, and 0.01.  

Note: The schooling subsample consists of 11,944 observations for 1,461 men with S=12 and 3,312 
observations for 480 men with S=16; the occupation subsample consists of 12,278 observations for 1,516 
men in blue collar occupations and 6,188 observations for 953 men in white collar occupations.  All 
specifications include the full set of controls described in table 5A (with S and S∙X dropped from the 
schooling sample) fully interacted with dummies indicating S-level or blue/white collar status; the Z are 
standardized, residual test scores.  Standard errors (in parentheses) are robust to clustering on individuals. 
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Table 6:  Estimates for Model 10 Using Alternative Skill Measures  (Full Sample) 
 
 
Variable 

Skill measure used as regressor (Z) 
Arith. 

Reason.a 
Word  

Know.a 
Paragr. 
Comp.a 

Numer. 
Oper.a 

Coding 
Speed 

Math. 
Know. 

Mech. 
Comp. 

ISz .063 
(.007) 

.055 
(.008) 

.072 
(.008) 

.055 
(.007) 

.060 
(.006) 

.076 
(.007) 

.036 
(.006) 

 a.  Z| Q1 IS .019 
(.014) 

.040 
(.013) 

.015 
(.015) 

.033 
(.014) 

.029 
(.013) 

-.003 
(.015) 

-.013 
(.014) 

 b.  Z| Q2-Q3 IS .026 
(.010) 

.002 
(.010) 

.004 
(.010) 

.054 
(.010) 

.011 
(.011) 

.034 
(.010) 

.027 
(.011) 

 c.  Z| Q4 IS .009 
(.015) 

-.009 
(.018) 

-.007 
(.020) 

-.018 
(.017) 

.047 
(.016) 

.025 
(.016) 

.030 
(.015) 

d.  Z·X/10 |Q1 IS  .050 
(.022) 

.028 
(.018) 

.037 
(.019) 

.070 
(.018) 

.051 
(.023) 

.096 
(.023) 

.105 
(.024) 

e. Z·X/10|Q2-Q3 IS  .057 
(.014) 

.062 
(.013) 

.046 
(.014) 

.032 
(.013) 

.047 
(.014) 

.041 
(.014) 

.036 
(.016) 

f.  Z·X/10|Q4 IS  .025 
(.023) 

.059 
(.031) 

.058 
(.029) 

.079 
(.025) 

.024 
(.025) 

.018 
(.022) 

.021 
(.018) 

S .084 
(.005) 

.081 
(.005) 

.078 
(.005) 

.086 
(.005) 

.093 
(.004) 

.086 
(.005) 

.101 
(.004) 

S·X/10 .002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

.002 
(.001) 

X .087 
(.013) 

.087 
(.013) 

.086 
(.013) 

.090 
(.013) 

.084 
(.013) 

.082 
(.013) 

.087 
(.013) 

Root MSE .447 .449 .448 .445 .447 .444 .449 
P-valuesb        

row a.-b. .69 .02 .56 .22 .26 .04 .02 
row b.-c. .35 .60 .63 .00 .06 .66 .87 
row a.-c. .63 .03 .39 .02 .38 .17 .03 
row d.-e. .79 .14 .69 .09 .90 .04 .01 
row e.-f. .22 .95 .70 .09 .18 .37 .52 
row d.-f. .41 .38 .52 .78 .19 .02 .00 

aThese four ASVAB scores are used to compute AFQT scores. 
bP-values for tests of the null hypothesis that the difference between the two parameter estimates 
identified by row labels is zero.  

Note:  The full sample consists of 22,892 observations for 3,071 men.  All specifications include 
controls for X2, X3, black, Hispanic, black∙X, hispanic∙X, urban, and year dummies; the Z are 
standardized, residual test scores. Standard errors (in parentheses) are robust to clustering on 
individuals. 
 

 




