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ABSTRACT 
 

Is the Persistence of Teacher Effects in Early Grades 
Larger for Lower-Performing Students? 

 
We examined the persistence of teacher effects from grade to grade on lower-performing 
students using high-quality experimental data from Project STAR, where students and 
teachers were assigned randomly to classrooms of different sizes. The data included 
information about mathematics and reading scores and student demographics such as 
gender, race, and SES. Teacher effects were computed as residual classroom achievement 
within schools and within grades. Then, teacher effects were used as predictors of 
achievement in following grades and quantile regression was used to estimate their 
persistence. Results consistently indicated that all students benefited similarly from teachers. 
Overall, systematic differential teacher effects were not observed and it appears that lower-
performing students benefit as much as other students from teachers. In fourth grade there 
was some evidence that lower-performing students benefit more from effective teachers. 
Results from longitudinal analyses suggested that having effective teachers in successive 
grades is beneficial to all students and to lower-performing students in particular in 
mathematics. However, having low-effective teachers in successive grades is detrimental to 
all students and to lower-performing students in particular in reading. 
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Since the Coleman Report much of educational research has focused on identifying 

school-related factors that affect student learning, and many of the school policy initiatives have 

attempted to ensure that school resources are allocated adequately to schools. One factor that is 

widely believed by educational researchers to affect student achievement is teachers, and a 

fundamental goal of teacher effects research is to examine how teachers improve academic 

achievement for all students. Because the U.S. educational system is also designed to provide 

equal access to school resources to all students and to reduce inequality in achievement, it is 

important to determine whether lower-performing students benefit more from teachers than other 

students. It is appealing to think that teachers increase academic achievement for all students and 

simultaneously close the achievement gap between higher and lower-performing students by 

helping lower-performing students perform as well as higher-performing students.  

One focus of No Child Left Behind (NCLB) was to reduce the achievement gap and to 

ensure that lower-performing students from disadvantaged backgrounds attain academic 

proficiency. One important mechanism through which this can be accomplished is teachers, their 

effectiveness in particular. NCLB has mandated state plans to improve teacher effectiveness, 

with the underlying belief that effective teachers can improve achievement especially for lower-

performing students. It is a timely then, to examine how teachers affect lower-performing 

students and whether these types of students benefit more from teachers.  

Anecdotal as well as empirical research evidence indicates that teachers differ noticeably 

in their effectiveness as educators and pedagogues to promote student achievement. Evidence 

from experimental and non-experimental studies has consistently indicated that teachers differ 

considerably in their effectiveness and that teacher effects are large (e.g., Goldhaber & Brewer, 

1997; Nye, Konstantopoulos, & Hedges, 2004; Rivkin, Hanushek, & Kain, 2005; Rowan, 
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Correnti, & Miller, 2002). In these studies teacher effectiveness is defined typically as 

differences or variation in achievement between classrooms adjusted by student background.  

Findings about the differential teacher effects on minority and disadvantaged students 

have been mixed. For example, some researchers have demonstrated that teacher characteristics 

such as experience are positively and significantly linked to the achievement of black students 

(Murnane & Philips, 1981). Other researchers have shown that teacher effects are not associated 

with the achievement of Black or Hispanic students (Hanushek, 1992). More recent work has 

reported that minority and disadvantaged students seem to benefit as much as other students from 

teachers (Konstantopoulos, 2009).  

Other recent work has provided evidence about the persistence of teacher effects in 

elementary grades (Konstantopoulos & Chung, 2011). Specifically, the authors reported that 

teacher effects were positive and persisted through sixth grade. However, the differential 

persistence of teacher effects on lower-performing students has not been documented well. In 

this study, we examined the persistence of the effects teachers have on lower-performing 

students from grade to grade using high-quality experimental data from Project STAR (Student 

Teacher Achievement Ratio) (Krueger, 1999; Nye, Hedges, & Konstantopoulos, 2000). 

Specifically, we were interested in investigating the differential persistence of teacher effects in 

early grades across the achievement distribution in order to determine whether lower-performing 

students in one grade benefit more from teacher effects in the previous grade. Project STAR was 

a well-executed large-scale randomized experiment, and evidence derived from such data is 

likely to have higher internal validity and to a lesser extent higher external validity than small-

scale studies with convenience samples. We used quantile regression to compute the persistence 
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teacher effects across the entire distribution of achievement. The outcome variables were 

mathematics and reading scores and the main independent variable was teacher effects. 

  

Differential Teacher Effects  

The computation of the persistence of teacher effects at different quantiles of the 

achievement distribution allowed us to detect possible differential effects. Such effects indicate 

that certain groups of students are affected by teachers differently than other students and that the 

effectiveness of teachers varies by achievement level. When differential effects are evident the 

changes in achievement for lower- and higher-performing students that are due to teachers vary. 

A related notion to differential effects is that of interaction effects between teacher effects and 

levels of achievement. The idea is that teacher effects may interact with levels of achievement 

and through that interaction the effects are potentially maximized. The notion of interaction 

effects between variables goes back to the pioneering work of Cronbach and Snow (1977). Such 

effects indicate the degree to which teacher effects depend upon the level of achievement.  

In our study prior teacher effects were used to predict future performance of lower-

performing students. One hypothesis is that lower-performing students may benefit more from 

having effective teachers than other students. Alternatively, the performance of such students 

may be influenced more by teachers and less by parents. For example, effective teachers may be 

more likely to identify lower-performing students and provide instruction that is designed to 

benefit these students in the early grades. If that were true then it is also likely that the 

persistence of these effects will be larger for lower-performing students the following year. 

Alternatively, instructional practices enacted by effective teachers may engage or motivate 

lower-performing students more in learning activities and such gains may persist from year to 
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year. We used quantile regression to estimate teacher effects at different quantiles of the 

achievement distribution. These estimates indicate the degree of interaction between the 

persistence of teacher effects and level of achievement. When the estimates are significant the 

research hypothesis that teacher effects vary by level of achievement is tenable and the null 

hypothesis that effects are similar for all students is false. In particular, we were interested in 

whether lower-performing students in one grade (e.g., first grade) benefited more from having 

effective teachers in the previous grade (e.g., kindergarten). If that hypothesis were true one 

would expect larger estimates of the persistence of teacher effects in the lower tail of the 

achievement distribution.  

In the context of answering the question what works for whom, such analyses can yield 

important findings. First, the analyses can reveal the groups of students that benefit more from 

having effective teachers in previous grades. The magnitude of the estimates will suggest 

whether the persistence of teacher effects is considerable to be of policy relevance. Second, 

knowing whether all or some students benefit similarly or differently from having had effective 

teachers is potentially valuable. This information will provide an explicit inference about the 

generality of the results and will point to the consistency of the persistence of teacher effects for 

different groups of students.  

 

Previous Research on Teacher Effects 

 Generally, there are two major lines of research that have discussed the effects of teachers 

on student achievement. The first tradition of research includes studies that measure the association 

between teacher characteristics and student achievement. The second tradition of research estimates 

the variation in achievement between classrooms.   
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Teacher Characteristics and Student Achievement 

 Three areas of research are included in this tradition of research. The first area includes 

education production function studies that attempt to determine the relationship between specific 

measured teacher characteristics such as teacher experience, education, salary, or certification and 

student achievement. However, because parents choose neighborhoods in which to live, and hence 

their associated schools, according to tastes and resources, student background is confounded with 

teacher characteristics (Tiebout, 1956). Therefore, education production function studies attempt to 

control for this confounding by using student background characteristics as covariates in regression 

models (e.g., Coleman et al., 1966). A particularly important covariate is prior achievement, 

because it summarizes the effects of individual background. Some reviewers of the education 

production function literature argue that measured teacher characteristics such as educational 

preparation, experience, or salary are only slightly related to student achievement (Hanushek, 1986). 

Other reviewers argue that some of the resource characteristics such as teacher experience and 

teacher education have positive effects on student achievement (Greenwald et al., 1996).  

More recently, researchers have examined the effects of teacher experience, knowledge, 

and certification on student achievement. Economics have demonstrated a positive association 

between teacher experience and student achievement (Clotfelter, Ladd, & Vidgor, 2006). 

Education researchers have examined the effect of teacher content knowledge on student 

achievement (Hill, Rowan, & Ball, 2005; Kennedy, 2008). For instance, Hill and colleagues 

found that teachers' mathematical knowledge was a significant and positive predictor of 

mathematics achievement gains in first and third grades controlling for student SES 
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(socioeconomic status) and teacher characteristics such as experience. Kennedy (2008) also 

found that teacher content knowledge seems to benefit students. Finally, researchers have also 

provided evidence that National Board certified teachers seem to be more effective than other 

teachers (Goldhaber & Anthony, 2007). 

The second area includes studies known as process-product studies that aim to identify 

classroom processes (e.g., observed teacher characteristics and teaching practices) that are 

associated with student outcomes (or products) such as achievement (Good & Brophy, 1987). In 

these studies teacher confidence in teaching students successfully, efficient allocation of 

classroom time to instruction and academic tasks, effective classroom organization and group 

management, and active/engaging teaching that emphasizes understanding of concepts, have 

been shown to affect student achievement positively (Good & Brophy, 1987). Reviewers of 

teacher effects from process-product studies have concluded that effective teachers influenced 

academic achievement for all students substantially (Good, 1979). In addition, other studies have 

documented that teachers with higher evaluation scores in their teaching also had higher 

classroom achievement means and contributed in closing the achievement gap between lower 

and higher SES students in some grades (Borman & Kimball, 2005). Improvements in teacher 

qualifications also seem to increase student achievement especially in poor schools (Boyd, 

Lankford, Loeb, Rockoff, & Wyckoff, 2008)  

The third area is known as value-added research. Value-added models have gained 

considerable attention the last 15 years mainly because of the urgency to use achievement scores 

to determine teacher effects on student outcomes, and especially with the passing of NCLB. The 

underlying idea in value-added models is to examine the effects of teachers on students’ learning 

gains net of student background. These models intend to estimate the unique contribution or 
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“value-added” of teachers on students’ change in learning. In that sense, value-added research is 

not a completely new area since regression models that examine teacher and school effects net of 

student background date back to the famous Coleman report.  

Meyer (1997) argues that the key objective in value-added research is to determine 

teacher effects on student achievement net of the effects of other sources that may affect student 

achievement. It is common practice in value-added research to gauge teacher effects via 

regression models that control for covariates hypothesized to influence student learning such as 

previous achievement. Often the outcome in such regression models is a post-test measure of 

student achievement in standardized tests. The main independent variable represents teacher 

effects, and other variables such as prior measures of student achievement are included as 

covariates to adjust for previous ability (McCaffrey et al., 2004; Raudenbush, 2004). However, 

not all value-added models control for student background. For example, some researchers who 

have used value-added models have argued that sometimes controlling for student background 

may over adjust the teacher effects estimates (Ballou, Sanders, & Wright, 2004; Sanders & 

Rivers, 1996). 

In principle value-added models are hypothesized to provide more accurate and perhaps 

causal estimates of teacher effectiveness than other studies. However, value-added models don’t 

necessarily eliminate all possible confounding effects completely because unobservables may 

still be related with teacher effects (Braun, 2005). Rubin, Stuart and Zanutto (2004) provided a 

thoughtful discussion about causal inferences of teacher and school effects. In their discussion 

Rubin et al. argued that causal estimates of teacher effects are difficult to conceptualize even in 

well done randomized experiments, and that value-added models do not necessarily provide 

causal estimates, but should more likely be conceptualized as descriptive measures of teacher 
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effects. Along those lines, more recent work has raised concerns about the assumptions that 

underlie value-added models and has proposed that these models should go through rigorous 

validation and falsification tests (Rothstein, 2010).   

Previous work has also examined the persistence of teacher effects on student 

achievement using value-added models (e.g., Ballou, Sanders, & Wright, 2004; McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2004; Sanders & Rivers, 1996). For example, Sanders 

and Rivers (1996) used a value-added model to predict the teacher effects in grades 3, 4, and 5 

on fifth-grade achievement, controlling for achievement in second grade. The authors concluded 

that the teacher effects were cumulative. More recent work has also demonstrated that teacher 

effects persist in elementary grades and that their cumulative effects are considerable 

(Konstantopoulos & Chung, 2011).  

  

Studies of the Variation in Teacher Effects 

The second tradition of research examines the variation in achievement between 

classrooms controlling for student background. These models typically use prior achievement as 

a covariate as well, and measure the variance in residualized student achievement gain across 

classrooms. That is, these classroom variances in achievement gain are due to differences in 

teacher effectiveness. The underlying assumption is that the between-classroom variation in 

achievement is caused by variation in teacher effectiveness. Typically these studies calculate the 

proportion of variance in residualized student achievement gain accounted for by teacher effects 

using regression analysis. Specifically, the change in the coefficient of determination is estimated 

when teacher effects are included in the regression model, and this change indicates the 

variability in achievement across classrooms due to teachers. Overall, the results of such studies 
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have suggested that there is indeed considerable variation in teacher effectiveness (Goldhaber & 

Brewer, 1997; Murnane & Phillips, 1981; Rowan, Correnti, & Miller, 2002). A recent study 

provided also documented large differences in average achievement among classrooms (Nye et 

al., 2004). Nye et al. reviewed teacher effects estimates in the literature and suggested that on 

average a one standard deviation increase in teacher effectiveness would increase student 

achievement gains by about one-third of a standard deviation. A more recent review summarized 

estimates of teacher effects in standard deviation units and reported that in reading the estimates 

ranged approximately from one-tenth to one-fifth of a standard deviation and in mathematics 

from one-tenth to one-third of a standard deviation (Hanushek & Rivkin, 2010).  

One “caveat” however of the studies within this tradition of research is that they cannot 

identify specific teacher characteristics that compose teacher effectiveness. It is noteworthy that 

typically observed teacher characteristics such as teacher experience and education explain a 

small proportion of the variation in teacher effectiveness (Konstantopoulos, 2011a; Rivkin et al., 

2005). For example, Konstantopoulos found that teacher education and experience explained less 

than one percent of the variation in teacher effects in early grades. These findings suggest that 

the majority of the variability in teacher effects remains unobserved and it is not captured by 

observed teacher characteristics. It is possible that the teacher characteristics typically measured 

are easy collect, but unrelated to achievement, whereas other characteristics such as teacher 

motivation remain unmeasured because they are difficult to collect. Even if researchers 

attempted to measure the “right” teacher characteristics, it is possible that the measurement is so 

poor that the effects are attenuated. 
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Limitations of Previous Work 

Students are frequently assigned to teachers based on their characteristics such as 

achievement. In turn, teachers are not randomly assigned to classrooms either. For instance, 

more experienced teachers may be assigned to classes composed of higher-performing students 

as a privilege of seniority or to classes composed of lower-performing students as compensatory 

strategy. This non-random assignment creates problems when inferring the relation between 

teacher characteristics and student achievement because the causal direction of the relationship is 

unclear. In a recent study Clotfelter et al. (2006) reported that advantaged students are more 

likely to have highly qualified teachers than other studies, which biases the association between 

teacher characteristics and achievement.  

Because of the confounding it is difficult to interpret the estimates of teacher effects on 

student achievement in both traditions of research mentioned above. Although it is essential to 

control for student background in order to reduce variability in preexisting differences and 

identify the unique contribution of teachers on student achievement, even important covariates 

such as prior achievement and SES do not completely eliminate differences in all background 

characteristics. Teacher effects may still be confounded with unobserved individual, family, 

school, and neighborhood variables. For example, previous achievement or SES may not 

adequately control for preexisting differences in unobservables such as motivation.  

The problems in interpretation can be eliminated if both students and teachers were 

randomly assigned to classes. Random assignment of students would in principle ensure that all 

observable and unobservable differences between students in different classes would not be 

systematic. Random assignment of teachers to classes is also important and would assure that 
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any differences in teacher characteristics are uncorrelated with classroom achievement and other 

classroom variables (Weiss, 2010). In this study we used data from Project STAR that satisfies 

both conditions of random assignment. Project STAR was a field experiment designed to 

measure class size effects. However, the fact that students and teachers were randomly assigned 

to classroom types within schools in each grade provides a great opportunity to gauge teacher 

effects since the potential confounding issues should in principle be reduced if not eliminated.  

 

Validity of Project STAR  

Random Assignment 

The internal validity of the Project STAR estimates depend on whether random 

assignment effectively eliminated preexisting differences between students and teachers assigned 

to different types of classrooms. The fact that the random assignment of students and teachers to 

classrooms was carried out by a consortium of researchers enhances its credibility. However, it is 

good practice to check for preexisting differences of observed characteristics of teachers or 

students. Unfortunately, no pretest scores were collected in Project STAR, so it was not possible 

to examine differences in pre-kindergarten achievement. However, one could check the degree to 

which random assignment was successful using student variables such as age, race, and SES. 

Krueger (1999) examined the success of random assignment among treatment groups (i.e., small, 

regular, and regular classes with a full time aide) and found that in observed variables such as 

SES, minority group status, and age there were no significant differences between classroom 

types once school differences were taken into account. Krueger also found that there were no 

significant differences across classroom types with respect to teacher characteristics such as race, 

experience, and education. Krueger concluded that random assignment did not seem to be 
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compromised. Other analyses however, have raised some concerns about the reliability of 

random assignment especially for variables such as age and SES (Hanushek, 1999; 

Konstantopoulos, 2011b).  

Even if we assume that random assignment across classroom types were successful, it is 

still possible that classrooms assigned to the same treatment group within schools were different. 

Because teacher effects are computed using differences in average achievement between 

classrooms that receive the same treatment type within schools, it is critical to check whether 

random assignment was successful across classrooms within treatment types within schools. A 

recent study undertook that task and produced results that are consistent with what would be 

expected had random assignment been successful. That is, no systematic differences were found 

for observed student characteristics between classrooms that were in the same treatment type 

within schools (see Nye et al., 2004).  

  

Attrition  

Most large scale longitudinal studies such as Project STAR suffer from attrition. 

Approximately 28 percent of the students who participated in Project STAR in kindergarten were 

not part of the study in the first grade. The attrition rate was nearly 25 percent for students who 

participated in the study in the first grade, but were not present in the second grade. Twenty 

percent of the students dropped out of the study after the second grade and thus they did not 

participate in the third grade. Across all grades about 50 percent of the students who were part of 

the experiment in kindergarten were still part of Project STAR in the third grade. Thirty eight 

percent of the students who were part of the experiment in kindergarten were still in the study in 

the fourth grade.  
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The effects of differential attrition on the estimates of class size have been discussed in 

two studies (Krueger, 1999; Nye et al., 2000). It is common practice to examine differential 

attrition between types of classrooms on the outcome measures such as achievement scores. For 

example, Krueger examined whether differential attrition among types of classrooms biased the 

estimates of class size. Differential attrition can bias class size effects if the students who 

dropped out of small classes were systematically different in achievement than those who 

dropped out of regular type classes (Kruger, 1999). In longitudinal designs such as Project STAR 

one way to measure the effects of differential attrition is by imputing the scores of those students 

who dropped out of the study each year (Krueger, 1999). Krueger computed the class size 

estimates with and without imputation, compared the estimates, and concluded that it is unlikely 

that differential attrition biased the class size estimates. The same conclusion was reached by 

Nye et al. (2000) independently using slightly different methods. Nonetheless, recent analyses 

have suggested some evidence that attrition was related with school achievement and school 

composition (i.e., proportion of minority or disadvantaged students) (Konstantopoulos, 2011b). 

In this paper we attempted to adjust for possible selection from one grade to the next using the 

Heckman method as illustrated in the analysis section (Heckman, 1979). 

 

Method 

Data 

Project STAR is a four-year large-scale experiment that was conducted in Tennessee in 

the mid 1980s. The experiment was commissioned in 1985 by the Tennessee state legislature and 

was implemented by a consortium of Universities and the Department of Education in 

Tennessee. The experiment lasted for four years from Kindergarten to third grade, and the total 
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cost, including hiring teacher and teacher aids, was about $12 million. The state of Tennessee 

paid for hiring additional teachers and classroom aides. Project STAR is considered one of the 

greatest experiments in education.  

 In the first year of the experiment a cohort of more than 6,000 kindergarteners in more 

than 300 classrooms in 79 elementary schools in 42 districts in Tennessee participated. The 

sample included a broad range of schools and districts (e.g., urban, rural, wealthy, and poor). 

Districts had to agree to participate for four years, allow school visits for verification of class 

sizes, interviewing, and data collection, and include extra student testing. They also had to allow 

research staff to assign pupils and teachers randomly to class types and to maintain the 

assignment of students to class types from kindergarten through third grade. 

Kindergarten students were assigned randomly to different types of classrooms within 

each school: small classes (with 13 to 17 students), regular classes (with 22 to 26 students), or 

regular classes with a full-time aide. Teachers were also assigned randomly to classes of 

different types. The students who entered the study in the first, second, or third  grades were 

assigned randomly to classes at that time. Teachers at each grade were also assigned randomly to 

classes as the experimental cohort passed through the grades.   

 

Analysis  

 

Computing Teacher Effects in Each Grade 

The main objective of the study was to examine whether teacher effects in one year (e.g., 

kindergarten) are associated with different levels of achievement (e.g., low, medium, high) in the 

following year (e.g., first grade). First we computed teacher effects within each grade. This 



   

 17 

analysis makes use of the SAT-9 reading and mathematics test scores collected as part of Project 

STAR. SAT-9 is a widely used test that measures academic achievement of elementary and 

secondary school students. Because of the random assignment of students and teachers to 

classrooms within schools, the classrooms within each school should be initially equivalent, and 

hence, any systematic differences in achievement among classes must be due to one of two 

sources: the class size effect or differences in teacher effectiveness. Thus, within each school, 

any systematic differences in achievement between classrooms that had the same treatment must 

be due to differences in teacher effectiveness (see Nye et al., 2004).  

Following Nye et al. we operationalize teacher effects as classroom-specific residuals or 

random effects. The variance of these random effects indicates the magnitude of the effects (see 

Nye et al., 2004). Because the data were produced from a randomized experiment where students 

and teachers were randomly assigned to classrooms within schools it is likely that the 

confounding between student background and teacher effects is reduced or minimized and that 

these classroom residuals may represent the “true” teacher effects (Raudenbush, 2004). 

Teacher effects were adjusted for treatment effects (e.g., class size), and possible student 

(e.g., age, gender, race, and SES) or classroom context effects (e.g., peer effects). It is crucial to 

adjust for class size effects because it is likely that class size plays a role in achievement 

differences between classrooms (e.g., smaller classes may have higher achievement than other 

classes). Similarly, classroom context could contribute to achievement differences between 

classrooms. For example, differences in the proportion of minority or low SES students between 

classrooms could explain part of the achievement differences between classrooms. One way to 

model classroom context in statistical models is via variables that represent peer effects. We 

included in our model peer effects for variables such as gender, race, SES, and age (see 
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specification in equation 1 below). A typical way of modeling peer effects is by computing 

aggregate measures of student variables for each classroom within each school for all students in 

the classroom except a specific student (see Amemueler & Pischke, 2009; Mashburn, Justice, 

Downer, & Pianta, 2009). To illustrate the process suppose that there are 21 students in a 

classroom. To compute the peer effect index for the 21st student with respect to low SES we 

computed the number of the remaining 20 students in the classroom who were eligible for free or 

reduced price lunch and then divided that number by 20. If 10 of the 20 students were eligible for 

free or reduced price lunch in the classroom then the peer effect for the 21st student is 10 / 20 = 

0.50. That is, the peer effects are classroom averages, but they are computed for each student 

separately.  

Finally, student characteristics such as minority and SES could play a role in achievement 

differences between classrooms. For example, the average achievement of a classroom may be 

higher because of the proportion of high SES students in the classroom and not necessarily 

because of the effectiveness of the teacher. As a result, typically, student variables are included 

in statistical models that measure teacher of schools effects as covariates. It is difficult to know 

whether that proportion of the between-teacher variance explained the student variables is solely 

attributed to student background. Similarly, it is difficult to know whether the proportion of the 

between-teacher variance explained by student variables should be considered a teacher effect. 

Because of this uncertainty, we decided to follow a conservative approach and estimated teacher 

effects controlling for student background. We acknowledge that there is a possibility that 

student background is confounded with teacher effects and that our assumption that the between-

teacher variance explained by student variables is solely due to student background may not hold 

exactly. If the between-teacher variance explained by student variables includes teacher effects, 
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then our teacher effects estimates are underestimated because the distribution of teacher effects 

has a smaller variance. Empirically, the proportion of between-teacher variance explained by 

student background variables ranged between 3 and 5 percent in kindergarten and first grade and 

between 7 (in mathematics) and 14 (in reading) percent in second and third grade. In 

mathematics the proportion of variance explained is overall very small and should not affect our 

estimates that much. In reading however, the proportion of variance explained is a little larger 

especially in third grade.  

We computed teacher effects as classroom-specific random effects or residuals 

employing a three-level model (Bryk & Raudenbush, 1988). The first level involves a between-

student within-classroom and school model, the second level involves a between-classroom 

within-school model, and the third level is a between-school model. To compute teacher effects 

we used the same specification for mathematics and reading achievement for each grade (i.e., 

kindergarten, first, second, or third grade) separately. Hence, for each grade the one-level 

regression equation for student i, in class j, in school k is   

000 100 200 300 400

500 600 700 800

010 020 0 00

ijk ijk ijk ijk ijk

ijk ijk ijk ijk

jk jk ijk jk k

Y FEMALE LOWSES MINORITY AGE
PEERFEM PEERLOWSES PEERMINORITY PEERAGE
SMALL AIDE

β β β β β

β β β β

β β ε ξ η

= + + + + +

+ + + +

+ + + +

 (1) 

where ijkY  represents student achievement in mathematics or reading, FEMALE is a dummy 

variable for gender (i.e., female), LOWSES is a dummy variable for free or reduced price lunch 

eligibility, MINORITY is a dummy variable for minority group membership (more than 90 

percent are African Americans), AGE represents students’ age, the PEER variables indicate peer 

effects for female, low SES, minority, and age respectively, SMALL is a dummy variable for 

being in a small class, AIDE is a dummy variable for being in a regular class with a full-time 

teacher aide, ijkε  is a student-specific random effect, 0 jkξ  is a classroom-specific random effect, 
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and 00kη  is a school-specific random effect. All random effects are normally distributed with 

zero means and constant variances. The ' sβ  are the regression coefficients across all students, 

classrooms, and schools. For simplicity, all predictors were fixed, and only the classroom-

specific and school-specific intercepts were treated as random at the second and third levels 

respectively. In this model, the variance of the error term is divided into three parts: the within-

classroom, the between-classroom within-school, and the between-school variance. The 

classroom specific random effects, ξ , represent the teacher effects adjusted for student, peer, 

and class size effects. In this analysis we used intention to treat (ITT) assignment to classes to 

control for class size effects. The ITT is unbiased by design and does not incorporate any 

possible validity threats that may have occurred during the experiment (Freedman, 2006). 

 We also computed teacher effects in the first, second, and third grades using a slightly 

different specification that included prior achievement (see equation 2 below). The model 

illustrated in equation (2) incorporated prior achievement and prior classroom achievement. We 

call these teacher effects residualized teacher effects. The overwhelming majority of studies that 

measure peer effects do not include current grade classroom achievement in their models 

because of the reflection problem identified by Manski (1993). Because of the reciprocal nature 

of the determination of peer achievement this peer component (i.e., the current grade aggregate 

classroom achievement) is likely endogenous and is differentiated from the aggregate classroom 

measures of family background (Hanushek, Kain, Markman, & Rivkin, 2003). Specifically, the 

student and peer achievement are determined simultaneously and therefore current grade 

classroom achievement is likely endogenous. By and large when researchers estimate peer 

effects they use reduced forms (see equation 1) that do not include current grade aggregate 

classroom achievement (Amemueler & Pischke, 2009). Some researchers however, have used 
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lagged peer achievement (e.g., previous achievement) when they estimate peer effects, but the 

endogeneity problem may still hold (Hanushek et al., 2003; Lefgren, 2004). It is unclear which 

model is best when estimating peer effects. In our study the objective was to sort out peer effects 

from teacher effects. To that end and because of the longitudinal nature of the data we were able 

to include lagged peer achievement when we estimated teacher effects in the first, second, and 

third grades. For example, in the first grade we computed teacher effects as second level 

residuals controlling for several variables as well as achievement in kindergarten and lagged peer 

achievement in kindergarten. For each grade (i.e., first, second, or third) the model becomes  
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  (2) 

where PRACHIEVEMENT indicates previous achievement (e.g., mathematics) and 

PEERACHIEVEMENT indicates lagged peer achievement. The ' sβ  are the regression 

coefficients across all students, classrooms, and schools. 

 Because the teacher-specific residuals are computed separately from the school level 

residuals, differences in achievement among teachers/classrooms within types of classrooms and 

within schools should be net of school differences in achievement. That is, the variance of the 

second level residuals is the variance in classroom achievement within treatment types and 

within schools adjusted for school effects expressed as variability in achievement between 

schools in the third level residuals.  

 

Modeling Teacher Effects in the Following Grade 
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Once the teacher effects (i.e., ' sξ ) were computed for kindergarten, first, second, and 

third grades they were then used as predictors of student achievement in subsequent grades (i.e., 

first, second, third, and fourth). In this analysis teacher effects were used as a predictor of 

achievement in the following grade, and the estimates indicate whether the effectiveness of the 

teacher that a student had in one year persisted and affected that student’s achievement in the 

following year. This analysis used samples of students who were part of project STAR for two 

consecutive grades and was conducted in two stages (as discussed below). To compute the 

persistence of residualized teacher effects we used samples in the second, third, and fourth 

grades.  

Since students who stayed in the experiment from grade to grade may be different that 

those who left the experiment, we tried to adjust for potential selection. One way to control for 

selection directly in a regression model is via the Heckman model (Heckman, 1979). The model 

involves two steps. In the first step we used probit to model whether a student stayed in the 

experiment from grade to grade. For example, we modeled the probability that a student who 

participated in the experiment in kindergarten would also participate in the first grade. The 

binary outcome variable is staying in the study or dropping out. The predictors were carefully 

chosen to accurately determine the probability that students would stay in the study. The probit 

model therefore is  

( ) 0probit π β= + XΒ           (3) 

where 0β  is the constant, X is a matrix of variables such as small or regular size class (ITT), SES 

and minority status, gender, school urbanicity, and teacher variables such as teacher education, 

experience, and race. From the probit model we calculated the inverse Mill’s ratio or lambda (λ), 

which we included as a covariate in the second stage achievement regressions to adjust for 
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possible non-random selection of students. Hence the teacher effects estimates in the 

achievement regressions were corrected for potential selection. To ensure proper identification of 

the models the specification used in the achievement regressions was sufficiently different than 

those in the probit model (i.e., some variables were included in the achievement regression, but 

not in the probit regression).  

The second stage of the analysis involved computing teacher effects across the 

distribution of achievement (e.g., lower, middle, and upper tails). To that end, we used quantile 

regression to estimate teacher effects at various points of the achievement distribution in grades 

one through four (see Buchinsky 1998; Koenker and Bassett 1978). Education researchers 

frequently examine the effects of school resources or school interventions on lower-performing, 

minority, and disadvantaged students. For the purposes of this paper, it is possible that teachers 

in one grade have differential effects on average, lower, and higher-performing students in te 

following grade. If all students benefit from teachers equally then all estimates must be positive 

and similar in magnitude. If lower-performing students benefit more from teacher effects than 

other students, then the estimates in the lower tail of the achievement distribution must be larger. 

Examining the effects of teachers across the entire achievement distribution provides crucial 

information about reducing the achievement gap. The typical regression model is inadequate to 

examine the effects of predictors at different points (called quantiles) of the outcome distribution 

and as a result we used quantile regression (Hao & Naiman 2007).  

Quantile regression is a natural extension of the typical linear regression because it 

estimates how predictors (e.g., teacher effects) affect outcomes (e.g., achievement) not only in 

the middle, but in the tails of the outcome distribution as well. Hence, quantile regression 

estimates provide a more complete picture of the effects of predictors on the entire distribution of 
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outcomes (Hao & Naiman 2007). Quantile regression is also a more robust method, compared to 

typical regression, for analyzing skewed distributions with outliers. Currently, quantile 

regression is a widely used method in economics and social sciences. We argue that this method 

can also be useful in education research that focuses on educational inequality and the academic 

prosperity of students especially in the lower tail of the achievement distribution. The purpose of 

the present study was to determine whether the persistence of teacher effects produce additional 

benefits in achievement for lower-performing students in grades one through four. We believe 

that quantile regression is well-suited for this purpose because it shows how teachers in one year 

can affect the achievement of lower, average, and higher-performing students the following year. 

In addition, covariate effects are also modeled across the achievement distribution. The same 

index (e.g., standard deviation units) can be computed for teacher effects on achievement across 

the entire distribution, and hence, the results across different points (quantiles) of the 

achievement distribution are comparable.  

We ran quantile regressions for mathematics and reading test scores separately for each 

grade (e.g., one through four). In each grade, mathematics and reading scores were regressed on 

teacher effects and other covariates. For example, in first grade mathematics test scores were 

regressed on teacher effects in kindergarten controlling for covariates in first grade. The 

regression equation at each quantile is  

0 1 2 3 4 5 ,i i i i i i iY TEβ β β λ εΒ Β Β= + + + + + +ST CL SC      (4) 

where y is mathematics or reading scores, 0β  is a constant, TE is the teacher effect in previous 

grade, λ  represents the sample selection, ST is a row vector of student characteristics such as 

gender, race/ethnicity, low SES, CL is a row vector of classroom/teacher characteristics such as 

type of classroom (small or regular with aide1), teacher race, education, and experience, SC is a 
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row vector of school urbanicity indicators and school composition, (i.e., percent minority or 

disadvantaged students), and ε  is the error. The betas are the regression coefficients that need to 

be estimated. The estimate of the teacher effect ( 1β ) is the most important for this study. For 

grades one through three ITT was used in the equations to control for class size effects. In the 

fourth grade the actual class size was utilized. We were not able to use teacher characteristics as 

covariates in the fourth grade, because such data were not available. We examined the teacher 

effects at the lower tail (e.g., 10th and 25th quantile), the middle (50th quantile), and the upper tail 

(e.g., 75th and top 90th quantile) of the achievement distribution. Because our data have a nested 

structure, since students are nested within classrooms and schools, it was important to take into 

account this nesting when computing the standard errors of the regression coefficients. We used 

STATA to run quantile regression and computed robust standard errors for the quantile 

regression estimates (via the cluster command). The robust standard errors we obtained take into 

account the clustering nature of the data as well as heteroscedasticity (i.e., non-constant 

variation). Finally, we also ran models to determine whether the teacher effects are nonlinear. 

Specifically, we ran models that included a quadratic term for teacher effectiveness (as well as 

the linear term). 

 

Teacher Effects Across Grades 

Previous work has examined the cumulative nature of teacher effects on student 

achievement using value-added models (e.g., Ballou, Sanders, & Wright, 2004; McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2004; Sanders & Rivers, 1996). For example, Sanders 

and Rivers (1996) used a value-added model to predict the teacher effects in grades 3, 4, and 5 

on fifth-grade achievement, controlling for achievement in second grade. Sander and Rivers 
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found that teacher effects were cumulative. In the same vein, we also ran additional analysis to 

examine whether the effects of teachers through grades are cumulative. One hypothesis is that 

these effects could be more pronounced for lower-performing students who have had high 

effective teachers in successive grades. This analysis included all students who were in the study 

for five consecutive years (kindergarten through fourth grade). We defined effective teachers as 

those who were in the top half of the teacher effects distribution in each grade (e.g., kindergarten, 

first, second, and third grade). Low effective teachers were defined as those who were in the 

bottom half of the teacher effects distribution in each grade (e.g., kindergarten through third 

grade). We coded the cumulative effects of low or high effective teachers as binary indicators 

that took the value of one if a student had low (or high) effective teachers in all four years (e.g., 

kindergarten through third grade) and zero otherwise. Then, we used quantile regression and 

regressed fourth grade mathematics or reading achievement on the cumulative teacher effects 

and other covariates (e.g., gender, race, SES, and class size in grade 4). We computed estimates 

of teacher effects in the 10th, 25th, 50th, 75th, and 90th quantiles. We coded teacher cumulative 

teacher effects using the top half or bottom half coding scheme, because only a small proportion 

of students received very low or very high effective teachers in consecutive grades. The quantile 

regressions were 

0 1 2 3 550 ,i i i i i iY TOP CLSIZEβ β β εΒ Β= + + + + +ST SC  

or             (5) 

     3 50 1 250 ,ii i i i iY BOTTOM CLSIZEβ β β εΒ Β= + + + + +ST SC  

where TOP50 (or BOTTOM50) indicates teacher effects from kindergarten through third grade, 

and CLSIZE represents classroom size in fourth grade. All other variables have been defined 
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previously. The most important coefficients in this analysis were 1β  and 1β . The remaining 

betas were the estimates of the covariates.  

 

Results 

Descriptive Statistics 

In kindergarten through third grade nearly 50 percent of the students were female and low 

SES (see Table 1). Approximately one-third of the students were minorities. Twenty five percent 

of students were in small classes in grades 1 to 3. About 80 percent of students had white 

teachers and 35 percent of students had teachers with graduate degrees in grades k to 2. The 

average teacher experience ranged between 9 and 14 years. Approximately 30 percent of 

students attended inner city or urban schools, while the majority of students attended suburban or 

rural schools. In the fourth grade, nearly fifty percent of the students in the sample were female, 

about 40 percent of the students were eligible for free or reduced lunch, and 20 percent of the 

students were minorities. Nearly 85 percent of students attended suburban or rural schools, while 

only about 15 percent of students attended inner city or urban schools. The outcomes of interest 

were mathematics and reading scores that were standardized to have a mean of zero and a 

standard deviation of one. The teacher effects that were computed in each grade were 

teacher/classroom specific residuals (see equation 1) and as a result they had a mean of zero and 

standard deviations that indicated the magnitude of the teacher effects (see Nye et al., 2004).  

------------------------------- 

Insert Table 1 Here 

-------------------------------- 

 



   

 28 

Variance Decomposition  

 During the first stage of the analysis (see equations 1 and 2) we were able to estimate the 

variance decomposition in mathematics and reading scores at each level as a percentage of the 

total variance in the outcomes. For this computation we used two different models: an 

unconditional model and full model with covariates. In mathematics in grades k to 3 the student-

level variance was between 70 and 74 percent of the total variance, the teacher-level variance 

was between 11 and 13 percent of the total variance, and the school-level variance was between 

15 and 18 percent of the total variance in models with no predictors. When student 

characteristics, class size, and peer effects were included in the model the student-level variance 

was between 65 and 68 percent, the teacher-level variance was between 10 and 11 percent, and 

the school-level variance was between 8 and 15 percent of the total variance. In fourth grade 

mathematics the student-level variance was 80 percent, and the teacher- and school-level 

variances were each 10 percent of the total variance in models with no predictors. When previous 

achievement and lagged peer achievement were added to the models in grades k to 3 the 

variances at the second the third levels changed slightly.   

 In reading in grades k to 3 the student-level variance was between 72 and 80 percent of 

the total variance, the teacher-level variance was between 9 and 11 percent of the total variance, 

and the school-level variance was between 11 and 18 percent of the total variance in models with 

no predictors. When student characteristics, class size, and peer effects were included in the 

model the student-level variance was between 66 and 71 percent, the teacher-level variance was 

between 6 and 10 percent, and the school-level variance was between 4 and 14 percent of the 

total variance. In fourth grade reading the student-level variance was 83 percent, the teacher-

level variance was 7 percent, and school-level variance was 10 percent of the total variance in 
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models with no predictors. When previous achievement and lagged peer achievement were 

added to the models in grades k to 3 the variances at the second the third levels changed slightly.   

 

Linear Teacher Effects 

 The main objective of the study was to examine whether teacher effects persisted from 

grade to grade and whether they were distributed uniformly across the achievement distribution, 

or whether there was evidence of differential teacher effects. Therefore, all estimates reported in 

Tables 2 to 6 are estimates of the persistence of teacher effects. If all students (e.g., lower or 

higher-performing students) benefited equally from teacher effects, one would expect similar 

regression estimates across the achievement distribution.   

Results of the quantile regression analysis are summarized in Table 2. Specifically, Table 

2 reports regression estimates of teacher effects and their standard errors at the 10th, 25th, 50th, 

75th, and 90th quantiles of the achievement distribution by grade. The last column of Table 2 

shows the sample sizes. Because the outcomes were standardized, the regression estimates 

indicate that changes in teacher effects correspond to changes in standard deviation units in 

achievement. All estimates were adjusted for covariate effects as indicated in equation (4). In 

first grade mathematics all regression estimates were positive and significantly different from 

zero, suggesting that increases in teacher effects in kindergarten increased student achievement 

in first grade significantly. The estimates in the upper tail were overall larger in magnitude than 

the estimates in the lower tail of the achievement distribution. In second grade mathematics all 

regression estimates were also positive and significantly different from zero, suggesting that 

increases in teacher effects in first grade increased significantly student achievement in second 

grade. Again, the estimates in the upper tail were overall larger in magnitude than the estimates 
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in the lower tail of the achievement distribution. Similarly, in third grade mathematics all 

regression estimates were positive and significantly different from zero, suggesting that increases 

in teacher effects in second grade increased student achievement in third grade. The estimates in 

the upper tail were again larger in magnitude than the estimates in the lower tail of the 

achievement distribution. In fourth grade mathematics all regression estimates were also positive 

and significantly different from zero, suggesting that increases in teacher effects in third grade 

increased significantly student achievement in fourth grade. However, now the estimates in the 

lower tail were overall larger in magnitude than the estimates in the upper tail of the achievement 

distribution. Overall, across all grades students benefited from teacher effects. It appears that in 

the second, third, and fourth grades the teacher effects were more pronounced than in the first 

grade with the majority of estimates suggesting achievement increases larger than one-half of a 

standard deviation. Values of indexes of goodness of fit such as the pseudo R-squared ranged 

between 7 and 10 percent across quantiles and grades.  

                                     ---------------------------------------- 

Insert Table 2 Here 

      ---------------------------------------- 

The lower panel of Table 2 reports the results for reading achievement. In first grade 

reading all regression estimates were positive and significantly different from zero, suggesting 

that increases in teacher effects in kindergarten increased student achievement in first grade 

significantly. The patterns were similar in the second, third, and fourth grades. All regression 

estimates across grades were positive and statistically significant. The estimates were overall 

larger than those in mathematics, which indicates stronger associations between teacher effects 

and achievement in reading than in mathematics. In the first, second, and third grades the teacher 
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effects seemed to be uniform across different quantiles of the achievement distribution, while in 

the fourth grade, it appeared that lower-performing students may have benefited more from 

having effective teachers in the third grade than other students. Across all grades students 

benefited from teacher effects and it appears that in the second, third, and fourth grades the 

teacher effects were more pronounced than in the first grade with the majority of estimates 

suggesting achievement increases larger than three-fourths of a standard deviation.. Values of 

indexes of goodness of fit such as the pseudo R-squared ranged between 9 and 14 percent across 

quantiles and grades.  

The estimates of the persistence of residualized teacher effects are summarized in Table 

3. By and large the results are qualitatively similar to those reported in Table 2. All estimates 

were positive and significant, but smaller in magnitude to those in Table 2. In fourth grade 

mathematics and reading the estimates were more pronounced and nearly twice as large in the 

10th quantile than in the 90th quantile. Values of indexes of goodness of fit such as the pseudo R-

squared ranged between 6 and 8 percent in mathematics, and between 8 and 12 percent in 

reading.  

                                      --------------------------------------- 

Insert Table 3 Here 

     --------------------------------------- 

 

Nonlinear Teacher Effects  

We also examined possible nonlinear teacher effects by including quadratic terms for 

teacher effects in equation (4). These estimates were also adjusted for covariate effects. The 

results of this analysis are summarized in Table 4 which has the same structure as Tables 2 and 
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3. The linear effects estimates are not included in the Table for simplicity, but they were all 

positive and significant.  

In first grade mathematics the quadratic estimates were typically positive, but not 

significant at the .05 level. The estimates in the second, third, and fourth grades were negative 

and not significant. The only exception was the 25th quantile estimate at the fourth grade which 

was negative and significant at the .05 level suggesting that in the low quartile of the distribution 

student achievement increased when teacher effects increased but at a decreasing rate. The 

results for reading scores were qualitatively similar. The nonlinear estimates were negative and 

not significantly different from zero across grades. The estimates were larger in the third and 

fourth grades indicating a higher likelihood of nonlinear effects in these grades in reading 

achievement. The quadratic estimates were consistently more pronounced in reading than in 

mathematics. Overall, these results provide very weak to no evidence of nonlinear teacher 

effects. Values of goodness of fit indexes were the same as those reported in Table 2.  

                                       ---------------------------------------- 

Insert Table 4 Here 

         ---------------------------------------- 

The quadratic estimates of the persistence of residualized teacher effects are summarized 

in Table 5. By and large the results are qualitatively similar to those reported in Table 4. Only 

now none of the quadratic estimates are significant and the magnitude of these effects is much 

smaller than what was reported in Table 4. Values of goodness of fit indexes were the same as 

those reported in Table 3.  

                                       ---------------------------------------- 

Insert Table 5 Here 
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    ---------------------------------------- 

 

Teacher Effects Across Grades 

Overall from kindergarten to fourth grade nearly 10 percent of students had high or low 

effective teachers (i.e., teachers in the top or bottom half of the distribution) consistently. The 

results of this analysis are reported in Table 6. The results for fourth grade mathematics scores 

are reported in the upper panel and for reading scores in the lower panel. The estimates are mean 

differences in standard deviation units between students who consistently had high or low 

effective teachers from kindergarten to third grade and students who did not. As expected, the 

estimates are positive for students who have had high effective teachers and negative for those 

who have had low effective teachers. The estimates indicated a significant advantage for students 

who have had high effective teachers in successive grades both in mathematics and in reading. 

The advantage seemed larger for lower-performing students both in mathematics and reading. 

However, the differences in the estimates at the lower and upper quantiles did not reach 

statistical significance. The benefit seemed larger in mathematics than in reading in the tails.  

The students who have had low effective teachers in successive grades were at a 

disadvantage however. In particular, the disadvantage was significant for all students and was 

larger than one-fourth of a standard deviation in mathematics. The disadvantage was more 

pronounced in the tails of the mathematics distribution which is alarming for lower-performing 

students in particular. In reading, the estimates were smaller and insignificant at the 90th 

quantile. That is, the disadvantage was less pronounced in reading especially for very high-

performing students. Still these effects are overall not trivial both in mathematics and reading, 

and suggest that having high effective teachers successively in early grades is beneficial, whilst 
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having low effective teachers successively in early grades is a disadvantage especially in 

mathematics. These results are important for lower-performing students in particular, because 

these students need the additional boost from high effective teachers the most. Values of indexes 

of goodness of fit such as the pseudo R-squared ranged between 5 and 7 percent. 

                                       ---------------------------------------- 

Insert Table 6 Here 

         ---------------------------------------- 

 

Discussion 

 We investigated the persistence of teacher effects from grade to grade across the 

achievement distribution. We were interested in whether teacher effects are differential or 

uniform for lower, medium, and higher-performing students. We used high-quality data from a 

4-year randomized experiment in which teachers and students were assigned randomly to 

classrooms within schools. The results of the analyses suggest that overall, in early grades, 

teacher effects in one grade lead to higher academic achievement in the following grade for 

lower, medium, and higher-performing students. This finding supports the notion that teachers 

can increase achievement significantly for all students. In addition, teacher effects were not 

trivial and typically showed that students who had effective teachers in one year demonstrated a 

significant increase in their achievement the following year. The achievement gain was more 

pronounced in reading and reached three-fourths of a standard deviation in some grades.   

There was not consistent evidence of differential teacher effects on student achievement 

however. Overall, teacher effects seemed uniform across the achievement distribution, which 

suggests that students at different achievement levels benefited equally from teachers. There 
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were some exceptions however. In fourth grade the estimates were larger for lower-performing 

students. The teacher effect benefit in first grade mathematics however, indicated an advantage 

for higher-performing students (e.g., 90th quantile) and was nearly twice as large as that at the 

10th quantile. These estimates were not different in a statistical sense. The estimates were also 

larger for higher-performing students in the second and third grades, but the differences in these 

estimates were not significant. In sum, it appears that all students benefited for teachers similarly 

and significantly.  

We also explored whether the effects of teachers were nonlinear by adding both linear 

and quadratic terms in the quantile regression models. These results showed weak or no evidence 

of nonlinear effects. The overwhelming majority of the nonlinear estimates was not significant, 

and suggested that teacher effects are linear. In all models we included the inverse Mill’s ratio as 

a covariate to adjust for possible selection. Virtually in all models the selection coefficient was 

positive and in many instances significant, indicating positive selection of individuals from grade 

to grade. Thus, it appears that attrition may have resulted in some positive selection.  

Teacher effects both linear and quadratic seem consistently larger in reading than in 

mathematics. This is an interesting finding given that the students in the same classroom are 

taught mathematics and reading by the same teacher. Student selection is also unlikely, since, 

virtually the same samples of students took the SAT-9 mathematics and reading tests. One 

explanation may be that teachers typically put more emphasis on reading than on mathematics in 

early grades and that the pedagogy of reading is heavily infused in early grades. Familiarity with 

the basic mechanisms of reading, vocabulary growth, and systematic practice in reading take 

place in early grades. In addition, basic reading skills such as decoding are developed in early 

grades and lay the foundation for later more advanced reading skills such as comprehension. A 
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related point is that teachers who teach in early grades may be better prepared to teach reading 

than mathematics. Also, schools may stress the importance of focusing more on reading in early 

grades. Unfortunately, classroom observations or teacher logs were not available in Project 

STAR and therefore it is impossible to know the actual teaching practices that took place in each 

classroom. Regardless of the mechanism the empirical evidence points to larger persistence of 

teacher effects in reading.  

The results from the longitudinal analysis are also informative. Students who have had 

high effective teachers in successive grades benefited at least one-fourth of a standard deviation 

in fourth grade mathematics. The advantage seems larger for lower -performing students. The 

students who have had low effective teachers in successive grades however were at a 

disadvantage that was larger than one-fourth of a standard deviation in the tails of the fourth 

grade mathematics distribution. This is especially concerning for lower-performing students. The 

disadvantage was less pronounced in reading however, especially for very high-performing 

students. Generally, these findings suggest that having high effective teachers successively in 

early grades is beneficial, whilst having low effective teachers successively in early grades could 

be potentially harmful in mathematics, especially for lower-performing students. The findings 

stress the importance of assigning effective teachers to classrooms with higher proportions of 

lower-performing students. 

 Unfortunately, we could not control for teacher effects in the fourth grade. There was no 

information about teachers in the fourth grade data and, thus, we were only able to control for 

student characteristics and school urbanicity and composition (e.g., percent minority or 

disadvantaged students). For grades 1 through 3 however we were able to include in the models 

covariates such as teacher race, experience, and education, and therefore we adjusted the 
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persistence of teacher effects estimates. Still, we were not able to control for many current grade 

teacher effects, since the information about teacher characteristics was limited. As a result, 

covariates such as teacher peer effects, teacher turnover, and teacher tenure in the same grade 

level that could have affected our estimates were not controlled for in this analysis. This is a 

potential limitation of the study. Further, in all models we controlled for school urbanicity and 

school composition such as percent of minority and disadvantaged students in the school. These 

were the only school variables available. However, other unobserved school variables such as 

percent of effective or high quality teachers in the school could have affected our estimates. This 

is also a potential limitation of the study. Another potential limitation is that the teacher effects 

were computed assuming no measurement error, which is an assumption that may not hold 

exactly, and could affect our regression coefficients in the quantile regression analysis.  

Teacher effects were estimated assuming a constant variance for the entire achievement 

distribution. This assumption may be restrictive in that the constant variance may represent well 

the data around the middle of the distribution, but not necessarily other data especially in the 

tails. If this assumption does not hold for the tails of the distribution and the variance in the tails 

is larger, then our variance estimate of the teacher effects may be conservative. As a result, it is 

possible that the prediction (i.e., teacher effects in one year predicting student achievement the 

following year) is underestimated due to the restriction of range in the predictor. Still our 

empirical estimates from the quantile regression are significant and not trivial in magnitude.  

In addition, one way to check whether the variance of the teacher effects is constant 

across the achievement distribution in one grade is to treat initial achievement (i.e., pre-treatment 

scores) as a random effect at the teacher level. Essentially, this model would assume that initial 

achievement varies across teachers and therefore interacts with teachers. A significant variance 
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of this interaction random effect would suggest that achievement is not consistent across 

teachers. Unfortunately, we were unable to investigate this because pre-test scores were not 

available in kindergarten. In addition, even if pre-test scores were available it is unclear that they 

would vary across teachers within schools given random assignment of students to classes within 

schools.  

To conclude, although this study demonstrates that the persistence of teacher effects has a 

positive impact on student achievement for all students, there is not much evidence of 

differential teacher effects except for the fourth grade. It does not seem that lower-performing 

students benefit more from having effective teachers in the previous grade than other students. 

However, lower-performing students benefit from teachers at least as much as other students, 

which is promising. The longitudinal analysis revealed a larger detriment in reading for lower-

performing students who have had low-effective teachers in successive grades. The present study 

does not unravel the mechanism through which teacher effects persist and impact student 

achievement. This is partly due to the general definition of teacher effects, which does not allow 

examination of associations between observed teacher characteristics or teaching practices and 

student achievement. Data about teaching practices in classrooms are unfortunately not available. 

Such data could have helped identify the mechanism of teacher effectiveness, because they 

typically include information about instructional processes and interactions among students and 

between students and teachers. A well designed study with the objective of collecting high-

quality micro-level data at the classroom data would provide invaluable information about the 

mechanism of teacher effectiveness.  
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Table 1. Descriptive Statistics of Variables of Interest Across Samples

Grade 
Variable K 1 2 3 4
Female (%) 48.62 47.96 48.30 47.99 48.53
Minority (%) 33.03 33.41 35.22 33.71 20.11
Low SES (%) 48.44 51.35 51.61 50.54 37.90
Small Class (%) 30.04 26.14 25.56 26.49 -
Teacher Race: Black (%) 16.50 17.48 20.37 20.87 -
Teacher Has Graduate Degree (%) 34.66 34.57 37.32 44.15 -
Teacher Experience in Years 9.26 11.63 13.15 13.93 -
Inner City School (%) 22.58 20.21 21.65 19.63 7.49
Urban School (%) 8.98 9.17 7.05 7.45 8.34
Suburban School (%) 22.32 23.22 24.99 25.29 24.51
Rural School (%) 46.12 47.40 46.30 47.62 59.67
Sample size: 
     Students 6,325 6,829 6,840 6,802 4,352
     Teachers 325 339 340 336 222
     Schools 79 76 75 75 62
Note: SES = Socioeconomic Status  
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Table 2. Persistence of Teacher Effects Estimates in Mathematics and Reading at Various Quantiles: Linear Effects

10th Quantile 25th Quantile 50th Quantile 75th Quantile 90th Quantile N
Mathematics
     Grade: 

1 0.237* (0.076) 0.374* (0.070) 0.491* (0.090) 0.443* (0.086) 0.452* (0.135) 4358
2 0.551* (0.118) 0.573* (0.104) 0.535* (0.110) 0.594* (0.148) 0.844* (0.175) 4638
3 0.432* (0.118) 0.505* (0.134) 0.509* (0.107) 0.642* (0.108) 0.706* (0.126) 4780
4 0.801* (0.157) 0.679* (0.092) 0.505* (0.074) 0.438* (0.088) 0.556* (0.093) 4215

Reading
     Grade: 

1 0.228*(.0.069) 0.360* (0.079) 0.604* (0.102) 0.527* (0.099) 0.300* (0.091) 4255
2 0.856* (0.140) 0.847* (0.156) 0.863* (0.129) 0.845* (0.121) 0.980* (0.123) 4641
3 0.774* (0.150) 0.842* (0.139) 0.841* (0.113) 0.712* (0.120) 0.846* (0.122) 4797
4 1.010* (0.180) 0.803* (0.138) 0.810* (0.099) 0.738* (0.065) 0.722* (0.108) 4134

Note: Standard errors of estimates are in parenthesis
* p < 0.05  
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Table 3. Persistence of Residualized Teacher Effects Estimates in Mathematics and Reading at Various Quantiles: Linear Effects

10th Quantile 25th Quantile 50th Quantile 75th Quantile 90th Quantile N
Mathematics
     Grade: 

2 0.530* (0.133) 0.572* (0.120) 0.471* (0.111) 0.526* (0.159) 0.562* (0.231) 3327
3 0.272* (0.111) 0.267* (0.095) 0.268* (0.107) 0.322* (0.072) 0.459* (0.101) 3806
4 0.590* (0.112) 0.437* (0.076) 0.343* (0.060) 0.250* (0.082) 0.312* (0.117) 3603

Reading
     Grade: 

2 0.755* (0.126) 0.724* (0.106) 0.656* (0.107) 0.657* (0.130) 0.862* (0.193) 3331
3 0.584* (0.131) 0.549* (0.161) 0.542* (0.147) 0.466* (0.112) 0.703* (0.189) 3821
4 0.772* (0.149) 0.530* (0.135) 0.483* (0.117) 0.470* (0.088) 0.315* (0.126) 3587

Note: Standard errors of estimates are in parenthesis
* p < 0.05  
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Table 4. Persistence of Teacher Effects Estimates in Mathematics and Reading at Various Quantiles: Quadratic Effects

10th Quantile 25th Quantile 50th Quantile 75th Quantile 90th Quantile N
Mathematics
     Grade: 

1 -0.209 (0.290) 0.063 (0.367) 0.197 (0.347) 0.462 (0.353) 0.616 (0.336) 4358
2 -0.063 (0.217) -0.237 (0.229) -0.008 (0.231) -0.070 (0.266) -0.384 (0.385) 4638
3 -0.073 (0.241) -0.130 (0.254) 0.092 (0.371) -0.290 (0.408) -0.145 (0.447) 4780
4 -0.336 (0.265) -0.532* (0.223) -0.368 (0.220) -0.362 (0.250) -0.078 (0.240) 4215

Reading
     Grade: 

1 -0.270 (0.157) -0.294 (0.154) -0.503 (0.270) -0.063 (0.316) -0.120 (0.295) 4255
2 -0.049 (0.343) 0.011 (0.447) -0.221 (0.488) 0.274 (0.722) 0.189 (0.772) 4641
3 -0.758 (0.390) -0.560 (0.446) -0.599 (0.387) -0.757 (0.503) -1.000 (0.598) 4797
4 -1.217 (0.744) -0.972 (0.529) -0.652 (0.483) -0.423 (0.442) -0.781 (0.516) 4134

Note: Standard errors of estimates are in parenthesis
* p < 0.05  
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Table 5. Persistence of Residualized Teacher Effects Estimates in Mathematics and Reading at Various Quantiles: Quadratic Effects

10th Quantile 25th Quantile 50th Quantile 75th Quantile 90th Quantile N
Mathematics
     Grade: 

2 0.345 (0.221) 0.116(0.227) 0.215 (0.259) 0.091 (0.261) 0.059 (0.312) 3327
3 -0.084 (0.287) -0.210 (0.204) -0.155 (0.249) -0.154 (0.308) -0.412 (0.383) 3806
4 -0.161 (0.216) -0.114 (0.189) -0.161 (0.097) -0.208 (0.118) -0.189 (0.246) 3603

Reading
     Grade: 

2 -0.542 (0.591) 0.093 (0.426) -0.081 (0.515) -0.415 (0.527) -0.753 (0.583) 3331
3 -0.092 (0.558) -0.001 (0.535) -0.124 (0.497) -0.336 (0.330) -0.619 (0.641) 3821
4 -0.396 (0.737) -0.559 (0.440) -0.363 (0.487) -0.496 (0.505) -0.398 (0.628) 3587

Note: Standard errors of estimates are in parenthesis  
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Table 6. Estimates of Persistence of Teacher Effects in Successive Grades (k to 3)

10th Quantile 25th Quantile 50th Quantile 75th Quantile 90th Quantile N
Grade 4 Mathematics 
     K-3 Teacher Effect: Top 50 0.432* (0.071) 0.323* (0.069) 0.221* (0.052) 0.286* (0.062) 0.314* (0.078) 2297
     K-3 Teacher Effect: Bottom 50 -0.305* (0.163) -0.278* (0.058) -0.318* (0.076) -0.350* (0.043) -0.346* (0.102) 2297
Grade 4 Reading 
     K-3 Teacher Effect: Top 50 0.317* (0.073) 0.285* (0.057) 0.255* (0.051) 0.183* (0.066) 0.271* (0.083) 2259
     K-3 Teacher Effect: Bottom 50 -0.232 (0.124) -0.226* (0.064) -0.236* (0.090) -0.187* (0.079) -0.113 (0.114) 2259
Note: Standard errors of estimates are in parenthesis
* p < 0.05  
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