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ABSTRACT 
 

The Dynamics of Market Insurance, Insurable Assets, 
and Wealth Accumulation� 

 
We analyze dynamic interactions between market insurance, the stock of insurable assets 
and liquid wealth accumulation in a model with non-durable and durable consumption. The 
stock of the durable is exposed to risk against which households can insure. Since the model 
does not have a closed form solution we first provide an analytical approximation for the case 
in which households own abundant liquid wealth. It turns out that precautionary motives still 
matter because of fluctuations of the predetermined durable stock. Second we solve the 
model numerically. With deterministic labor income the representative agent demands a non-
negligible amount of market insurance. The deductible is substantially higher than in static 
models because agents can time-diversify their risk. Market insurance implies welfare gains 
of around .6% in terms of non-durable consumption. Introducing labor income risk into the 
model does not necessarily increase the importance of market insurance if the borrowing 
constraint endogenously tightens. 
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1 Introduction

Durables are a substantial part in the balance sheets of households. E.g., in the US and the UK

durable consumption accounts for 13-14 % of total consumption in the time period 1959-96 (see

Attanasio (1999)) where the ratio of durable consumption over non-durable consumption (excluding

services) is roughly one third. In the US the current-cost net stock of private fixed assets amounts

to twice the GDP in the year 2000 where alone the stock of privately-owned manufacturing durable

goods accounts for 10% of GDP.1 The stock of durables is exposed to risk. E.g., houses can be broken

into or destroyed by natural catastrophes, cars can be stolen etc. The topic of this paper is to assess

the importance of market insurance compared with other possible actions of households to manage

this risk. Empirically, market insurance seems to be important. Non-life insurance penetration,

defined as direct gross premiums over GDP, is 10% in the US in the 90s (see OECD (1998)) and the

OECD average is 8%. Expenditure on motor-vehicle insurance and fire and property insurance each

account for roughly a quarter of the total. However, besides buying market insurance, households

can accumulate liquid wealth to self-insure or adjust the stock of durables exposed to risk. We

want to find out which of these actions dominates and how they interact dynamically.

The following papers are closest to our analysis. Ehrlich and Becker (1972) analyze the inter-

actions of market insurance, self insurance and self protection in a static model. In their work

self insurance is defined as actions of agents to decrease the size of the loss and self protection as

actions to decrease the probability of the loss. They find that self insurance and market insurance

are substitutes whereas this is not unambiguously the case for market insurance and self protection.

Eeckhoudt, Meyer and Ormiston (1997) perform a static analysis of interactions between market

insurance and insurable assets. They show that the utility derived from market insurance increases

as the share of the risky asset in the portfolio increases if the utility function has the property of

decreasing absolute risk aversion. Eeckhoudt, Gollier and Schlesinger (1991), Proposition 2, find

1The figures are obtained from the national income and product accounts of the Bureau of Economic Analysis,

U.S. Department of Commerce.
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that in a static model market insurance and precautionary savings are substitutes for a particular

increase in risk of the insurable loss. Gollier (1994, 2000) investigates dynamic interactions between

market insurance and the accumulation of liquid wealth as buffer stock. Whereas Gollier (1994)

derives a closed form solution for CRRA utility and no liquidity constraints in a continuous-time

model, Gollier (2000) provides a numerical solution to the more general problem. He finds that al-

lowing for time diversification through wealth accumulation reduces the scope for market insurance

substantially. However, in his model the insurable risk is exogenous.

In this paper we want to analyze simultaneously the size of the insurable asset, liquid wealth

accumulation and market insurance and their interactions. I.e., we allow that the risk associated

with the insurable asset can be adjusted not only by buying market insurance, but also by adjusting

the size of the asset itself. We get the following set of results.

First we derive an analytical approximation for the special case of abundant liquid wealth. It

turns out that precautionary motives still matter in this case because the risky durable stock is

predetermined and enters the utility function. This is in contrast with standard models of non-

durable consumption under uncertainty in which risk-averse households accumulate sufficient wealth

dynamically so that utility costs resulting from fluctuations are small as the value function becomes

approximately linear (see Krusell and Smith (1998) and their references). Our numerical results

and the empirical evidence are at odds with linearity of the value function for the representative

agent. If the value function was linear, the representative agent should not demand any market

insurance.

Second we solve the model numerically. For the case of deterministic labor income we find that

the representative agent does not accumulate substantial liquid wealth and spends a non-negligible

part of his income on market insurance. The agent buys less market insurance in our model

compared to the results of Gollier (2000). This is because in our model it is possible to adjust

the asset at risk. Furthermore, we solve the model for stochastic labor income. Interestingly,

if labor income is risky and thus the borrowing constraint becomes tighter, the accumulation of

liquid wealth becomes more important whereas the opposite holds for market insurance. The latter
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result is contrary to findings in static models given that we assume utility functions that have the

property of decreasing absolute risk aversion. The reason is that the tighter borrowing constraint

forces the agent to be relatively more patient. The smaller amount of resources needed to service

the debt allows the agent to finance relatively more consumption. Moreover, labor income risk

creates an endogenous incentive to accumulate buffer-stock wealth which can be used to smooth

fluctuations of the durable stock as well. With a tighter borrowing constraint adverse shocks imply

smaller fluctuations in terms of marginal utility in the steady state and hence less scope for market

insurance. Finally, we find that the motive for market insurance is stronger if labor income shocks

are permanent rather than transitory whereas the opposite holds for liquid wealth accumulation.

The rest of the paper is structured as follows. In Section 2 we present and discuss the model.

In Section 3 we provide an analytic approximation of the policy functions for the special case of

abundant liquid wealth. In Section 4 we present the numerical results and analyze the solution for

various parameter sets. We conclude in Section 5.

2 The model

Households derive utility from a durable good v, e.g., cars, and a non-durable good c, e.g., food. For

simplicity we assume v to be a homogenous, divisible good. This assumption is made for tractability

given that it is more realistic to assume that, e.g., cars are a bundle of characteristics. Household’s

utility is separable so that U(c, v) = u(c) + φw(v) where U(.) is the instantaneous utility function,

u(.) and w(.) are both concave, and φ is the weight given to utility derived from the durable. This

assumption allows us to derive interpretable analytical results because otherwise cross-derivatives

would render our results ambiguous. We assume w(v) to be well defined at v = 0 so that our model

is able to generate households with no durable stock. A possible functional form is w(v) = (v+v)τ ,

τ ≤ 1, where v> 0. The asymmetry in the utility function with respect to non-durable and durable
consumption is justified in the sense that durable consumption is less essential than non-durable

consumption such as food. Note that c and v are measured in the same units so that we do not
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introduce a price in our notation.

We specify our model in discrete time so that we have to make assumptions about the timing.

On the basis of the state variables financial wealth, at, and durable stock, vt, households choose

the controls non-durable consumption, ct, investment into the durable, dt, and the retention rate

Dt, i.e., the percentage-of-loss deductible for the insurance of the durable good. D is defined as

the proportion of the loss l which is not insured so that the payment the agent receives from the

insurance is

max(l −Dl, 0) = l ∗max(1−D, 0) = l ∗ (1−D) ,

where the last equality holds since D ∈ [0,1]. It is well known that optimal insurance contracts
indeed contain a deductible (see, e.g., Raviv (1979)). Finally, the durable stock depreciates at rate

δ and the values of labor income, eyt, and the loss of the durable, elt, are realized.
Notice that vt is predetermined. Households’ investment dt only materializes in t+1. This timing

assumption is equivalent to the one made in standard growth models with capital accumulation.

The assumption is clearly stylized because the adjustment speed will in general be a function of

the size of the shock. It is quite realistic, however, if one considers large durable items such as cars

and houses whose purchase take a considerable amount of time.

Defining V (.) as the value function, the maximization problem is:

V (at, vt) = max
c,d,D

[u(ct) + φw(vt) + βEt{V (at+1, vt+1)| Ωy,l}] (1)

s.t.

at+1 = (1 + r)at − ct − dt − µ(1−Dt)Etelt + (1−Dt)elt + eyt
vt+1 = (1− δ)vt + dt − elt
as ≥ a , s ≥ t
vs ≥ 0 , s ≥ t,
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where β is the discount factor, r is the interest rate2 and δ is the depreciation rate which we

assume to be constant for simplicity, Ωy,l is the support of the joint distribution of the two random

variables eyt, income, and elt, the loss associated with the durable as a result of accidents, theft etc.
The relative weight of durable versus non-durable consumption depends on φ. The expectation

operator conditional on time t is denoted by Et. For the case of deterministic income ey = y where
y is non-random.

The first constraint is the budget constraint. The amount of assets tomorrow depends on the

amount of assets today plus the interest, the amount of durable and non-durable consumption, and

labor income. Moreover, it depends on the amount of insurance demanded in period t, µ(1−Dt)Etelt,
and the money received from the risk-neutral insurance company if damage occurred, (1 −Dt)elt.
Note that there is a wedge introduced by the mark-up µ which is assumed constant for simplicity.

This wedge is necessary because otherwise risk-averse households always would be fully insured by

risk-neutral insurers. Note, that we take the design of insurance contracts as exogenous. E.g., Briys

and Viala (1995) analyze optimal insurance design under background risk and hence endogenize

insurance contracts.

The second constraint is the law of motion of the durable stock. The size of the durable stock

tomorrow depends on its size today net of depreciation plus the investment today minus the random

loss. Note that we abstract from adjustment costs. Adjustment costs certainly imply more realistic

adjustment dynamics for the durable stock, but are not essential for the focus of the paper. Given

that the model structure is already quite rich, we chose to abstract from adjustment costs as a

starting point also because otherwise the numerical solution would become much more computing

intensive. For an analysis of durable investment under uncertainty with adjustment costs see, e.g.,

2Note that r is exogenous and hence our model is partial equilibrium. This not crucial for the main message we

want to convey, but necessary to retrieve numerical results in finite time. It implies that below we have to assume

that the discount rate is larger than r so that liquid assets are finite in the steady state with incomplete markets.

This would be an endogenous result if the interest rate had to equal the marginal product of capital and the returns

to capital are decreasing (see Aiyagari (1994)).
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Bertola et al. (2002) or Lam (1991).

The third constraint is the solvency constraint. It implies that households cannot borrow more

than a which guarantees that households are always able to repay their debt. Aiyagari (1994)

derives in a model with non-durable consumption that a= −min yr , where min y is the smallest y

attainable on the support of the distribution. In our model this constraint remains the same because

we assume that households cannot use the durable stock as collateral. This is done for clarity and

simplifies the model. If it were possible for households to use the durable as a collateral instead,

the solvency constraint would vary over time together with v. In this case at = −min yr −min vt+1
where min vt+1 is the minimum appropriable amount of the durable in period t+ 1. This amount

negatively depends on the maximum of the support of the loss distribution, the depreciation rate

and interest rate since selling the durable takes one period of time. Moreover, it depends on the

specification of the appropriation technology.

The fourth constraint implies that households cannot go short in the durable. Finally, for both

state variables a and v a transversality condition has to be satisfied, respectively.

Ignoring the constraints as ≥ a and vs ≥ 0 in order to derive an analytical approximation,

problem (1) yields the following Euler equations for the controls c, d and D, respectively:

u0(ct) = β(1 + r) Etu
0(ct+1) , (2)

u0(ct) = β
£
(1− δ)Etu

0(ct+1) + φEtw
0(vt+1)

¤
(3)

and

βEt{u0(ct+1)elt} = u0(ct)µEtelt , (4)

where primes denote first-order derivatives of the functions with respect to the variables in

brackets.

7



Equations (2) and (3) can be used to solve for the intertemporal behavior of v:

Etw
0(vt+1) = β(1 + r) Etw

0(vt+2) . (5)

Equation (2) is standard and relates non-durable consumption intertemporally. Equation (5) is

the equivalent for the durable stock.

On the left-hand side of equation (3) are the foregone benefits resulting from one unit of durable

investment d, in terms of utility derived from non-durable consumption. These have to equal the

benefits on the right-hand side of equation (3). The benefits are the discounted expected utility

afforded by the increase of the durable stock, φEtw0(vt+1), plus the expected utility of non-durable

consumption resulting from selling d units of the durable stock adjusted for depreciation in the

next period.

Equation (4) is the Euler equation for insurance demand. Again, marginal benefits on the left-

hand side of the equation equal marginal costs which are on the right-hand side. The marginal

benefits are that households can consume more tomorrow in bad states of the world once they

are insured today because they expect to have relatively more resources resulting from insurance

payments. Since Et{u0(ct+1)elt} = Etu0(ct+1)Etelt + cov(u0(ct+1),elt), households are willing to buy
more insurance if large realizations of elt occur in states of the world in which the households’
consumption is already small. In terms of equation (4), a higher cov(u0(ct+1),elt) implies a higher
u0(ct). I.e., the marginal cost on the right-hand side is relatively higher because households are

willing to forego more non-durable consumption to buy more insurance.

3 Approximation of the policy functions

In general the model presented above does not have a closed-form solution. Before we perform a

simulation of the model based on the numerical solution we present the results of a second-order

approximation of the policy functions and laws of motion to develop some intuition. The main point
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of this exercise is that in our model precautionary motives are important even if households own

abundant liquid wealth. This results from the fact durables are a state variable and directly enter

the utility function. Alternatively, one could assume a model structure symmetric to non-durable

consumption in which utility is derived from a flow out of the durable stock. In this case utility

from durable consumption does not necessarily decrease if the durable stock does. We decided that

our modeling choice is more natural for risks which substantially reduce the durable stock like theft

or destruction.

To approximate the solution we employ the perturbation method which is explained in detail

in Schmitt-Grohé and Uribe (2001) using the Euler equations (2)~(4) and the two laws of motion

for a and v. We provide the derivation of the approximation in the Appendix. Because we do allow

the state variables to be at interior optima only, for the purpose of the approximation, the results

simplify considerably and can be used to develop intuition on the mechanics of the model. I.e., we

assume that the household’s stock of liquid assets is sufficient so that liquid assets buffer income

shocks and allow the durable stock to return to the steady state after one period through the

appropriate durable investment if a loss occurs. The policy functions can then be approximated3

by

c = css

d = dss − (1− δ)(v − vss) + 1
2α((1− δ) (v − vss))2 − 1

2γσ
2
l

D = Dss

a = ass + (1 + r)(a− ass)− (1− δ)(v − vss)− 1
2α((1− δ) (v − vss))2 + 1

2γσ
2
l

v = vss +
1
2α((1− δ) (v − vss))2 − 1

2γσ
2
l ,

where

α ≡ u000(css)
βφw00(vss)

3We derived the approximation for the more general case in which households do not have abundant liquid wealth.

However, expressions become very messy so that they do not help much to develop intuition on the mechanics of the

model. Hence, we focus on a special, but important case.
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and

γ ≡ w
000(vss)
w00(vss)

.

The steady state is obtained solving the model without uncertainty. Hence, no market insurance

is demanded, i.e., Dss = 1. Note that the steady state of liquid wealth ass is the one which makes

the steady state non-durable consumption css and durable investment dss = δvss feasible. We now

discuss the solution in detail.

First-order deviations In the scenario considered first-order deviations of a or v from the steady

state do not affect non-durable consumption or the durable stock. Shocks occurring to the durable

stock are offset after one period (net of the depreciation rate) by durable investment which is fully

financed by liquid assets. Shocks occurring to liquid wealth do not result in any reaction of the

controls, but only change liquid wealth by the same amount plus the return on liquid assets.

Second-order deviations The second-order deviations of liquid wealth from its steady state do

not matter. Instead the second-order deviations of the durable stock do matter for a, d, and v

where the absolute value of the size of the effect is the same. Because concavity and precautionary

motives imply u00(css) < 0, w00(vss) < 0 and u000(css) > 0, w000(vss) > 0, it follows that α < 0.

Hence, the second-order effect decreases durable investment so that the durable stock falls and

liquid wealth rises. The denominator of α is a measure of concavity of the utility function for the

durable stock which is adjusted for the fact that durable investment today affects utility derived

from the durable stock tomorrow. Intuitively, the second-order effect is smaller, the more concave

the utility function w(vss), the smaller β and the larger φ. In this case the marginal utility derived

from the durable stock would increase relatively more if durable investment falls. Instead, the more

important the precautionary motive for non-durable consumption, i.e., the larger u000(css), the more

important is the second-order effect. The link between the durable investment and non-durable

consumption results from the budget constraint, i.e., the fact that durable investment potentially

“crowds out” non-durable consumption.
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Variances The variance of the durable shock turns out to be important whereas the variance of

income does not affect the solution. The asymmetric effect of the variances is resulting from the

model’s structure that v is predetermined whereas c is not. Since v enters the utility function, the

fluctuations of v directly result in variation of utility whereas this is not the case for fluctuations of

a. In our scenario there are no effects of deviations of a from its steady state level on non-durable

consumption c.

The determinants of the effect of the variance of the loss, γ, depend on the prudence with

respect to the durable stock −w000(vss)/w00(vss) which is defined according to Kimball (1990). Since
households derive utility from the durable stock, they invest more into durables if durables are

more exposed to risk. Thus, the durable stock rises and liquid wealth falls. This is in contrast to

investment behavior for risky assets from which households do not directly derive utility but only

indirectly as more assets afford more units of non-durable consumption.

As we pointed out in the introduction, empirically durable consumption is a non-negligible

fraction of total consumption, and hence considering the second moment of the distribution of

the durable stock might be important although the second moment of the wealth distribution is

negligible.4 Although there are no costs resulting from volatility of liquid assets in terms of utility

in the case of abundant liquid wealth, there remain costs resulting from the volatility of the durable

stock.

Having developed some intuition on the mechanics of the model we now present numerical

simulations which will tell us whether households indeed accumulate abundant wealth or whether

market insurance plays an important role in our model.

4 In a model with only non-durable consumption Krusell and Smith (1998) have argued that it is sufficient to only

consider the first moment of the wealth distribution.
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4 Numerical simulations

The numerical solutions are interesting because ex-ante it is not obvious how the accumulation of

liquid wealth, adjustment of the durable stock and market insurance interact dynamically. E.g., if

households have a lot of liquid assets there is less need to buy market insurance. However, since

the durable investment positively depends on liquid assets and durables are exposed to risk also

the exposure of households increases. This in turn can feed back into the accumulation of liquid

assets and/or the demand for market insurance.

The benchmark parameters used in the numerical simulations are summarized in Table 1. We

choose contemporaneous utility functions u(c) = c1−σ1
1−σ1 and w(v) =

(v+v)1−σ2
1−σ2 .5

Table 1: Benchmark Parameters

σ1 = 2 E ln ey = 8.8
σ2 = 2 syt = .1 ∗Eey
v = 1 gy = 0

φ = 1 syp = .08

r = .03 λ = .2

β = .95 Eelt = −λ (.8vt+1)
δ = .2 µ = 1.3

For the benchmark case we assume that the representative household is equally elastic or risk-

averse for utility derived from the non-durable and durable good, i.e., σ1 = σ2. Note, that the

parametrization of the utility function as CRRA does not allow us to disentangle risk aversion

from the elasticity of intertemporal substitution. A risk aversion of 2 is within the interval of

values commonly used in the literature. We set v = 1 so that v = 0 is feasible. The parameter v

5Hence, relative risk aversion is constant for non-durable consumption c. It is increasing for the durable stock

because v> 0: ∂ [−w00(v)v/w0(v)] /∂v = σ2
£
v/ (v + v)2

¤
. However, we choose v to be very small compared with

average income and v is always substantially larger than 0 so that for the interpretation of the numerical solution we

can treat relative risk aversion as constant for both the durable stock and non-durable consumption.
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determines the relative importance of durable compared to non-durable consumption. The smaller

v, the higher the marginal utility of the durable stock at v = 0 and thus the higher the durable

investment. The other preference parameter capturing the relative importance of durable versus

non-durable consumption —in this case in a linear way, however— is φ. In our benchmark case

φ = 1, i.e., the only asymmetry between durables and non-durables in the consumer preferences is

resulting from v > 0. The value of β = .95 is chosen as in Aiyagari (1994) and r = .03 is chosen

to satisfy β < 1
1+r . As is well known, we need to assume impatience for the steady state of a to

be finite in incomplete markets. The depreciation rate δ = .2 is consistent with micro evidence on

cars provided by Alessie, Devereux and Weber (1997). The loading factor (mark-up) for insurance

premiums µ is 1.3 as reported by Gollier (2000). We assume that the event whether a loss occurs

is binomially distributed where we set the probability of a loss to λ = .18 which is consistent with

values reported by the car insurance industry in the US or UK. Once a loss occurs 80% of the

durable stock is lost. This has the realistic implication that exposure increases with the size of the

durable stock. Moreover, we assume that a substantial fraction of the durable is lost in order to

give market insurance a chance to be important in our numerical simulations.

We first solve the model with households obtaining deterministic labor income.6 We then

consider the case of transitory and permanent income shocks, subsequently. For transitory income

we assume a log-normal distribution of income where the mean of log-income for the representative

agent is E ln ey = 8.8. This corresponds to the mean of log-quarterly-output of the US in 1995

as reported by King and Rebelo (1999), Figure 1, which we then transform to annual income

and normalize to 1 in the simulations below.7 The standard deviation of transitory income, syt, is

assumed to be 10 percent of average income. Once we consider permanent income shocks we assume

that the average growth rate of income, gy, is 0 and the standard deviation of permanent income,

6 If the agent does not earn any labor income, numerical solutions which are not reported show that the agent only

holds a positive amount of the durable asset in rather special cases. This is not plausible for the representative agent

so that we focus on the case where households have positive income, be it deterministic or stochastic.
7The absolute value only matters relative to the value assigned to v.
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syp, is 8 percent. The standard deviations are in line with evidence reported by Carroll (1992) for

the variation of the transitory and permanent component of income in the US. We assume gy = 0

to disentangle the effect of permanent income risk and income growth. Below we discuss the results

for the case gy = .03 as well.

4.1 Deterministic labor income

We first discuss the results for the benchmark case before we vary some parameters of interest

to further understand the numerical solution. The main finding is that with deterministic labor

income our model is only able to match the empirically observed insurance expenditure if agents

are substantially risk averse. Moreover, market insurance turns out to be more important than the

accumulation of liquid wealth.

The numerical results reported are obtained by simulating the economy for 1000 periods and

calculating summary statistics for the last 900 periods. This is done because we do not want initial

conditions to matter. Mean labor income is normalized to 1 to facilitate comparison. The borrowing

constraint is set to 6.5 times labor income. This is done to decrease the grid size of the state space

and affects the result for the resources that agents need to service their debt. Dynamically, agents

turn out to be close to the borrowing limit in finite time because we assume them to be impatient.

Benchmark The results for the benchmark case are summarized in Table 2. The behavior of the

model is very simple. Liquid assets are at the borrowing limit and increase only when insurance

payments occur. Hence, the mean is only slightly above the borrowing limit which we set to −6.494,
i.e., 6.5 times the labor income. When the shock occurs and 80% of the durable stock is lost, the

durable stock falls and so does non-durable consumption to finance durable investment. Note that

non-durable consumption falls because the agent holds no buffer stock. This is different to the

standard model with labor income uncertainty and non-durable consumption in which it is optimal

for agents to hold a buffer stock of liquid assets to smooth out fluctuations in income. It results from

the fact that in the benchmark case labor income is deterministic and only the durable is exposed
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to risk. As we will see below agents accumulate a buffer stock if risk aversion is high. As can be

seen in Table 2, the durable stock amounts to 14% of mean labor income. The representative agent

spends 5% on durable investment compared with 75% spent on non-durable consumption. Hence,

the durable stock in our simulation roughly matches the size of privately-owned manufacturing

durable goods in the US which amount to 10% of GDP (see the Introduction). The retention rate

D remains nearly constant when a shock occurs. This is because the durable stock quickly returns

to its initial value. The retention rate is .65 which is substantially higher than the retention rate

in static models (see Drèze (1981)). A retention rate of .65 is slightly higher than in the dynamic

analysis of liquid wealth accumulation and market insurance of Gollier (2000) for similar parameter

values. He finds that the average retention rate of the representative agent is about .6. If we do not

allow for net borrowing, a= 0, as in Gollier (2000), D increases in our model and is substantially

larger than .6 (see below and Table 2C). This is intuitive because in our model agents have one

more degree of freedom. They are able to adjust the asset at risk, the durable stock. This decreases

the motive for market insurance ceteris paribus.

The decomposition of expenditure shows that the representative agent spends a fifth of his

income to service debt and 1% on market insurance. This is substantially less than the observed

non-life insurance expenditure of 8% in OECD countries. The model does better if we consider the

expenditure on motor-vehicle and property insurance which is a quarter of the total expenditure,

respectively. The latter measure matches better the type of insurable asset we model. Note that

agents spend 11% of their exposure on market insurance whereas they do not accumulate any

liquid wealth. The result that agents spend slightly more than their labor income (expenditures

are slightly larger than 1) stems from the optimal behavior in periods in which the shock occurs.

In this period the agent spends not only his labor income but also part of the payment received

from the insurance company.

To get further insights on the solution of the model we now vary some of the model’s parameters.
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Different risk aversion for non-durable consumption and the durable stock The left

panel of Table 2A displays the results when we lower σ1 so that σ1 = .6. For CRRA utility

σ1 denotes risk aversion as well as the inverse of the intertemporal elasticity of substitution for

non-durable consumption. Hence, we let risk aversion decrease and the intertemporal elasticity of

substitution of non-durable consumption increase. If σ1 is smaller, the marginal utility of non-

durable consumption, c−σ1 , increases relative to the marginal utility derived from the durable

stock. Hence, the agent substitutes durable investment with non-durable consumption. For the

parameter values chosen the representative agent holds such a small amount of the durable asset

that the exposure is negligible. Consequently insurance expenditure is 0, the retention rate is 1 and

there is no need to hold a buffer stock of liquid assets. Liquid assets are at the borrowing limit.

The labor income which remains after servicing the debt is spent on non-durable consumption.

Results which are not reported show that if we let σ1 = 2 and σ2 = .6 instead, the agent holds

a larger durable stock. This is because the marginal utility derived from the durable increases

ceteris paribus. However, this stock is relatively less insured because the durable stock is also more

substitutable intertemporally and the agent is less risk averse with respect to the durable stock.

High risk aversion The right panel of Table 2A displays the results when we let risk aversion

increase for both the durable stock and non-durable consumption, i.e., σ1 = σ2 = 10. The main

difference is that the representative agent now holds a buffer stock of liquid assets which amounts

to the size of the durable stock at risk. The agent fully insures and invests substantially more into

the durable stock. Although ceteris paribus marginal utility decreases for both the durable and

non-durable as σ1 and σ2 increase, the agent shifts his consumption towards the durable. Both

the higher risk aversion and the lower intertemporal elasticity of substitution explain this behavior.

Since the agent only looses 80% of the durable stock, a higher level of the durable stock guarantees

a higher amount of the durable should a loss occur.

Note that a representative agent with high risk aversion spends 5.6% of his income on insurance

which is slightly more than the average OECD insurance expenditure on property and motor
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vehicle insurance. The ratio of durable investment over total expenditure is 11% and in line with

empirical evidence for the US and UK. However, the fact that the agent chooses a retention rate

of 0 is counter to the empirical observation that insurance contracts often do contain a non-zero

deductible. Finally, it is interesting to mention that non-durable consumption increases in the

period in which the shock occurs whereas it decreases in the benchmark case. This is because the

buffer stock of liquid assets allows the agent to smooth utility in periods in which the durable stock

is low by extra non-durable consumption. This is particularly beneficial because compared with

the benchmark the value function is relatively more concave.

Impatience The left panel of Table 2B displays the results if we decrease the discount factor

from .95 to .9. In this case the representative agent spends less on insurance compared to the

benchmark case. The retention rate rises to .75. This is because impatience increases the disutility

of foregoing one unit of consumption today because of insurance expenditure. The durable stock

decreases slightly and the agent consumes more of the non-durable in “good” times, but has to

consume less when a shock occurs because he is at the borrowing limit and less insured. The

standard deviation of non-durable consumption increases compared with the benchmark case. The

same holds if we compare the respective coefficients of variation which is not surprising since the

mean is almost the same.

Loss probability The middle panel in Table 2B displays the results if we increase the loss prob-

ability λ from .18 to .4 whereas the right panel displays simulation results for λ = .05. The higher

λ, the higher the retention rate chosen by the agent. This is because one unit of insurance becomes

relatively more expensive and insurance is not actuarially fair. However, insurance expenditure

increases if λ does because the retention rate does not increase enough to offset the increase in

premium cost. Hence, less of the labor income remains for the representative agent to consume

the non-durable and durable good if λ is high. The mean of the durable stock is not only smaller

because shocks occur at a higher frequency, but also because the level of the durable in “good”
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times is smaller.

Tighter borrowing constraint Table 2C displays the results if we do not allow net borrowing,

i.e., a= 0. One might expect that a tighter borrowing constraint does increase the motive for market

insurance. The opposite is the case, however, in the steady state. The retention rate is 1 , i.e., the

agent buys no market insurance at all. The intuition is the following. We assumed the agent to be

impatient so that liquid assets will be close to the borrowing limit in finite time. Once the softer

borrowing limit is binding the agent has to spend more of his income on servicing the debt compared

to the case with a tighter borrowing constraint. This crowds out non-durable consumption and

investment into the durable. Thus, marginal utility is higher for both, the durable stock and non-

durable consumption, in the case when the soft borrowing constraint becomes binding and the

value function is relatively more concave. Hence, a loss of part of the durable stock hurts relatively

more so that the agent increases market insurance. Note that, of course, the agent is better off

with a softer borrowing constraint because he can consume more on the transition path until the

borrowing constraint becomes binding.

We have illustrated the numerical solution of the model with deterministic labor income. Inter-

estingly, the solution for agents with a fraction κ of mean labor income has simply to be scaled down

by κ.8 This is because exposure is endogenous and the agent can adjust the exposure associated

with the durable to a fraction κ. Hence, aggregation is simple in our modeling framework. Results

which are not reported confirm, however, that as soon as agents cannot adjust their exposure pro-

portionally, low income households spend relatively more on market insurance expenditure, as is

intuitive.

Our results are related to the static analysis of Eeckhoudt et al. (1997), Theorem 4, which

states that if the utility function features decreasing absolute risk aversion —which is the case in

our simulations— either investment in the risky asset is increasing in wealth or the retention rate

8Note that we also scale down the borrowing constraint by proportion κ. This is true endogenously if the borrowing

constraint equals the solvency constraint.
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is increasing in wealth or both.9 In our simulations we find that on the transition path durable

investment and the retention rate indeed increase for higher levels of liquid wealth.

We find that in our benchmark model the welfare gains derived from the existence of market

insurance are similar to those found by Gollier (2000). In his model insurance increases welfare

by about .7% in terms of non-durable consumption. To assess the welfare implications within our

model, we proceed as in Gollier (2000). We compare certainty-equivalent non-durable consumption

c∗ for the case in which agents can insure with the case in which they cannot. We evaluate the value

function at the sample mean of the liquid assets, a, and the durable stock, v, of the simulations.

From (1) it follows that in the steady state under certainty

V (a, v) =
(c∗)1−σ1

1− σ1
+ φ

(v − v)1−σ2
1− σ2

+ βV (a, v)

and we get

c∗ =
½
(1− σ1)

·
(1− β)V (a, v)− φ

(v − v)1−σ2
1− σ2

¸¾ 1
1−σ1

.

For the representative agent the welfare gains are .6% in terms of non-durable consumption. It

is not surprising that the welfare gains are close to those in Gollier (2000) given that the retention

rate is of the same order of magnitude.

4.2 Stochastic labor income

Unless we assume that risk aversion is high, a representative-agent economy cannot explain why

market insurance is as important in OECD countries as the empirical evidence shows. In our

benchmark model with deterministic income and commonly assumed levels of risk aversion the rep-

resentative agent spends only 1% of his income on insurance and the retention rate is substantially

higher than observed empirically. The fact that commonly assumed levels of risk aversion do not

result in realistic retention rates is also found in static models (see Drèze (1981)), but becomes

more important quantitatively in our dynamic model. This is intuitive because dynamically agents

can time-diversify their risk by accumulating wealth and adjusting the asset at risk.
9Note that 1−D is denoted with θ in their notation.
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Obviously, assuming deterministic labor income is quite unrealistic. Hence, a natural extension

is to make labor income stochastic in order to investigate whether market insurance becomes

relatively more important. E.g., Gollier (2001) derives conditions which need to be imposed on the

utility function so that labor income risk has a tempering effect for the decision how much other

risks to bear in a standard non-durable consumption model. The interesting question is whether

such an effect is present in our framework and how large this effect is quantitatively. We consider

two cases: stochastic transitory and stochastic permanent income.

4.2.1 Transitory income shocks

We report results for the representative agent in Table 3. The standard deviation of labor income

is set to 10% of mean income which is in line with empirical evidence provided by Carroll (1992).

At the same time we assume a tighter borrowing constraint, i.e., agents cannot borrow at all

so that a ≥ 0. This captures that the solvency constraint will become relatively more binding

endogenously if labor income is stochastic since it depends on the minimum of the support of the

income distribution (see above). We are able to disentangle the effect of the tighter borrowing

constraint from the direct effect of labor income risk using the results of the benchmark case (Table

2) and the results for the tighter borrowing constraint (Table 2C). Comparing the results with the

latter identifies the direct effect of labor income risk whereas comparison with the benchmark case

gives us the composite effect.

Comparing the left panel of Table 3 with Table 2C we observe that labor income risk increases

the motive for market insurance keeping the borrowing constraint constant. The retention rate

falls from 1 to .83. Moreover, transitory labor income risk creates an endogenous incentive to

accumulate buffer-stock wealth which can be used to smooth fluctuations of the durable stock

as well. The agent holds 1.3 times his exposure related to the durable stock as liquid wealth.

Note that with labor income risk fluctuations in non-durable consumption increase. The standard

deviation doubles (and so does the coefficient of variation which is not reported). Instead, average

consumption and the durable stock remain roughly the same. On the one hand the agent spends
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some of his income on insurance, but on the other hand he earns interest on the buffer stock wealth.

Comparing the results to the benchmark case (Table 2) we observe that the direct effect of labor

income risk on market insurance is outweighed by its indirect effect on the borrowing constraint.

The retention rate of .83 is higher than .65 in the benchmark case. Thus, whereas statically one

would expect a tighter borrowing constraint and more labor income risk to increase the utility

derived from insurance because the agent becomes more vulnerable to fluctuations in the durable

stock, this is not necessarily the case in a dynamic framework.

4.2.2 Permanent income shocks

Introducing permanent income does not increase the state space because we can exploit the homo-

geneity of the value function. This is well known (see, e.g., Haliassos and Michaelides (2002)) and

a simple proof is provided in the appendix. With permanent income the following condition has to

be satisfied for liquid wealth to be finite in the steady state (see, e.g., Deaton (1991) or Haliassos

and Michaelides (2002)):

r − ρ

σ
+

σ (syp)
2

2
< gy,

where ρ is the discount rate, σ = σ1 = σ2 and the other parameters are defined as in Table 1 above.

Again a ≥ 0. In order to disentangle the effect of uncertainty about permanent income and income
growth we introduce permanent income shocks and set gy = 0.

The results of the simulation are displayed in the right panel of Table 3. Compared to uncertain

transitory income the accumulation of liquid wealth becomes less important whereas the motive for

market insurance is stronger. The retention rate is .68, i.e., about the same as in the benchmark

case. Permanent income shocks make the agent more vulnerable with respect to insurable risk

because the shocks cannot be mitigated by accumulating liquid wealth. With permanent income

shocks, consumption fully adjusts so that there is less need to accumulate a buffer stock. Ceteris

paribus one would expect non-durable consumption to be more variable with permanent income

shocks. However, permanent income uncertainty induces substantially more market insurance of the
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durable stock so that the coefficient of variation of non-durable consumption (which is not reported)

is smaller than in the case with transitory labor income shocks. Given the higher expenditure on

market insurance and the smaller amount of positive assets, the mean of consumption of the non-

durable and durable falls slightly compared with the case of transitory labor income shocks.

Hence, neither transitory nor permanent income uncertainty as such do increase the benefit of

market insurance as long as the borrowing constraint tightens endogenously. We also calculated the

numerical solution for the case in which gy = .03. Since income growth makes the agent relatively

more impatient, one would expect effects similar to the case of high impatience displayed in the

left panel of Table 2B. Indeed, results which are not reported confirm that the motive for market

insurance decreases substantially.

5 Conclusion and further research

We analyze the interplay of accumulation of liquid wealth, the size of the insurable asset and market

insurance in a dynamic model. In our model the durable stock and in some simulations also labor

income are uncertain. For the case of deterministic labor income we find that market insurance

matters for the representative agent. This is inconsistent with approximate linearity of the value

function. Unless we assume high risk aversion, insurance expenditure is smaller and the retention

rate larger than observed empirically. Introducing labor income risk into the model is per se no

remedy for this finding. This is because the borrowing constraint endogenously tightens. For a given

borrowing constraint, we find that labor income risk strengthens the motive for market insurance

and this relatively more if labor income shocks are permanent. For a realistic parametrization of the

income processes, however, this effect is quantitatively too small to generate insurance expenditure

which is in line with empirical evidence.

To increase the importance of market insurance the following modifications of the model seem

promising. The assumption of perfect divisibility of the durable good is clearly a big simplification.

Alternatively, one could consider the case that v cannot fall below a positive value vmin > 0 unless it
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is 0. This assumption is more realistic because, e.g., one has to invest a substantial amount to buy

any reasonable house or car. With this indivisibility, it is optimal for some relatively poor agents to

hold a durable stock which is larger than the optimal amount chosen under perfect divisibility. As

mentioned above this increases the importance of market insurance since the durable asset cannot be

adjusted downward as desired. Adding adjustment costs to the model instead will not necessarily

deliver this result because the durable stock of some household will be larger than desired and

smaller than desired for others. The aggregate implication is unclear. Another more promising

alternative would be to assume a finite horizon. This is likely to increase insurance expenditure as

time diversification becomes less perfect especially for older agents. Gollier (2000) provides some

first results consistent with this conjecture. He finds that the retention rate is smaller if the time

horizon is relatively shorter. Finally, we have assumed that the insurable risk is i.i.d. The results for

permanent or transitory background risk suggest that permanent or highly autocorrelated shocks

for the insurable risk will increase the scope for market insurance ceteris paribus. However, such

shocks seem more realistic in the context of health than in the context of durables such as motor

vehicles or property.

Another interpretation of our results is that institutional constraints force households to insure

far more than would be optimal given that they can partly time diversify their risk. Casual

observations suggest that this might indeed be the case because a substantial part of insurance

expenditure is obligatory in OECD countries.

Our model shows that if households derive utility directly from the durable stock, utility costs

of fluctuations might not be small even if risk-averse households accumulate substantial wealth dy-

namically. This is in contrast with standard models of non-durable consumption under uncertainty

(see Krusell and Smith (1998) and their references). Furthermore, instead of assuming heterogene-

ity in preferences as in Krusell and Smith (1998), incorporating durables into an otherwise standard

macro-model has the potential to generate substantial wealth heterogeneity because households do

not fully insure the durable stock.

In our model fluctuations in non-durable consumption are an optimal response to fluctuations

23



in the durable stock. The results are thus in the spirit of the real-business-cycle literature where

consumption volatility arises, e.g., because of technology shocks. It would be interesting to explore

the business-cycle implications of our model further in future research.
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Appendix

A Numerical solution

We solve the program numerically using standard discrete state-space methods (see, e.g., Burnside (1999)).
We first compute the value function for every state of a and v conditional on the state of the random
variables. I.e., for the model without labor income risk we compute the value function for the case when a
loss occurs and for the state when no loss occurs. In the case with labor income risk we have a grid of five
states, i.e., the mean and ±2 standard deviations of labor income. The conditional value functions are then
used to calculate the unconditional value function. We also need to calculate the conditional value function
over the grid of retention rates because the amount of insurance influences the amount of the loss, the shape
of the conditional value function and hence also the unconditional value function. We choose a grid size of 21
points for the retention rate and the state variables. This results in 21*21*21=9261 grid points for the case
of deterministic income and 9261*5=46305 grid points for the case of stochastic labor income. The fineness
of the grid was chosen to obtain solutions in finite time. To account for optimal choices not on the grid we
interpolate the value function once per iteration using cubic splines which make the grid three times finer.
Cubic splines preserve the prudence feature of the utility function, i.e., a non-zero third derivative. For the
simulations of the results we increase the fineness of the grid to 64*21=1344 points per state variable using
cubic splines.

B Solution for the analytic approximation

Consistent with the notation used in Schmitt-Grohé and Uribe (2001) we define the matrix F as

F ≡



u0(ct)− β(1 + r) Etu0(ct+1)

u0(ct)− β [(1− δ)Etu0(ct+1) + φEtw
0(vt+1)]

βEt{u0(ct+1)elt+1}− u0(ct)µtEtelt
at+1 − (1 + r)at + ct + dt + µ(1−Dt)Etelt − (1−Dt−1)elt − eyt

vt+1 − (1− δ)vt − dt + elt


,

where F = 0. We define the controls as ζ = (c, d,D)0 and the state variables as x = (a, v)0. The shocks
can be rewritten as

el = ml + σlεl

and

ey = my + σyεy ,

where εi ∼ N(0, 1), i = l, y and my = Eey, ml = Eel. The shocks are assumed to be i.i.d.
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We know that the solution will take the form ζt = g(x0t,σ0) and xt+1 = h(x0t,σ0) + ηεt, where
εt = (εlt, εyt)

0. The 2x2 matrix η and σ = (σy,σl)0 are known. In our model

η =

 (1−D)σl σy

−σl 0

 .

Note that eyt and elt are i.i.d. distributed shocks. To perform a second-order approximation, first and second
derivatives of the functions g(.) and h(.) need to be determined. As explained in more detail in Schmitt-
Grohé and Uribe (2001) this is done by taking first and second derivatives of F with respect to x and
exploiting the fact that these derivatives are 0.

We find that

Fx =



−β(1 + r)Etu00(ct+1) [gcahaa + gcvhva] + u00(ct)gca
−β(1− δ)Etu

00(ct+1) [gcahaa + gcvhva] + u00(ct)gca − βφEtw
00(vt+1)hva

∂F (3,1)
∂ct+1

[gcah
a
a + g

c
vh
v
a]− µEtelt u00(ct)gca + ∂F (3,1)

∂Dt
gDa

gca + g
d
a − µEteltgDa + haa − (1 + r)

−gda + hva
−β(1 + r)Etu00(ct+1) [gcahav + gcvhvv] + u00(ct)gcv

−β(1− δ)Etu00(ct+1) [gcahav + gcvhvv] + u00(ct)gcv − βφEtw
00(vt+1)hvv

∂F (3,1)
∂Dt+1

[gcah
a
v + g

c
vh
v
v]− µEtelt u00(ct)gcv + ∂F (3,1)

∂Dt
gDv

gcv + g
d
v − µEteltgDv + hav

−gdv + hvv − (1− δ)



,

where derivatives of F with respect to a are in rows 1-5 and derivatives with respect to v are in rows 6-10.
The notation gca denotes the derivative of non-durable consumption c with respect to a and F (3, 1) is the

element in the third row and first column of F . Expressions for ∂F (3,1)
∂ct+1

and ∂F (3,1)
∂Dt

can be derived using
the fact that Eab = EaEb+ cov(a, b), but are lengthy so that we use shorthand notation. Fx is a system
of 10 equations in 10 unknowns gij, h

k
j with i = c, d,D; j = a, v and k = a, v.

It turns out that one solution of the system of equations is

gca = gcv = g
d
a = g

D
a = g

D
v = h

v
a = h

v
v = 0,

haa = 1 + r,

gdv = −(1− δ),

hav = 1− δ.

This is the case of abundant liquid wealth when D = Dss and c = css. The solution for the general case is
messy and does not add to the intuition.
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We calculate Fxx which gives us 20 equations to determine 20 second-order derivatives. Given the results
for the case of abundant liquid wealth for the first derivatives, we get that

Fxa =



−β(1 + r)Etu00(ct+1)gcaa (haa)2 + u00(ct)gcaa = 0
−β(1− δ)Etu

00(ct+1)gcaa (haa)
2 + u00(ct)gcaa − βφEtw

00(vt+1)hvaa = 0

∂F (3,1)
∂ct+1

gcaa (h
a
a)
2 − µEteltu00(ct)gcaa + ∂F (3,1)

∂Dt
gDaa = 0

gcaa + g
d
aa − µEteltgDaa + haaa = 0
−gdaa + hvaa = 0

−β(1 + r)Etu00(ct+1)gcaahaahav + u00(ct)gcva = 0
−β(1− δ)Etu00(ct+1)gcaahaahav + u00(ct)gcva − βφEtw

00(vt+1)hvva = 0

∂F (3,1)
∂ct+1

gcaah
a
ah
a
v − µEteltu00(ct)gcva + ∂F (3,1)

∂Dt
gDva = 0

gcva + g
d
va − µEteltgDva + hava = 0
−gdva + hvva = 0


for the derivatives with respect to aa in rows 1-5 and derivatives with respect to va in rows 6-10 and

Fxv =



−β(1 + r)Etu00(ct+1)gcav (hav)2 + u00(ct)gcvv
−β(1− δ)Etu

00(ct+1)gcav (hav)
2 + u000(ct)(gdv)2 + u00(ct)gcvv − βφEtw

00(vt+1)hvvv
∂F (3,1)
∂ct+1

gcav (h
a
v)
2 − µEteltu00(ct)gcvv + ∂F (3,1)

∂Dt
gDvv

gcvv + g
d
vv − µEteltgDvv + havv
−gdvv + hvvv

−β(1 + r)Etu00(ct+1)gcavhavhaa + u00(ct)gcav
−β(1− δ)Etu00(ct+1)gcavhavhaa + u00(ct)gcav − βφEtw

00(vt+1)hvav
∂F (3,1)
∂ct+1

gcavh
a
vh
a
a − µEteltu00(ct)gcav + ∂F (3,1)

∂Dt
gDav

gcav + g
d
av − µEteltgDav + haav
−gdav + hvav


for the derivatives with respect to vv in rows 1-5 and derivatives with respect to av in rows 6-10. Substituting
in the results for the first derivatives derived above, it follows from Fxa = Fxv = 0 that

gdvv = h
v
vv = −havv = (1− δ)2

u000(css)
βφw00(vss)

,
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where the other second-order derivatives are found to be 0.
For Fσi , i = l, y, we get using the results for the first derivatives g

i
j, h

k
j with i = c, d,D; j = a, v and

k = a, v,

Fσl =



−β(1 + r)Etu00(ct+1)gcσl + u00(ct)gcσl
−β(1− δ)Etu

00(ct+1)gcσl + u
00(ct)gcσl − βφEtw

00(vt+1)
£
hvσl +Etεl

¤
∂F (3,1)
∂ct+1

gcσl − µEtelt u00(ct)gcσl + ∂F (3,1)
∂Dt

gDσl

gcσl + g
d
σl
− µEteltgDσl + haσl − (1−Dt)Etεl
−gdσl + hvσl +Etεl


and

Fσy =



−β(1 + r)Etu00(ct+1)gcσy + u00(ct)gcσy
−β(1− δ)Etu

00(ct+1)gcσy + u
00(ct)gcσy − βφEtw

00(vt+1)hvσy
∂F (3,1)
∂ct+1

gcσy − µEtelt u00(ct)gcσy + ∂F (3,1)
∂Dt

gDσy

gcσy + g
d
σy − µEteltgDσy + haσy −Etεy
−gdσy + hvσy


.

Since Etεl = Etεy = 0, Fσl and Fσy are linear and homogenous in g
j
σl and h

k
σl
, for the unique solution

of Fσl = Fσy = 0 it follows that h
k
σl
= 0 and gjσl = 0 with j = c, d,D; i = l, y and k = a, v.

For the second-order derivatives we get

Fσlσl=



−β(1 + r)Etu00(ct+1)gcσlσl + u00(ct)gcσlσl
u00(ct)gcσlσl − β

£
φEtw

000(vt+1)Et
¡
ε2l
¢
+ (1− δ)Etu

00(ct+1)gcσlσl + φEtw
00(vt+1)hvσlσl

¤
∂F (3,1)
∂ct+1

gcσlσl − µEtelt u00(ct)gcσlσl + ∂F (3,1)
∂Dt

gDσlσl

gcσlσl + g
d
σlσl
− µEteltgDσlσl + haσlσl

−gdσlσl + hvσlσl
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and

Fσyσy =



−β(1 + r)Etu00(ct+1)gcσyσy + u00(ct)gcσyσy
u00(ct)gcσyσy − β

h
(1− δ)Etu

00(ct+1)gcσyσy + φEtw
00(vt+1)hvσyσy

i
∂F (3,1)
∂ct+1

gcσyσy − µEtelt u00(ct)gcσyσy + ∂F (3,1)
∂Dt

gDσyσy

gcσyσy + g
d
σyσy − µEteltgDσyσy + haσyσy
−gdσyσy + hvσyσy


.

Fσyσy is linear and homogenous in g
j
σyσy and h

k
σyσy , g

j
σyσy = h

k
σyσy = 0. The same holds for Fσyσl because

Etεlεy = 0; and for Fxσi , i = l, y. Instead given that Etε
2
l = 1, Fσlσl = 0 implies

haσlσl = −hvσlσl = −gdσlσl =
w000(vss)
w00(vss)

,

where the other second-order derivatives are found to be 0.

C Homogeneity of the value function

In this appendix we prove that the value function is homogenous of degree 1−σ. We assume that σ1 = σ2
so that

V (a, v)− βEV (a, v) =
c1−σ

1− σ
+ φ

(v − v)1−σ
1− σ

.

Hence,

F (a, v) ≡ V (a, v)− βEV (a, v)

is homogenous of degree 1− σ because we assume that v is defined in relative terms to permanent income.
It remains to be shown that

F (a, v) homogenous of degree κ =⇒ V (a, v) homogenous of degree κ.

We prove this by contradiction. Assume that V (a, v) is not homogenous of degree κ. It then follows that

V (κa,κv) = κV (a, v) + η ,

where η is a constant which makes the equality hold. Assuming that the expected value is well defined we
get

F (κa,κv) = V (κa,κv)− βEV (κa,κv)

= κV (a, v) + η − βE (κV (a, v) + η)

= κ (V (a, v)− βEV (a, v)) + (1− β)η

= κF (a, v), iff η = 0 for β 6= 1 .
For β < 1, η = 0 for F (a, v) to be homogenous of degree κ. If η = 0, then also V (a, v) is homogenous of
degree κ. QED
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Table 2: Simulation statistics for the benchmark case with deterministic income

Summary Statistics

Variable Nobs Mean Stddev

liquid assets: a 900 -6.486 0.018
durable stock: v 900 0.142 0.052
non-durable consumption: c 900 0.756 0.023
durable investment: d 900 0.054 0.047
retention rate: D 900 0.649 0.002

Decomposition of Expenditure

non-durable consumption 0.756
durable investment 0.054
insurance expenditure 0.009
insurance pay -0.007
debt interest payments 0.195

1.006
savings -0.006
income 1.000

borrowing limit -6.494
liquid wealth/exposure 0.000
insurance/exposure 0.228



Table 2A: Risk aversion

Low risk aversion for non-durable consumption High risk aversion for non-durable consumption
and the durable stock

Summary Statistics Summary Statistics

Variable Nobs Mean Stddev Nobs Mean Stddev

liquid assets: a 900 -6.494 0.001 900 -6.168 0.117
durable stock: v 900 0.001 0.000 900 0.292 0.109
non-durable consumption: c 900 0.805 0.001 900 0.692 0.060
durable investment: d 900 0.000 0.000 900 0.111 0.096
retention rate: D 900 1.000 0.000 900 0.000 0.000

Decomposition of Expenditure Decomposition of Expenditure

non-durable consumption 0.805 0.692
durable investment 0.000 0.111
insurance expenditure 0.000 0.056
insurance pay 0.000 -0.043
debt interest payments 0.195 0.185

1.000 1.000
savings 0.000 0.000
income 1.000 1.000

borrowing limit -6.494 -6.494
liquid wealth/exposure - 1.026
insurance/exposure - 0.650



Table 2B: Impatience and loss probability

High impatience High loss probability Low loss probability

Summary Statistics Summary Statistics Summary Statistics

Variable Nobs Mean Stddev Nobs Mean Stddev Nobs Mean Stddev

liquid assets: a 900 -6.488 0.013 900 -6.482 0.013 900 -6.491 0.014
durable stock: v 900 0.137 0.052 900 0.099 0.056 900 0.158 0.027
non-durable consumption: c 900 0.754 0.035 900 0.745 0.019 900 0.767 0.010
durable investment: d 900 0.053 0.051 900 0.064 0.042 900 0.037 0.025
retention rate: D 900 0.752 0.007 900 0.774 0.016 900 0.493 0.006

Decomposition of Expenditure Decomposition of Expenditure Decomposition of Expenditure

non-durable consumption 0.754 0.745 0.767
durable investment 0.053 0.064 0.037
insurance expenditure 0.007 0.008 0.004
insurance pay -0.005 -0.006 -0.003
debt interest payments 0.195 0.194 0.195

1.003 1.006 1.001
savings -0.003 -0.006 -0.001
income 1.000 1.000 1.000

borrowing limit 6.494 6.494 6.494
liquid wealth/exposure 0.000 0.000 0.000
insurance/exposure 0.161 0.147 0.033



Table 2C: Tighter borrowing constraint

Summary Statistics

Variable Nobs Mean Stddev

liquid assets: a 900 0.002 0.002
durable stock: v 900 0.177 0.067
non-durable consumption: c 900 0.931 0.048
durable investment: d 900 0.069 0.049
retention rate: D 900 1.000 0.000

Decomposition of Expenditure

non-durable consumption 0.931
durable investment 0.069
insurance expenditure 0.000
insurance pay 0.000
debt interest payments 0.000

1.000
savings 0.000
income 1.000

borrowing limit 0.000
liquid wealth/exposure 0.014
insurance/exposure 0.000



Table 3: Simulation statistics for uncertain labor income

Uncertain transitory income Uncertain permanent income

Summary Statistics Summary Statistics

Variable Nobs Mean Stddev Nobs Mean Stddev

liquid assets: a 900 0.223 0.113 900 0.027 0.020
durable stock: v 900 0.173 0.065 900 0.163 0.057
non-durable consumption: c 900 0.944 0.104 900 0.940 0.030
durable investment: d 900 0.064 0.049 900 0.058 0.053
retention rate: D 900 0.825 0.093 900 0.680 0.016

Decomposition of Expenditure Decomposition of Expenditure

non-durable consumption 0.944 0.940
durable investment 0.064 0.058
insurance expenditure 0.006 0.009
insurance pay -0.004 -0.007
debt interest payments -0.007 -0.001

1.003 0.999
savings -0.003 0.001
income 1.000 1.000

borrowing limit 0.000 0.000
liquid wealth/exposure 1.286 0.134
insurance/exposure 0.045 0.083
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