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monitoring and costly punishment are allowed. All these experiments, however, study 
monitoring and punishment in a setting where all agents can monitor and punish each other 
(i.e., in a complete network). The architecture of social networks becomes important when 
individuals can only monitor and punish the other individuals to whom they are connected by 
the network. We study several non-trivial network architectures that give rise to their own 
distinctive patterns of behavior. Nevertheless, a number of simple, yet fundamental, 
properties in graph theory allow us to interpret the variation in the patterns of behavior that 
arise in the laboratory and to explain the impact of network architecture on the efficiency and 
dynamics of the experimental outcomes. 
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1 Introduction

A perennial question in economics concerns the conditions under which self-interested indi-

viduals cooperate to achieve socially efficient outcomes. In a seminal experiment, Fehr and

Gäechter (2000) showed that public goods can be provided at high levels if individuals can

monitor the contributions made by other individuals and punish those who are unwilling to

contribute. This stands in stark contrast to the experimental results from the familiar public

good game in the literature, in which low provision is common (Ledyard, 1995). A number

of experimental papers extend Fehr and Gäechter (2000) by making punishment more or less

costly to the monitor (Anderson and Putterman, 2005), making punishment only symbolic

(Masclet, et al., 2003), or by going in the opposite direction and equating punishment with

expulsion from the group (Cinyabuguma, et al., 2005) and continue to find high levels of

provision.

A central assumption of nearly all these experiments is full monitoring — everyone can

monitor all of the other individuals. In reality, individuals living in any society are bound

together by a social network, and often they can only monitor the behavior of those who are

in their local environment. If each individual monitors the actions of only a small number

of other individuals, it is not clear that mutual monitoring can give rise to cooperative

outcomes. Clearly, partial monitoring can be an obstacle to cooperation if, for example,

a critical mass of potential punishers is required to deter shirking or punishers are only

emboldened to intervene when they know that they are supported by others.

We represent the partial monitoring structure by a graph that specifies the monitoring

technology of the group; that is, who monitors whose actions. Each player is located at a

node of the graph, and player i can monitor player j if and only if there is an edge leading

from node i to node j. The experiments reported here involve the eight networks [1]-[8]

illustrated in Figure 1 below. An arrow pointing from player i to player j indicates that

i can monitor and punish j. The goal of this paper is to identify the impact of network

architecture on the effectiveness of mutual monitoring and punishment. The set of networks

depicted in Figure 1 has several interesting architectures exemplifying a number of simple yet

fundamental concepts in graph theory (defined in the next section) that allow us to interpret

variation in the experimental outcomes.

[Figure 1 here]

Our key results are as follows:

• Cooperation — Although contributions vary dramatically from network to network,

connected networks [1]-[4], within which everyone is monitored, demonstrate signifi-
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cantly higher contributions than disconnected networks [5]-[8]; however, the complete

network [1] does not elicit significantly more contributions than the other connected

networks.

• Punishment — More punishment is used to maintain or increase contributions in

directed networks such as [2], [5], [6], and [7] where the edges point in only one direction

relative to undirected networks. Our conclusion is that the asymmetry in the relations

between any pair of nodes in directed networks gives different monitoring roles to

different subjects, which, in turn, increases punishment expenditures.

• Efficiency — While there is also considerable variation in net payoffs after subtractions

for punishing others and for being punished across networks, the connected networks

(such as [1] and [4]) are the most efficient, whereas the disconnected networks (e.g., [6]

and [7]) are the least efficient. In addition, adding/removing edges does not necessarily

increase/decease efficiency.

Among our other conclusions, the fact that we find it is necessary to take into account

the details of the local neighborhood as well as the entire network architecture to explain

individual behavior is particularly relevant for future work. The simple summary character-

istics of the networks depicted in Figure 1, such as the average distance between players, do

not fully account for the subtle and complicated behaviors that we observe. To determine

the important determinants of individual behavior, it will be necessary to investigate a larger

class of networks in the laboratory. This is perhaps one of the most important topics for

future research.

The paper contributes to the enormous body of experimental work on public goods, but

we will not attempt to review this literature. The most closely related papers to ours are

those that also allow for costly punishment by Carpenter (2007) and O’Gorman, et al. (2008).

Carpenter (2007) compared the complete network [1] to two other connected networks, the

directed circle [2] and the undirected circle [3]. Carpenter (2007) found that contributions

in the complete network [1] are as high as in the undirected circle [3] but are significantly

higher than in the directed circle [2]; however, the number of other potential punishers, not

the network structure was emphasized. O’Gorman, et al. (2008) compared the complete

network [1] to a version of the directed star [5] in which the responsibility of being the

“prison guard” changed randomly each round and found that the complete network is less

efficient. These results, though based on different designs and reporting some difference in

results are important primarily because they suggest that the network architecture affects

the provision of the public good. Nevertheless, a more sophisticated and comprehensive

analysis is required to detect the underlying properties of networks that facilitate or hinder
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cooperative outcomes. Our paper also contributes to the large and growing literature on

the economics of networks (see Jackson, 2008) and the smaller, more recent, literature on

network experiments (see Kosfeld, 2004).

The rest of the paper is organized as follows. The next section presents the network

concepts that guided our experimental design and the design itself. Section 3 provides our

empirical analysis, Section 4 discusses the results and Section 5 provides some concluding

thoughts.

2 Experimental Design

The voluntary contribution game that we study can be interpreted as follows. At the first

stage, players simultaneously make voluntary contributions to a public good. The payoff for

each player at the first stage equals his consumption of the public good plus his remaining

endowment. At the end of the first stage, players are allowed to monitor the contributions

of the players to whom they are connected by a social network, where nodes represent

players and edges represent the possibility of one player monitoring the player to whom the

edge is pointing. Thus, we drop the standard assumption that individual contributions are

public information and assume that players can monitor the contributions of some, but not

necessarily all, of the other players. In the second stage, players are given the opportunity

to punish, at some cost, the other players to whom they are connected by the network. The

terminal payoff for each player from both stages is given by the maximum of either zero

or her payoff from the first stage minus the punishment received and the cost of punishing

other players.

2.1 The networks

We restrict attention to the case of four-person networks, which has several non-trivial

architectures. Each network is represented by a graph with four nodes, indexed by i =

A,B,C,D, where at each node there is a single player. An edge between any two players

represents that they are connected and the arrowhead points to the player whose action can

be monitored. For each player i, Ni denotes the set of players j �= i who can be monitored by

i. We can think ofNi as representing player i’s neighborhood. The collection of neighborhoods

{NA, NB, NC , ND} completely define a four-person network. The set of networks used in the

experimental design is illustrated in Figure 1. Note that edges can be directed: the fact

that player i can monitor player j (j ∈ Ni) does not necessarily imply that j can monitor i

(i ∈ Nj).

Next, we define some key graph theoretic concepts to which we refer throughout the
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paper. Our notation and definitions are standard, but to avoid ambiguity we present the

concepts in some detail.

• A complete network is a network in which each pair of nodes is connected by an edge.

Otherwise, the network is incomplete. Referring to Figure 1, in the complete network

[1] every player directly monitors every other player. The rest of the networks [2]-[8]

we study are incomplete.

• A network is connected if every pair of players i and j is linked by a path and discon-

nected otherwise.1 Obviously, players from disconnected components of a network can-

not monitor each other. Referring to Figure 1, networks [1]-[4] are connected whereas

networks [5]-[8] are disconnected. Networks [7] and [8] are disconnected, but connect-

edness is satisfied in a subgraph {NA, NB, NC} in which every pair of players i and j

are connected.

• A network is undirected if the relations between any pairs of nodes is symmetric, so

that each edge points in both directions. Otherwise, the network is directed. A directed

network in which each edge is given a unique direction is called an oriented network. In

an oriented network, if player i can monitor player j (j ∈ Ni) then j cannot monitor i

(i /∈ Nj). As shown in Figure 1 above, in our experimental design all directed networks

[2], [5], [6], and [7] are oriented. Networks [1], [3], [4], and [8] are undirected as all

edges are bidirected and point to both nodes at once.

• The degree of a node is the number of edges that end at that node. In a directed

graph the degree is usually divided into the out-degree and the in-degree. The out-

degree (resp. in-degree) of node i is the number of edges with i as their initial (rep.

terminal) node. Clearly, the out-degree of player i is the number of players j that can

be monitored by i (j ∈ Ni) and the in-degree of player i is the number of players j

that can monitor i (i ∈ Nj).

2.2 The game

The game is formally described using the following notation. Each player i = A,B,C,D

is endowed with y indivisible tokens. At stage one, the players simultaneously choose how

many tokens 0 ≤ gi ≤ y to contribute to the provision of the public good. The payoff for

1Put precisely, for any pair of players i and j, a path from i to j is a sequence i1, ..., iK such that i1 = i,
iK = j and there is an edge pointing from ik to ik+1 for k = 1, ...,K − 1. Player i is connected to j if there
is a path from i to j.
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each player i in the first stage can be summarized by

π1i = y − gi + αḡ, (1)

where

ḡ =
∑

j=A,B,C,D gj

and α is the marginal per capita return (MPCR). Hence, each player receives the value

of the public good (αḡ) in addition to the number of tokens retained from his endowment

(y − gi). To avoid trivialities, we assume that 1 > α > 1

4
. This condition ensures that

contributing is, on one hand, socially efficient, and on the other hand, strictly dominated for

any individual player.

At stage two, after players are informed about the individual contributions of the members

of their group, they can punish the players to whom they are connected in the network. More

precisely, each player i can punish player j ∈ Ni by reducing his payoff from the first stage

π1j by pji tokens. Reducing the payoff of other players is costly. The cost of reducing one

token from any of the other players is 0 < c < 1 tokens. We also assume that each player i

can spend up to his entire payoff from the first stage π1i towards reducing the payoff π1j of

all j ∈ Ni, and that π1i can be reduced at the second stage to zero but the terminal payoff

for the game cannot be negative. The payoff of player i from both stages of the game can

therefore be summarized by

πi = max

{

0, π1i − c
∑

j∈Ni

pji −
∑

j:i∈Nj

pij

}

. (2)

By backward induction, it follows that punishment cannot defer free riding, in any net-

work architecture. We next briefly illustrate the logic of the backward induction argument

and then draw out the important implications of the theory. Since punishing is costly, each

player i will refrain from doing so at the second stage (i.e., pji = 0 for all i and j ∈ Ni).

Because each player j ∈ Ni expects that player i will never punish him, his best response

is to contribute nothing in the first stage (gj = 0). Thus, the addition of the second stage

has no effect on the outcome of the first stage which, in this finitely repeated version of the

game, is full free-riding and therefore the prediction of standard theory is that gi = 0 and

pji = 0 for all i and j ∈ Ni. Note, however, that the aggregate payoff is maximized if each

player i fully cooperates by contributing his endowment (gi = y).

2.3 Procedures

The experiment was run with 264 participants in 14 sessions at the Center for Experimental

Social Sciences (CESS) at New York University and at the Experimental Social Science
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Lab (Xlab) at the University of California, Berkeley. The subjects in this experiment were

recruited from all undergraduate classes and had no previous experience in public good or

networks experiments. After subjects read the instructions, they were read aloud by an

experimenter.2 At the end of the instructional period subjects were asked if they had any

questions or any difficulties understanding the experiment. No subject reported any difficulty

understanding the procedures or using the computer program. Each experimental session

lasted about an hour and a half. A $5 participation fee and subsequent earnings from playing

the game were paid in private at the end of the experimental session.

The endowment was given by y = 25 and the marginal per capita return and the cost of

punishing were fixed at α = 0.4 and c = 0.5, respectively. The network was held constant

throughout a given experimental session. In each session, the network positions were labeled

A, B, C, and D. The participant’s type (A, B, C, or D) remained constant throughout

the session. Each experimental session consisted of 15 independent decision-rounds. To

minimize the investment in reputations, each round started with the computer randomly

forming four-person networks by selecting one participant of each type. The networks formed

in each round depended solely upon chance and were independent of the networks formed in

any of the other rounds.

Each round of the experiment consists of two stages, the contribution stage and the

punishment stage. The contribution decision was to allocate the endowment between a

private good which only benefited the individual and a public good which benefited everyone

in the group, according to the payoff function (1). Once all the contributions were recorded,

subjects observed the contributions of the participants to whom they were connected by the

network. In addition, all subjects were informed about the sum of the contributions to the

public good by all the participants in their group (including themselves). In the punishment

stage, subjects choose if and by how much to reduce the first stage payoff of each of the

other participants with whom they were connected by the network. If they did not wish to

reduce the earnings of another participant they had to enter zeros. At the completion of the

two stages, the computer informed the subjects of their total payoffs according to the payoff

function (2).

The various experimental roles are summarized in Table 1 below. The entries in the right

hand column have the form a/b where a is the number of observations and b the number of

subjects per type.

[Table 1 here]

2Sample experimental instructions, including the computer program dialog windows are available in the
Appendix and online at (http://emlab.berkeley.edu/~kariv/CKS_II_A.pdf).
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3 Results

In this section we report the results of our experiment. Our analysis focuses on two impor-

tant questions. First, we ask the obvious question of whether the graph theoretic constructs

defined in Section 2 above systematically affect the performance of our networks. Perfor-

mance is measured in three ways: contribution levels, punishment given and overall payoff

efficiency (i.e., payoffs net of punishment expenses). Second, we ask the more subtle ques-

tion of whether networks “matter” in that people’s behavior is affected not only by their

immediate surroundings (their node) but also by the larger network in which that node func-

tions. Put differently, if a participant’s node is defined as the number of out- and in-links

connecting him to the network, we ask whether his behavior changes as we take that node

and embed it in different networks.

Our experimental design allows us to make direct comparisons to test the importance of

each of the properties of network architecture. For example to test the importance of the

network being complete, we compare [1] the Complete network to two other networks that

are incomplete: [3] the Undirected Circle and [4] the Undirected Star. This comparison is

salient because, while both [3] and [4] are incomplete, they are connected and undirected like

[1]. Considering connectedness, we compare [2] the Directed Circle to [6] the Line because

removing just one link renders the Directed Circle disconnected. We also compare [2] to

[7] the disconnected Directed Circle in which player D stands alone, and [3] the Undirected

Circle to [8] the disconnected Undirected Circle, another comparison in which D can escape

any punishment. To examine the impact of networks being directed, we compare [2] the

Directed Circle to [3] the Undirected Circle, [5] the Prison Guard to [4] the Undirected Star,

and [7] the disconnected Directed Circle to [8] the disconnected Undirected Circle. The only

complication here is that the comparison of [5] to [4] might be confounded by the fact that

[5] is also disconnected while [4] is not.

Because degree is mostly a property of nodes (i.e., the number of out- and in-links), its

examination effectively coincides with and motivates our second question: does the behavior

at a node depend on the network in which it is embedded? In all networks any given agent

operates in a neighborhood defined by the number and directionality of the links connected

to his node in the network. This agent’s node can be embedded in many different networks,

however. Return to Figure 1, for example, and take player B in the Undirected Circle. This

player has two out-links and two in-links to agents A and C. This defines the degree of

his node. Now take the Disconnected Undirected Circle and look at player B there. That

player occupies exactly the same node as agent B in the Undirected Circle. In fact, players

A and C in both networks also occupy the same node as agent B in the Undirected Circle.
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What differs is the fact that these neighborhoods are embedded in different networks since

player D is isolated in the Disconnected Undirected Circle but connected symmetrically to

the network in the Undirected Circle. If networks matter then we would expect that the

behavior of subjects at identical nodes but different networks would differ. This would mean

that, when determining their behavior, subjects look beyond the narrow boundaries of their

local neighborhood and take into account the more global aspects of the network their node

is embedded in.

We proceed by systematically evaluating these four properties of network architecture.

Along the way we will use a combination of nonparametric rank sum tests (|z|) and propor-

tions tests (|r|). Where appropriate, we will also run parametric regressions that account for

individual heterogeneity (using random effects), learning (with period fixed effects) and add

the appropriate controls.

3.1 Completeness

Before examining the effect of completeness within our experiment, it is important to demon-

strate that there is nothing special about our procedures that could confound our results. In

other words, our results are more convincing if we can show that behavior in our complete

network is similar to what has been found in other experiments. Figure 1 is an effective sum-

mary of our results. Statistics for three metrics of group performance are reported directly

next to each network so that one can begin to map outcomes onto architecture. Average

contributions in Figure 1 are measured as a fraction of the total endowment. On average,

participants contributed 56% of their endowment in our complete network. This behav-

ior is similar to the “stranger” contribution levels found by Fehr and Gaechter (2000) and

Carpenter (2007) of 58% and 61%, respectively.

[Figure 2 here]

While the Complete network elicits contributions in line with other experiments it does

not yield the highest average contributions. Indeed, the Directed Circle generates the highest

average contribution of 60% of the endowment, a rate that is statistically greater than all

networks accept the Complete. The comparisons of our undirected connected networks [1] to

[3] and [4] are the most interesting, however, because the only difference is “completeness”.

Considering the summary statistics in Figure 1 and the direct comparisons in Figure 2(a), it

does not appear that the complete network robustly results in higher contributions. While

the mean contribution pooled across rounds is slightly higher in [1] it is not significantly

higher than [3] and only marginally significantly higher than [4] (|z| = 0.64, p = 0.52;

|z| = 1.99, p = 0.05, respectively). In fact, when we control for individual heterogeneity and
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repeated play in column (1) of Table 2 (in which [1] is the omitted network), we do not find

any significant differences in contributions.

[Table 2 here]

Figure 1 also lists the unconditional probability that a “target” who contributes nothing

will be punished in each of the networks. In the Complete network [1] total free-riders are

punished 48% of the time and this rate is only slightly lower in [3] (42%) or [4] (47%).

Proportions test suggest that these rates are not different (|r| = 0.47, p = 0.64; |r| = 0.18,

p = 0.86, respectively). While the incidence of punishment might not vary between [1] and [3]

or [4], the severity does. Summarizing punishment is tricky because punishment only makes

sense in the context of contributions. In Figure 2(b) we plot the estimated relationship

between a target’s contribution and how much the target was punished by an individual

for networks [1], [3], and [4]. As in Carpenter and Matthews (2009) we utilize a spline

specification to allow punishment to diminish more quickly above the implied contribution

norm. In this case the “knot” that maximizes the regression F statistic, and in this sense fits

the data best, occurs when 10 units are contributed - participants are punished increasingly

more below ten than above it. As one can see, punishment levels are much lower in the

Complete network. This finding is confirmed in column (4) of Table 2 in which we regress

positive punishment amounts on network indicators and find that the estimated punishments

in [3] and [4] are significantly larger than in the baseline [1].

There are two possible explanations for the punishment differences we see between the

Complete network and its closest comparisons. First, punishment levels might be lower in

complete networks because monitors are more inclined to free-ride on the punishment efforts

of the other players when they know that everyone is watching everyone else. However, this

does not "jibe" with the fact that the incidences of punishment do not seem to differ across

networks [1], [3], and [4]. Perhaps a better explanation is that monitors face a coordination

problem when there are many sets of eyes watching a target. Without directly communicating

to settle how much punishment should be levied and how it should be shared among the

monitors, everyone continues to punish but they are each forced estimate, on their own, how

much to reduce the severity of punishment to account for the actions of the other monitors.

Combined, relatively high contribution levels and low punishment expenditures make the

complete network one of the most efficient architectures. The mean pooled payoff (net of the

costs of being punished and punishing) in [1] is significantly higher than in [3] (|z| = 4.13,

p < 0.01) and marginally significantly higher than in [4] (|z| = 1.61, p = 0.10). These results

are mostly replicated in column (5) of Table 2 wherein individual random effects and time
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period fixed effects are controlled for. As one can see in Figure 2(c) the performance of the

Complete network tends to improve relative to [3] and [4] as the experiment proceeds.

In sum, the Complete network does not seem to be better at eliciting contributions but,

because its punishment levels tend to be lower, it does achieve higher than average efficiency.

3.2 Connectedness

To compare connected to disconnected networks, one can compare the left column of Figure

1 to the right column. The contribution differences are striking: there is no disconnected

network that yields higher mean pooled contributions than the lowest performing connected

network, the Undirected Star. However, to conduct our analysis systematically, remember

we need to compare [2] to [6], [2] to [7] and [3] to [8] directly which we do in panels (a-

c) of Figure 3. In each comparison, the connected graph yields significantly higher pooled

contributions (|z2−6| = 14.00, p < 0.01; |z2−7| = 7.31, p < 0.01; |z3−8| = 4.38, p < 0.01)

and these results are mostly robust to an analysis that controls for individual heterogeneity

and repeated game effects. If one compares the point estimates in column (1) of Table 2 we

find that the coefficient on [2] is higher than [6] (p < 0.01), [2] is higher than [7] (p < 0.01)

but while the difference between the point estimates on [3] and [8] goes in the anticipated

direction, it is not significant at standard levels (p = 0.23).

[Figure 3 here]

Although the evidence is mixed, connected networks also appear to elicit at least as

much punishment, both in terms of the incidence and the level. Figure 1 suggests that

the probability of punishing a complete free-rider is higher in [2] than in [6] (|r| = 3.49,

p < 0.01), higher in [3] than in [8] (|r| = 4.38, p < 0.01) and no lower in [2] than in

[7] (|r| = 1.10, p = 0.27). The full punishment splines, panels (a-c) of Figure 4, which are

based on an analysis of all the punishment data (i.e., they include the zeros) seem to indicate

that there is more punishment in connected networks. However, considering only the positive

observations in column (4) of Table 2 the differences do not appear to be robustly significant.

[Figure 4 here]

There also appears to be mixed evidence of an efficiency advantage in connected networks.

While Figure 1 indicates that [2] yields higher mean payoffs than [6] or [7] (|z| = 5.20,

p < 0.01; |z| = 2.49, p < 0.01, respectively), the payoffs in [8] actually tend to be higher

than in [3] (|z| = 1.81, p = 0.07). looking at the difference in mean payoff over the 15

rounds of the game in Figure 5(a-c), we see little evidence of differences, results which are

10



substantiated by comparing the coefficients in column (5) of Table 2. Here only the [2]-[6]

payoff difference is significant.

To summarize, although it is clear that connected networks tend to achieve higher contri-

bution levels, connectedness does not necessarily lead to more punishment or higher average

efficiency.

[Figure 5 here]

3.3 Directedness

Directed links occur when one person can monitor another. Links become undirected when

both people can monitor each other. By comparing [2] to [3], [5] to [4] and [7] to [8] we can

examine the effect of monitoring being one-way or mutual. The role of directedness seems to

depend, more than connectedness, on the basic architecture of the network. While studying

Figures 1 and 3(d-f) one can see that in the connected setting the directed [2] elicits higher

average contributions than the undirected [3] (|z| = 2.20, p = 0.03) and the undirected [4]

and [8] yield higher contributions in the star structure [5] and when one group member is

isolated [7] (|z| = 11.13, p < 0.01; |z| = 3.76, p < 0.01, respectively). Only the [5] versus

[4] difference remains significant (p < 0.01), however, when, in column (1) of Table 2, we

include individual random effects and time period fixed effects.

Comparing the probabilities of punishing a total free-rider in Figure 1 and the punish-

ment splines in Figure 4(d-f) we also find that the effect of directedness on punishment is

architecture-dependent. Because [2] yields the highest likelihood of a total free-rider being

punished, it is clearly higher than [3]. However, the difference is not quite statistically sig-

nificant (|r| = 1.39, p = 0.16) because there are very few observations of total free-riding in

these two networks. The effect of directedness reverses in this domain as well (i.e., free-riders

are more likely to be punished in the undirected network) when one compares [5] and [4] but

does not achieve statistical significance (|r| = 1.52, p = 0.13). As one can seen in Figures 1

and 4(f), there is a large difference in the chances of a total free-rider being punished in the

disconnected circles. Here the directed graph yields both a higher instance of punishment

(|r| = 3.38, p < 0.01) and, according to the comparison of point estimates from column (4)

of Table 2, a significantly higher level of punishment (p < 0.01).

The marginally significant contribution and punishment differences between the directed

and undirected networks combine to provide significant payoff differences. Although not

obvious from Figures 5(d-f), the directed [2] results in higher average payoffs than the undi-

rected [3] (|z| = 2.06, p = 0.04), the undirected [4] yields higher payoffs than the directed

[5] (|z| = 7.00, p < 0.01) and the undirected [8] yields higher payoffs than the directed [7]
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(|z| = 3.38, p < 0.01). Except for the comparison between [2] and [3], these payoff differences

remain significant in column (5) of Table 2.

More than both completeness and connectedness, the effect of directedness seems to

depend on the basic structure of the network. When the underlying network is connected,

there is some evidence that directed links lead to more cooperation, punishment and higher

payoffs. When the underlying structure is star-shaped, having a disconnected “prison guard”

is particularly bad for contributions and payoffs. Lastly, when both underlying networks

include a completely disconnected agent we find the opposite of the connected case: directed

links in this structure lead to much more punishment but not more cooperation or higher

payoffs.

3.4 Degree

Recall that degree is mostly a nodal property and while our experiment was not designed to

systematically add or remove links (mostly because this would confound comparisons of the

other properties) we can now use the concept to transition from an analysis of the overall

performance of a network to analyzing the effect of broader network structures on the behav-

ior of agents who occupy nodes of common degree, i.e., local “neighborhoods”. We return

to an examination of the effects of the total number of links, per se, in the discussion. The

question then is do networks have an impact on the contribution and punishment behavior of

participants inhabiting identical nodes? The answer is that when the underlying structures

change significantly they clearly do.

Since nodes can be defined by the number of out- and in-links facing an agent, we can

index them as Nn,o,i , n = 1, 2, ...., 8, o = 0, 1, 2, 3 and i = 0, 1, 2, 3 where Nn,o,i indicates a

subject in network n who has o out-links and i in-links. For example, N6,1,1 is the neigh-

borhood of subjects B and C in network [6] (the Line) since each of them have 1 out- and

1 in-link. Note that players A, B, C, and D in network [2] also have 1 out- and 1 in-link

(they are all defined as N2,1,1 ) so they also share the same node as subjects B and C in

network [6] but they are in different networks. For notational convenience, we simply leave

n unspecified when we consider nodes outside the context of their networks. For example,

Nn,1,1 denotes the generic 1 out- 1 in-link node. Table 3 catalogues the nodes that exist in

our experiments, the networks they are part of and the subjects types that inhabit them.

[Table 3 here]

By design, most nodes exist in several networks; however, some nodes are rare and have

only one representative as, for example, Nn,3,0 whose only inhabitant is subject A in the

Prison Guard [5]. The most frequent node is Nn,1,1 since it occurs in four networks: [2], [4],
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[6], and [7]. Other flexible neighborhoods are Nn,3,3 in networks [1] and [4], Nn,2,2 in both

networks [3] and [8], the Nn,0,0 isolated subjects in networks [7] and [8], and Nn,0,1 existing

in networks [5] and [6]. Any other nodes exist in only one network and hence will not be

discussed.

As catalogued in Table 3, five of the seven nodes we study exist in more than one network.

Differences in the behavior and outcomes of agents who occupy the same node in different

networks are depicted in Figure 6. To test for differences in nodal outcomes by network

we use nonparametirc tests and regress contributions, positive instances of punishment, and

payoffs on node indicators in columns (1-3) of Table 4.

[Figure 6 here]

Let us first discuss the Nn,3,3 neighborhoods. Because neither the summary test (|z| =

0.43, p = 0.67) indicates a difference nor are the point estimates different (p = 0.98) in

the first column of Table 4, contributions do not seem to differ for Nn,3,3 players who find

themselves in [1] or [4]. However, the Nn,3,3 players who find themselves at the center of

the star in [4] do punish more according to the results in the second column of Table 4

(p = 0.05) and as a result accrue lower payoffs (p = 0.01) than the players in [1]. Clearly,

the punishment responsibilities are more salient to the player at the star’s center. In this

sense the structure changes significantly between N1,3,3 and N4,3,3.

[Table 4 here]

The Nn,2,2 node exists in networks [3] and [8]. The difference between these networks

is that one player is completely disconnected in [8] and all players are connected in [3].

Figure 6(b) and the summary tests suggest differences in contributions and punishment

between occupiers of the Nn,2,2 node in these two networks. Players in the connected network

contribute and punish more (|z| = 3.88, p < 0.01, |r| = 1.81, p = 0.07)3. However, in terms of

payoffs, the larger N3,2,2 contributions and punishments tend to “net out” out because there

is no evidence of payoff differences between the two Nn,2,2 nodes (|z| = 1.11, p = 0.27). These

results suggest that having someone completely disconnected from the monitoring network

affects the outcomes for the subset of connected nodes. In other words, the connected players

in [8] do not simply ignore player D. In fact, one could imagine that D becomes a scapegoat

because she does not have to fear punishment and therefore it would be easy for her to

free-ride. Ironically, Ds in [8] actually appear to play with considerable integrity because,

3While these differences survive the inclusion of period fixed effects in columns (1) and (2) of Table 4,
the relatively large rhos reported in Table 4 suggest that the substantial individual heterogeneity can reduce
their significance.

13



in fact, they contribute at levels comparable to the other three connected members of the

network (|z| = 0.86, p = 0.39).

We see the most variation in behavior among the Nn,1,1 nodes. The mean fraction con-

tributed of subjects in the neighborhoods of the Directed Circle (N2,1,1) was 0.60 while that

same node, when existing in either the Undirected Star (N4,1,1,), the Line (N6,1,1), or the

Disconnected Directed Circle (N7,1,1), led to contribution levels of just 0.49, 0.27, and 0.38

respectively. Using a Kruskal Wallis test we find a significant impact of network on nodal

performance at better than the 1% level (χ2 = 177.37, p < 0.01).4 In short, 1-out and 1-in

link nodes elicit high contributions when embedded in connected networks with the Directed

Circle [2] being the most hospitable network for such neighborhoods and the Line [6] being

the most inhospitable network.

The impact of network structure on nodal performance can also be seen in the punishment

behavior of Nn,1,1 participants since while the mean punishment sent by subjects in the N2,1,1

neighborhoods of [2] is 2.67 it is, 0.78, 1.10, and 2.26, respectively for the Undirected star

(N4,1,1), the Line (N6,1,1), and the disconnect Directed Circle (N7,1,1). Another Kruskall-

Wallis test indicates that these differences are significant (χ2 = 24.33, p < 0.01).5 Note

that while punishments are highest in the connected [2], they are lowest in [4] which is also

connected. This is not too surprising since in that network there are three subjects who have

the opportunity to punish the one subject in the center of the star and such a plethora of

punishers provides another coordination problem as to who will be responsible for punishing

the subject in the center of the star. Another factor that might account for the relatively

low punishment in [4] is the fact that Nn,1,1 players here have mutual links: not only can

they monitor and punish their neighbors, their neighbors can punish them. Occupiers of

the same node in [2], [6], and [7] punish one neighbor and are punished by another. Nn,1,1

monitors might show more restraint compared to the others just because they are afraid

of engaging in punishment feuds (Nikiforakis, 2008). It is also interesting that the mean

punishment levels do not differ much between [2] and [7], especially because the monitors in

[7] form their own 3-person version of [2]. Again, however, it appears that the existence of

a disconnected player (D) reduces contributions.

In terms of payoffs, theNn,1,1 node clearly does best in connected networks.6 If one were to

look for a common feature to explain this difference it might be that in disconnected networks

4If done pairwise, all the differences are significant using the nonparametric rank sum tests, and most of
them survive the addition of individual random effects and time period fixed effects in column (1) of Table
4.

5Here the N2,1,1 versus N7,1,1 and N4,1,1 versus N6,1,1 comparisons do not survive when the analysis is
done pairwise.

6While all the pairwise comparisons are significant using the nonparametric test, only the differences
between the connected and disconnected networks survive the analysis in column (3) of Table 4.
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like 6 and 7 there exists one person who is not monitored and cannot be punished. So

despite the fact that locally subjects in these nodes seem to be playing the same monitoring-

punishment game, globally they realize that there is one player that has no incentive to

contribute. In this sense, the broader network matters.

There are two remaining types of nodes to compare: the Nn,0,1 and the Nn,0,0. Because

they all involve agents who do not punish, the four instances of these nodes are combined

in Figure 6(d). The nonparametric test suggests that players B, C, and D contribute signif-

icantly more in [5] than players D do in [6] (|z| = 4.18, p < 0.01). This can be accounted for

by the higher incidence of punishment in [5]. The behavior of players D does not appear to

depend on being in network [7] or [8]. To some extent this result makes sense because while

[5] and [6] are very different architectures (i.e., the punishment responsibilities are consoli-

dated in [5]), there is no reason to believe ex ante that D’s experience should be different:

she is completely isolated in both networks and only receives feedback on the group mean

contribution.

The final aspect of nodal behavior that we can examine is the question of which links

matter the most for contributions. Is it in-links or out-links? As one might expect, in general

subjects who are not monitored contribute less than those who are and the more players are

monitored, the more they contribute. For example, in the Line subjects A (N6,1,0) cannot be

monitored but can monitor subjects B. Since N6,1,0 cannot be monitored we might expect

that she contributes very little, which in fact is true since these players contribute only 20% of

their endowments on average and this is the lowest mean contribution of any type. Regressing

contributions on the number of in-links, out-links and indicators for time periods supports

the fact that contributions are increasing in the number of in-links associated with a subject’s

neighborhood but rejects the hypothesis that out-links affect contributions (βin−link = 3.51,

p < 0.01). For example, compared to A in [6] who has one out-link, D in [7] is more isolated

- N7,0,0 can neither punish nor be punished and yet subjects in that position have a mean

contribution level of 0.37.

Networks do seem to matter because nodal behavior appears to be affected by significant

changes in the architecture. For example, When punishment responsibilities are consoli-

dated in player N4,3,3, she appears to “step up” and punish more compared to the N1,3,3

monitors. Further, there is some evidence that nodes placed in one-way monitoring rela-

tionships elicit more punishment than when the same node is placed in mutual monitoring

relationships.7 The simple explanation for this is that people want to avoid sparking feuds

with their neighbors. Lastly, we see that the existence of a completely disconnected player

7The incidence of punishing a total free-rider is significantly higher when the links are one-way (|r| = 2.53,
p = 0.01).
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can also significantly affect performance at other nodes in the network.

4 Discussion

In the previous section we examined each network property in detail, one at a time. However,

it might be helpful to combine the effects of all the properties in one summary analysis. Is

it the case that these properties provide the foundation for the successes and failures seen

in Figure 1? In Table 5 we regress our three measures of network performance on all four

factors. Recall that there can be only one complete network for any fixed group size so

“complete” is an indicator for network [1]. “connected” is an indicator that is one for the

networks on the left side of Figure 1 and it is zero for those on the right. Four of the eight

graphs (2, 5, 6, 7) are “directed” and we add an aggregate measure of “degree” by calculating

the total number of edges for each structure.

[Table 5 here]

Considering contributions in column one, when we control for the other properties it

appears that only one factor seems to matter: connected networks yield significantly more

contributions than disconnected networks. The effect is not only statistically significant, five

more tokens contributed in the connected networks out of a twenty-five token endowment is

substantial.

Two factors, Complete and Directed, affect the amount of punishment that is doled

out to targets. Together, these point estimates suggest an interesting interpretation. The

fact that complete networks, in which the policing of free riders is very decentralized yield

lower sanctions and directed networks in which it is the responsibility of just one person

to punish a free rider yield higher sanctions suggests that punishers face the coordination

problem mentioned above. Everyone agrees that free-riders should be punished, but without

communicating directly, it is hard to know how much to punish in decentralized networks

like the Complete [1].

When considering efficiency in column 3, it might be the case that punishment is too

severe in directed networks and a little punishment ambiguity helps payoffs in the Complete

network. When combined, all four properties significantly affect final net payoffs. Not

only do those in the Complete [1] do well and those in directed graphs suffer because of

differences in the amount of punishment, more links reduces payoffs perhaps because they

tend to be used too often to punish and connected graphs do better. The effect of connected

graphs is particularly interesting because it appears even after controlling for the punishment
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dynamics. In other words, part of the success of connected networks occurs for reasons

beyond their ability to distribute punishment.

Given the differences between networks opperate on the ability to monitor and punish

other players, it is important to examine the extent to which network differences in punish-

ment that arise can explain the differences that we see in contributions. Returning to the

contribution regression analysis in Table 3, in the second column we add the lag of received

punishment and the lag of contributions. We add the lag of contributions to control for level

differences: while free riders can increase their contributions substantially, high contributors

can only increase their contributions slightly regardless of how much punishment they re-

ceive. As expected, punishment is highly significant. For each (lab) dollar of punishment

the average player receives, she increases her contribution by twenty cents. As important,

however, is the fact that the addition of punishment has reduced, compared to column (1),

all the coefficients on the network indictors, some substantially. Clearly, a large part of the

variation previously attributed to the networks is really due to differences in the amount

of punishment generated by the different networks. In column (3) of Table 3 we examine

a robustness check on our punishment analysis. The model in column (2) assumes that

participants have a common response to punishment. In column 3 we add (unreported)

interactions that allow the response to punishment to vary by network. In addition to the

added interactions also not changing the results much, a chi-squared test of the joint signif-

icance of the interactions suggests that they add nothing to column 2 (χ2 = 2.85, p = 0.90)

and so assuming a common response to punishment seems reasonable. In short, although

some differences remain, a major reason for the differences seen in contributions across the

networks is that the some networks elicit a lot of punishment and others do not.8

[Figure 7 here]

We end our discussion by speculating, based on our results, about the “optimal” number

of links in the standard four-person public good game with punishment. If, in the end, we

are mostly concerned about the efficiency with which public goods are provided then we

have to look at payoffs net of the costs of punishing and being punished. If we estimate the

effect of the number of links on net payoffs we find that all three coefficients of a third order

polynomial specification are significant. The derivative of this function provides us with an

estimate of the marginal benefit of adding links to the monitoring network. The marginal

benefit is plotted in Figure 7. If adding links was free, as it was in the experiment, then the

8We also made sure that the mediation of the network affects on contributions by adding punishment is
not due to the fact that the data from all the participants who cannot be punished (e.g., player A in the
Prison Guard) are dropped in column 2. In another regression we replaced the missing punishment values
with zeros and see that the resulting point estimates are almost identical.
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marginal cost of a link is zero. The shape is interesting and informative. We see that the

marginal benefit actually becomes negative between five and nine links. In other words, it

makes sense to add links 1 through 4 or links 9 through 12 but adding links to networks that

have between 4 and 8 already seems to actually reduce average payoffs. The precision of

this estimate nicely summarizes the implications of our results. In three-link networks like

the Prison Guard [5] or the Line [6], the problem is straight-forward: there is not enough

monitoring, more links should be added. At the same time, networks like the Undirected

Circle [3] with eight links actually have the opposite problem. Here there is more punishment

than what can be supported by the level of contributions. Ironically, one way to reduce the

amount of punishment is to add more links because this will lower the responsibility of any

given monitor and this ambiguity seems to induce some monitors to reduce punishment to

a degree that ends up being closer to optimal.

5 Conclusions

Our experiment demonstrates that network architecture has a significant impact on the

behavior of agents in public goods games and, therefore, on the outcomes achieved in different

networks. While the major determinant of contribution levels appears to be whether or not

all the agents are connected, not all connected networks are equally efficient since they elicit

different punishment behavior. The Complete network, for example, yields high contribution

levels and high efficiencies both because and despite the fact that this architecture elicits less

punishment than other networks like the Directed Circle where punishment responsibilities

are not shared. In short, while the previous literature was correct in pointing out that

punishment may increase contributions, it filed to investigate the subtle relationship between

network structure and performance. This paper has taken a first step in that direction.
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6 Tables and Figures

Players Obs./Subjects

A,B,C,D 240/16

A,B,C,D 240/16

A,B,C,D 300/20

B,C,D 405/27

A 135/9

B,C,D 765/51

A 255/17

D 240/16

A 240/16

B,C 480/32

D 60/4

A,B,C 180/12

D 105/7

A,B,C 315/21

totals 3960/264

7

7

8

8

5

6

6

6

3

4

4

5

Table 1: Experimental Design

Network

1

2
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(1) (2) (3) (4) (5)

Dependent Variable Contribution Contribution Contribution Punishment Payoff

[2] Directed Circle 3.974 2.374 2.102 4.471*** -1.621

(3.396) (2.072) (2.095) (1.574) (1.382)

[3] Undirected Circle 0.301 -0.168 -0.268 2.811* -3.005**

(3.195) (1.946) (1.967) (1.557) (1.311)

[4] Undirected Star -1.673 -0.908 -1.108 3.069** -0.964

(2.868) (1.748) (1.767) (1.443) (1.174)

[5] Prison Guard -7.117*** -3.411** -3.716** 2.607* -3.307***

(2.656) (1.665) (1.687) (1.494) (1.086)

[6] Line -10.832*** -5.926*** -6.237*** 3.984*** -4.049***

(2.676) (1.701) (1.721) (1.425) (1.093)

[7] Disconnected Directed Circle -4.857 -2.383 -2.724 10.058*** -3.513***

(3.383) (2.224) (2.240) (1.977) (1.382)

[8] Disconnected Undirected Circle -3.022 -1.385 -1.740 3.187** -1.264

(2.987) (1.926) (1.943) (1.572) (1.225)

Lagged Punishment Received 0.214*** -0.003

(0.03) (0.25)

Lagged Contribution 0.530*** 0.530***

(0.03) (0.03)

Intercept 17.016*** 3.408** 3.702** 1.283 32.937***

(2.423) (1.546) (1.570) (1.254) (1.047)

Includes time period fixed effects Yes Yes Yes Yes Yes

Includes Punishment×Network interactions No No Yes No No

rho 0.68 0.49 0.49 0.41 0.24

Prob > Chi2 <0.01 <0.01 <0.01 <0.01 <0.01

Obs. 3960 3080 3080 886 3960

TABLE 2: Comparing Individual Behavior and Outcomes across Networks

Note: Random effect tobit with censoring at zero and full contributions or GLS regressions . *, **, *** indicates significance at 

the 10, 5 and 1 percent levels.
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Links Nodes (Players)

0 out | 0 in N 7,0,0  (D), N 8,0,0  (D)

0 out | 1 in N 5,0,1  (B,C,D), N 6,0,1  (D)

1 out | 0 in N 6,1,0  (A)

1 out | 1 in N 2,1,1  (A,B,C,D), N 4,1,1  (B,C,D), N 6,1,1  (B,C), N 7,1,1  (A,B,C)

2 out | 2 in N 3,2,2  (A,B,C,D), N 8,2,2  (A,B,C)

3 out | 0 in N 5,3,0  (A)

3 out | 3 in N 1,3,3  (A,B,C,D), N 4,3,3  (A,B,C,D)

TABLE 3: Nodes and Network Structures
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(1) (2) (3)

Dependent Variable Contribution Punishment Payoff

N 5,3,0 3.883 0.483 -0.668

(2.801) (1.685) (1.241)

N 1,3,3 13.399*** -2.124 1.988

(3.365) (1.815) (1.367)

N 4,3,3 13.514*** 1.295 -2.021

(3.941) (1.939) (1.611)

N 3,2,2 13.701*** 0.686 -1.017

(3.184) (1.743) (1.297)

N 8,2,2 10.796*** 1.063 0.055

(3.150) (1.754) (1.283)

N 2,1,1 17.360*** 2.345 0.367

(3.384) (1.757) (1.367)

N 4,1,1 11.131*** 0.695 2.043*

(3.002) (1.790) (1.220)

N 6,1,1 3.749 2.911* -3.004**

(2.921) (1.742) (1.184)

N 7,1,1 9.687*** 7.942*** -2.438*

(3.630) (2.130) (1.477)

N 5,0,1 7.070*** -1.536

(2.668) (1.094)

N 6,0,1 2.803 -2.237*

(3.393) (1.367)

N 7,0,0 5.002 1.276

(5.377) (2.162)

N 8,0,0 9.126** 2.728

(4.288) (1.752)

Intercept 3.611 3.382** 30.947***

(2.422) (1.476) (1.038)

Includes time period fixed effects Yes Yes Yes

rho 0.68 0.41 0.23

Prob > Chi2 <0.01 <0.01 <0.01

Obs. 3960 886 3960

TABLE 4: Comparing Individual Behavior and Outcomes across Nodes

Note: N 6,1,0  is the baseline. Random effect tobit regressions with censoring at zero and full 

contributions or GLS. *, **, *** indicates significance at the 10, 5 and 1 percent levels.
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Contributions Punishment Efficiency

Complete -8.042 -2.811* 6.050**

(7.626) (1.487) (3.099)

Connected 5.336*** 0.565 1.398*

(2.055) (0.427) (0.832)

Directed 2.267 2.143*** -4.145**

(4.267) (0.848) (1.733)

Degree (total) 1.435 0.379 -0.899*

(1.357) (0.266) (0.552)

rho 0.698 0.288 0.247

Prob > Chi
2

<0.01 0.10 <0.01

Obs. 3960 4647 3960

TABLE 5: The Effect of Network Properties

Note: Each regression includes time period fixed effects and 

individual random effects. Two-limit Tobits are used for 

contributions and GLS is used for punishment and efficiency. 

Significance levels are indicated by *** (1%), ** (5%) and * 

(10%).
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CONNECTED DISCONNECTED

(1) COMPLETE (5) PRISON GUARD

   Fraction(Contributed): 0.56    Fraction(Contributed): 0.33

   Pr(punish 0-contributor): 0.48    Pr(punish 0-contributor): 0.37

   Mean Payoff: 31.64    Mean Payoff: 28.33

(2) DIRECTED CIRCLE (6) LINE

   Fraction(Contributed): 0.60    Fraction(Contributed): 0.25

   Pr(punish 0-contributor): 0.69    Pr(punish 0-contributor): 0.25

   Mean Payoff: 30.02    Mean Payoff: 27.59

(3) UNDIRECTED CIRCLE (7) (disconnected) DIRECTED CIRCLE

   Fraction(Contributed): 0.55    Fraction(Contributed): 0.38

   Pr(punish 0-contributor): 0.42    Pr(punish 0-contributor): 0.51

   Mean Payoff: 28.63    Mean Payoff: 28.14

(4) UNDIRECTED STAR (8) (disconnected) UNDIRECTED CIRCLE

   Fraction(Contributed): 0.51    Fraction(Contributed): 0.45

   Pr(punish 0-contributor): 0.47    Pr(punish 0-contributor): 0.18

   Mean Payoff: 30.68    Mean Payoff: 30.37

FIGURE 1: Network Architecture and Summary Statistics
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Figure 2. Comparing complete and incomplete networks.
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Figure 3. Comparing contributions: Panel (a)-(c) connected versus unconnected net-

works. Panels (d)-(f) directed versus indirected networks.
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Figure 4. Comparing punishment given (estimated punishment splines): Panel (a)-(c)

connected versus unconnected networks. Panels (d)-(f) directed versus indirected networks.
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Figure 5. Comparing efficiencies: Panel (a)-(c) connected versus unconnected networks.

Panels (d)-(f) directed versus indirected networks.
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Figure 7. The estimated marginal benefit of adding punishment links.
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7 Appendix - Instructions for the Complete Network

Introduction

This is an experiment in the economics of decision-making in networks. A research foundation

has provided funds for this research. Your earnings will depend partly on your decisions

and partly on the decisions of the other participants in the experiment. If you follow the

instructions and make decisions carefully, you may earn a considerable amount of money.

At this point, take a minute to write down the number of the computer you are using

(it appears on the top of the monitor). At the end of the experiment, you should use your

computer number to claim your earnings. At this time, you will receive $5 as a participation

fee (simply for showing up on time).

During the experiment your payoff will be denominated in experimental tokens that will

be converted into dollars at the end of the experiment at the following rate: 25 Tokens = 1

Dollar.

The Experiment

In this experiment, you will participate in 15 independent and identical (of the same form)

periods each divided into two decision-stages. In each period, you will be assigned to a

position in a four-person network. You will only be able to observe the choices of the other

participants to whom you are connected in this network.

Before the first period, you will be randomly assigned to one of the network positions

labeled A, B, C, or D. A fourth of the participants in the room will be designated as type-A

participants, one fourth as type-B participants, one fourth as type-C participants and one

fourth as type-D participants.

Your type depends solely upon chance and will remain constant throughout the experi-

ment. When you are asked to make your first decision you will be informed of your type on

the left hand side of the dialog window (see attachment 1). The network is given to you in

the window that appears to the right of it and is illustrated in the scheme below.

A B 

C D 
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A line segment between any two types indicates that they are connected and the arrow-

head points to the participant whose action can be observed. A two-way arrowhead indicates

that both connected participants can observe the actions of the other. For example, the two-

way arrowhead between subjects A and D indicates that each can observe the actions of the

other. In the network used in this experiment each type can observe the choices of all the

other types.

Each period of the experiment consists of two stages. In the first stage, you will decide

how many tokens you want to allocate in each of two accounts. One account is a private

account which only you benefit from, and the other is a public account which benefits all

four participants in your group equally.

In the second stage of the period, you will observe the choices at the first stage of the

participants to whom you are connected by the network. You can then decide whether and

by how much to reduce their earnings from the first stage.

Next, we will describe in detail the process that will be repeated in all 15 periods.

Stage One

Each period starts by having the computer randomly form four-person networks by selecting

one participant of type-A, one of type-B, one of type-C and one of type-D. The networks

formed in each period depend solely upon chance and are independent of the networks formed

in any of the other periods.

That is, in any network each participant of type-A is equally likely to be chosen for that

network, and similarly with participants of type-B, type-C and type-D. This is done by the

computer. Hence, if there are 20 participants in the experiment the computer will randomly

form five groups of four participants in each period.

At the beginning of each period each participant receives an endowment of 25 tokens.

Your task is to decide how to use your endowment. You have to decide how many of the 25

tokens you want to allocate to the public account and how many to your private account.

Your earning in the first stage will be determined by how many tokens you allocate to the

private and public accounts and total number of tokens the other participants in your group

allocate to the public account.

To make your allocation decision use the mouse to click on either the Private or Public

input fields on the lower left hand corner of the dialog window (see attachment 1) and use

the keyboard to fill the number (no decimals) of tokens between 0 and 25 that you wish to

allocate to that account. Note that any of the 25 tokens not assigned to one account will

automatically be allocated to the other. After that, confirm your decision by clicking on the

Submit button. Once you have done this, your decision cannot be revised. This completes

the first stage in the period.
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Your earnings at the first stage are composed to two parts:

(1) Your earnings from your private account simply equal the tokens in your private

account.

(2) Your earnings from the public account are the total tokens allocated by all the

participants in your group (including yourself) to the public account times 0.4.

Your earnings are given to you on the right hand side of the dialog window (see attachment

1).

Your total earnings in the first stage can therefore be summarized by (tokens in private

account)+0.4×(group total tokens in public account).

The earnings of each participant in your group are calculated in the same way. Therefore,

each participant receives the same amount from the public account.

For example, suppose that the total tokens allocated by all the participants in your group

to the public account is 60. Then, each participant in the group receives 0.4×60=24 tokens

from the public account. If you allocated 10 tokens to the public account then your final

payoff would be (25-10)+(0.4×60) = 15+24 or 39 tokens.

Similarly, if the total tokens allocated by all the participants in your group to the public

account is 20 then each participant in the group receives 0.4×20=8 tokens from the public

account. If you allocated 10 tokens to the public account your final payoff would be (25-

10)+(0.4×20) = 15+8 = 23 tokens.

For each token you allocate to your private account you earn one token. If instead you

allocate this token to the public account the group total would rise by one token. The

earnings of all participants in your group, including yourself, from the public account would

rise by 0.4×1=0.4 tokens each. Thus, the total earnings of the participants in your group

would rise by 1.6 tokens. Also remember that you earn 0.4 tokens for each token allocated

to the public account by any of the other participants in your group.

Stage Two

When everyone in your group has made a decision in the first stage, you will observe the

choices of the participants to whom you are connected by the network. For example, if you

are a type-A participant, you will be informed what allocation the type-B, type-C, and the

type-D participants have chosen.

You will observe how many tokens each participant with whom you are connected by the

network allocated to both his or her private and public accounts. This information is given

to you in the large window that appears at the top of the dialog window (see attachment 2).

Each of the other participants will also observe the choices of the participants to whom he

or she is connected by the network. In addition, all participants will be informed about the

total number of tokens allocated by all the participants in your group (including yourself)
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to the public account. This information is given to you right below the large window that

appears at the top of the dialog window (see attachment 2).

At this stage, you have to decide if and by how much you wish to reduce the earnings

from the first period of each of the other participants with whom you are connected by the

network. At the same time each of the other participants will decide if and by how much he

or she wishes to reduce the earnings from the first period of each of the other participants

with whom he or she is connected by the network.

When you are ready to make your decision, use the mouse to choose the type of participant

in the stage two window (see attachment 2) and use the keyboard to fill the number of tokens

(no decimals) you wish to reduce from that participant’s earnings into the input-text box

that appears to the right of the participant’s type. After that, confirm your decision by

clicking on the Set button.

You must decide by how much you wish to reduce the earnings of each of the other

participants with whom you are connected by the network by filling a number of tokens for

each of them. If you do not wish to reduce the earnings of another participant you must

enter 0.

Reducing the earnings of other participants is costly. The cost of reducing one token

from any of the other participants is 1/2 token. Each participant can spend up to his or her

first stage earnings on reducing the earnings of the other participants with whom he or she

is connected by the network. To keep track of both your current period earnings and your

accumulated earnings from each o the previous periods, there is a text box near the bottom

of the screen (see attachment 2).

After you have entered the amount that you wish to reduce the earnings of each of the

other participants to whom you are connected by the network, confirm your decisions by

clicking on the Submit button (see attachment 2). Once you have done this, your decisions

cannot be revised. This completes the second stage in this period.

When a period ends, the computer will inform all participants of their total earnings,

earnings from private account, earnings from public account, total tokens spent on reducing

others’ earnings, and total tokens reduced by other participants (see attachment 3). After

letting you observe the results, the next period will start by having the computer randomly

forming new groups of participants in networks.

Earnings

Your final earnings at the end of each period are determined as follows:

Stage one earnings (your private account balance + your share of the group account).

Minus: the reductions directed at you.

Minus: your expenditure on the reductions directed at other participants.
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Because this sum can be negative, if your expenditures on reductions and the reductions

directed at you are greater than your token earnings from the first stage, we will truncate

your earnings at zero. Thus, your earnings from the first stage can be reduced at the second

stage to zero but total earnings for the period cannot be negative.

The process will be repeated until all the 15 periods are completed. At the end of the

last period, you will be informed the session has ended. Your final earnings will be the sum

of your earnings over the 15 periods.

Rules

Please do not talk with anyone during the experiment. We ask everyone to remain silent

until the end of the last period and then wait for further instructions.

Your participation in the experiment and any information about your earnings will be

kept strictly confidential. Your payments receipt and participant form are the only places in

which your name and social security number are recorded.

If there are no further questions, you are ready to start. An instructor will approach your

desk and activate your program.

Attachment 1
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Attachment 2

Attachment 3
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