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ABSTRACT 
 

Testing the ‘Brain Gain’ Hypothesis: 
Micro Evidence from Cape Verde* 

 
Does emigration really drain human capital accumulation in origin countries? This paper 
explores a unique household survey purposely designed and conducted to answer this 
research question. We analyze the case of Cape Verde, a country with allegedly the highest 
‘brain drain’ in Africa, despite a marked record of income and human capital growth in recent 
decades. Our micro data enables us to propose the first explicit test of ‘brain gain’ arguments 
according to which the prospects of own future migration can positively impact educational 
attainment. According to our results, a 10pp increase in the probability of own future 
migration may improve the average probability of completing intermediate secondary 
schooling by 8pp for individuals who do not migrate before age 16. Strikingly, this same 10pp 
increase may raise the probability of completing intermediate secondary schooling by 11pp 
for an individual whose parents were both non migrants when the educational decision was 
made. Our findings are robust to the choice of instruments and econometric model. Overall, 
we find that there may be substantial human capital gains from lowering migration barriers. 
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1. Introduction 

The last decades witnessed striking growth in international migration flows.
1
 In particular, the 

international movement of the highly educated experienced an impressive surge: according to Beine et 

al. (2008), from 1990 to 2000, there was a 63.7% increase in the number of highly-skilled immigrants 

residing in OECD countries (to a stock of 20 million), whereas the number of unskilled immigrants had 

only increased by 14.4% in the same ten years. This extraordinary trend has brought renewed interest 

and significance to the old ‘brain drain’ debate.  

Concerns about ‘brain drain’ were introduced in the late 1960s and 1970s, and soon became well rooted 

in the economics literature.
2
 ‘Brain drain’ became a general label for the depressing effects arising from 

the loss of the most skilled national citizens in a country. In the 1990s, however, a new strand of 

theoretical literature proposed the ‘brain gain’ hypothesis: according to this proposition, it is possible 

that the outflow of educated migrants (and the possibility of own future migration in particular) can lead 

to a net increase in the origin country’s stock of human capital.
3
 

Despite the existing abundant theoretical literature on the ‘brain drain’ theme, the empirical literature 

has lagged until recently. This is due, at least partly, to data unavailability on the skill content of 

migration flows. Indeed, the dataset assembled by Docquier and Marfouk (2006) opened an avenue of 

renewed interest in the theme, prompting new research to verify and qualify the brain gain hypothesis 

across countries and over time (notably, Faini, 2006; Ozden and Schiff, 2006; and Beine et al. 2007, 

2008). In our opinion, what remains to be done in this literature is, importantly, testing this hypothesis at 

the micro level - i.e. to examine explicitly whether the probability of own, future migration improves 

individual educational attainment. This is precisely the purpose of our paper. 

In order to answer our research question, we make use of a new dataset: a tailored household survey 

conducted by the authors in Cape Verde in 2006. Cape Verde is a very interesting country for our 

purposes as it displays the highest ‘brain drain’ rate in the African continent,
4
 and yet also presents a fast 

                                                      

 

1 Chiswick and Hatton (2003) offer a detailed description of this historical evolution and underlying mechanisms. 
2 Scott and Gruber (1966) and Bhagwati and Hamada (1974) were the main proponents for the ‘brain drain’ theories. The ‘brain 

drain’ effects presumably include the disappearance of a critical mass in production, research, public services (notably health 

and education) and political institutions, which could potentially be magnified by positive human capital externalities, or 

complementarities with factors of production or total factor productivity. In addition, massive emigration of the most educated 

could entail fiscal losses due to foregone revenues from public education of those who emigrate. 
3 This theory was put forward by Mountford (1997), Stark et al. (1997, 1998) and Vidal (1998). It proposed that a ‘brain gain’ 

could happen if expected returns to education increased when emigrating (as would be the case if host countries have higher 

returns to education than origin countries) and enough skilled individuals eventually decided not to emigrate. 
4 Our source is Docquier and Marfouk (2006), who report the ‘brain drain’ rate to be 67.5%. ‘Brain drain’ is defined as the 

fraction of highly educated Cape Verdean nationals who reside abroad. 
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growing stock of human capital, at least since 1990.
5
 These are apparently contradictory facts under the 

light of traditional ‘brain drain’ theories, which point to the possibility of a ‘brain gain’ in this instance. 

In our empirical analysis, we are able to estimate the effect of the own future migration probability on 

education decisions because our data include the full histories of all household members, including those 

of current migrants, for whom we know characteristics at the time educational choices were made. In 

doing so, we assume that individuals who reside in Cape Verde decide around age 12 whether to 

complete a non-compulsory intermediate level of secondary schooling. At that point in time, they have 

certain information about their prospects of future emigration - which may or not happen in the future. 

In our regressions, our individual unit of observation are dependents aged between 16 and 30 years of 

age, who never emigrated before age 16 - thereby ensuring that their decision to complete schooling or 

not is made before migration. For this subset, we examine the educational impact of the own probability 

of future migration, which corresponds to testing the original ‘brain gain’ hypothesis. Our baseline 

results point to a 10pp increase in the probability of own future migration improving the average 

probability of completing intermediate secondary school by around 8pp. If we focus on those 

dependents whose parents were both non-migrants when educational decisions are made, this effect 

increases to 11pp. These results are robust to the choice of instruments and econometric model. 

In order to give precise meaning to our econometric estimates, we use a simultaneous equation model of 

migration and education decisions to simulate the behavior of an economy hit by changes in migration 

barriers - e.g. intensified immigration restrictions in destination countries. In particular, we are able to 

measure the effects of this counterfactual exercise on migration decisions and on the educational 

attainment of both non-migrants and of migrants – for which purpose we complement our survey data 

with information from censuses of the main international destinations of Cape Verdean emigrants. Our 

results show that a rise in migration barriers has non-linear effects (the elasticity of educational 

responses to changes in migration seems to increase with the size of the shock) with differential impact 

on migrants and non-migrants. For instance, a shock decreasing migration by 9pp, reduces the 

educational attainment of non-migrants by 7pp (implying an elasticity of 0.21), and that of migrants by 

only 2pp (implying an elasticity of 0.06). This evidence supports the importance of the ‘brain gain’ 

mechanism, even after we account for the educational upgrade by early migrants who may return when 

migration policies are made more restrictive. 

Our work is related to two main strands in the migration literature. The first is the previously mentioned, 

cross-country empirical work on the ‘brain gain’ hypothesis as defined at a macro level.
6
 This approach 

                                                      

 

5 Batista et al. (2007) show that, over the period 1990-2005, the stock of human capital in Cape Verde grew at an annual rate of 

3.5%. In addition, according to their growth accounting results, human capital accumulation is the aggregate input that accounts 

for most of the excellent growth performance of the Cape Verdean economy over those 15 years. 
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has the advantage of distinguishing between countries that are more or less affected by ‘brain gain’ – 

indeed, only in poorer countries with sufficiently low emigration rates does human capital accumulation 

seem to benefit from skilled emigration. However, the simplistic definition of ‘brain gain’ at the macro 

level (as a country’s native tertiary schooling growth due to migration of skilled workers) misses 

potentially important individual heterogeneity and is, by design, incapable of identifying the channels 

through which these positive effects work. Our study overcomes these limitations by using micro data 

from our tailored household survey, which enables us to explicitly test and find supportive evidence to 

the own probability of future migration channel  - i.e. the original ‘brain gain’ hypothesis.  

This paper is also related to microeconometric work on the effects of having a migrant in the household 

on the educational attainment of Mexican children, as in Hanson and Woodruff (2002) and McKenzie 

and Rapoport (2006). Unlike these studies, we model the simultaneous decisions of educational 

attainment and own migration, which allows us to test explicitly for the original ‘brain gain’ hypothesis. 

In Hanson and Woodruff (2002) and McKenzie and Rapoport (2006) it is not that clear which 

mechanism is underlying the positive correlation between parental emigration and children’s education. 

The remainder of the paper is organized as follows. In the next section, we begin by presenting a brief 

overview of Cape Verde. We then proceed, in section 3, by presenting our data sources, namely the 

household survey we use in our empirical work, including descriptive statistics, and our estimates for 

‘brain drain’ in Cape Verde. In section 4, we present the econometric model and identification strategy. 

In section 5, the main ‘brain gain’ positive empirical findings are presented and discussed, along with 

robustness checks. In the following section, counterfactual scenarios are computed under which barriers 

to migration are increased, and the effects on migration and education are discussed. Section 6 

empirically examines briefly the possible reasons why a higher likelihood to emigrate may promote 

increased educational attainment. Finally, section 7 summarizes our findings and presents policy 

implications. 

2. Cape Verde: a short introduction to the country  

Cape Verde is a nine-island country with 441,000 inhabitants, according to the 2000 census. It became 

independent from Portugal in 1975 and has been a stable democracy since 1991. The country is 

currently ranked by the World Bank as a “Lower Middle-Income” economy, and had a GDP per capita 

of 5900 PPP-Adjusted Dollars in 2003, according to Heston et al. (2006). 

                                                                                                                                                                     

 

6 Notably, Faini (2006) and Beine et al. (2007, 2008). 
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Cape Verdean economic growth clearly exceeded the Sub-Saharan African average of 0.6% GDP per 

capita growth over 1980-2004 (again according to Heston et al., 2006). Indeed, it was the third fastest 

country in terms of per capita growth out of the 45 sub-Saharan countries in Heston et al. (2006), after 

Equatorial Guinea (11% average annual growth rate) and Botswana (5%). These countries are both rich 

in natural resources and exports account for a large fraction of their GDP (47% and 55%, respectively). 

Unlike them, Cape Verde stands out growing at an average annual rate of 4.4% (4.1% over 1981-1990, 

5.8% over 1991-2000) but with exports accounting for only 20% of its GDP and no natural resource 

abundance - rather the opposite, as droughts and famines were recurrent in the country’s history. 

Droughts and famines indeed prompted the massive emigration phenomenon that has characterized this 

country for many decades. According to our calculations,
7
 there are more than 100.000 Cape Verdean 

currently residing abroad, or about 19% of all nationals. Docquier and Marfouk (2006) estimate the 

percentage of the highly educated labor force of Cape Verde living abroad at 67.5% - the largest such 

number in the African continent. In addition, the magnitude of international remittances received in 

Cape Verde is impressive: as shown in Figure 1, these flows account for 16% of GDP on average over 

1987-2003 (according to the World Bank, 2006b). Moreover, we should note that these are official 

numbers, likely underestimated as they do not include informal channels. These figures are again the 

largest in sub-Saharan Africa and translate the especially important role of remittances for the country, 

particularly given the relative magnitude when compared to aid and foreign direct investment inflows. 

A final note is deserved to the educational system in Cape Verde, which potentially provides the supply 

side restriction to our question of interest. This system functions remarkably well, particularly for sub-

Saharan African standards, at least before the university level. Primary (six compulsory years of 

schooling) and secondary schooling (six further years grouped in three levels) are widely available at the 

local level (there is at least one secondary school per municipality, even more so at the primary level). 

Higher education institutions only started working in the country in 1995 and are located in the capital 

island. The following diagram illustrates the age of a child when the household decides whether to keep 

her in school or not. 

                                                      

 

7 To compute the number of Cape Verdean living abroad we sum the number of Cape Verdean in the censuses of the main 

destination countries for which we have available data (Portugal, United States, France, Netherlands, Luxembourg, Italy and 

Spain), and divide it by 0.92 (emigrants to these destination countries represent, according to our survey, 92% of all emigrants 

from Cape Verde in the last five years). 
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3. Data description 

Data sources 

Our empirical work is mainly based upon a household survey on migration and the quality of public 

services designed to answer our research questions. The survey was conducted in Cape Verde from 

December 2005 to March 2006 by the CSAE at the University of Oxford. It was based on a 

representative sample of 1066 resident households (including both non-migrants and return migrants), 

and also provides information on a large sample of current emigrants. The questionnaire included two 

modules: one on perceived quality/corruption of public services; and the other on migration 

characteristics of the household. The household respondent (someone aged at least 30 years old) was 

asked to specify socio-demographic characteristics of all members of the household, including children 

who already live elsewhere. Moreover, he was asked to characterize all migration spells within the 

household, including who emigrated, where and when. Finally, there were some questions regarding the 

economic situation of the household such as living standards, income or whether any member of the 

family received remittances in the previous year. More information regarding the survey can be found in 

Appendix A. 

As detailed in the following sections, we complement our dataset with several secondary data sources. 

In particular, we make use of the Cape Verde Census (INE 2002); the Income and Expenditure 

Household Survey (INE 2004), designed and conducted by the Cape Verde National Statistics Office 

(INE) in 2001-2002 under the sponsorship of the World Bank; and several censuses from the main 

destination countries to Cape Verdean migrants, available from Ruggles et al. (2004). 

General descriptive statistics 

In this section we briefly characterize the information from our household survey, emphasizing the 

comparability of our data with those of other sources. 

Our survey seems to accurately depict the migration reality in Cape Verde except for the fact that it 

misses a particular type of emigrants: those who did not leave family behind. In order to correct for the 

potential selection bias induced by this limitation, we use census data characterizing Cape Verdean 

Pre-Primary Primary (1-6) 

Secondary (7-12) 

1st cycle  

(7-8) Tertiary 

3 6 12 16 18 14 

2nd cycle  

(9-10) 

Pre-university  

(11-12) 

Age  
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immigrants in the main destination countries.
8
 This information allows us not only to estimate the stock 

of emigrants abroad, but also to examine observable characteristics of emigrants, such as gender, age 

and education.  

As can be observed from Table 1, the figures for migration flows for the period 2000-2005 in our survey 

are relatively close to those presented in the INE (2002) census for the period 1995-2000. Table 2 

displays the main destinations for Cape Verdean emigrants. According to both our survey and the INE 

(2002) census, Portugal and the USA account for respectively about 55% and 20% of the total 

emigration flows.  

Table 3 compares information from IPUMS (Ruggles et al., 2004) on the number, gender and age of 

Cape Verdean that reside in France, Netherlands, Luxembourg, Italy and Spain, with the same 

information for those who reside in Portugal and the USA.
9
 It is evident that the stock of emigrants 

abroad coming out of the survey is smaller than our estimates based on the censuses of the main 

international destinations.
 
This mismatch reflects the fact that several whole and reunited families reside 

abroad. These families cannot, by design, be included in our sample, contrary to what happens in the 

censuses of the foreign countries where they live. The results show that there are minor gender 

differences, but that the age profile of emigrants to all destinations is remarkably similar. As could be 

expected, and still according to Table 3, the age profile of emigrants in our survey and that coming from 

the censuses is similar, except for the fact that our survey tends to exaggerate the fraction of individuals 

aged 21-30 years old, which are likely to be emigrants leaving their (interviewed) families behind. 

Conversely, children aged 10 years old or less, who likely emigrated with their whole families, are 

under-represented in our survey. Also unsurprisingly, the results in Table 3 show that, relative to 

residents in Cape Verde, emigrants tend to be slightly disproportionately males and in their prime-

working years. Return migrants are strongly disproportionately males and aged more than 50 years old. 

Traditional measures of ‘brain drain’ 

We now turn to characterizing the educational attainment of Cape Verdean emigrants relative to 

residents in the country. This is directly related to conventional narrow measures of ‘brain drain’, 

defined as the proportion of highly-skilled Cape Verdean living abroad. 

Table 4 describes the educational attainment of Cape Verdean individuals aged at least 25 years old who 

reside in Portugal and the United States (representing nearly 75% of all Cape Verdean emigrants). We 

observe that the educational attainment of emigrants differs in the censuses and in our survey. Namely, 

                                                      

 

8 The main destination countries, accounting for practically all Cape Verdean migrants, for which we have available census data 

are: Portugal, United States, France, Netherlands, Luxembourg, Italy and Spain. We used the 5% sample of the American 

census from IPUMS (Ruggles et al., 2004). Information on Cape Verdean in Portugal was provided by the National Statistics 

Office of Portugal and information for other European countries was taken from Eurostat. 
9 According to our survey, 92% of all emigrants from Cape Verde migrate to these countries. We are, therefore, confident of 

capturing most of the emigrants. 
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the survey displays a larger fraction of emigrants with higher education. This is probably due to the fact 

that the survey misses information about complete household emigration, thereby increasing the relative 

weight of those individuals who emigrated alone with the purpose of pursuing higher education. We will 

therefore use data from the censuses as our source in measuring ‘brain drain’. 

According to the census data characterizing emigrants to both Portugal and the United States, there 

seems to be evidence of positive selection of migrants. Indeed, emigrants are disproportionately 

concentrated in middle and high levels of education (i.e. completion of at least 9 grades) relative to the 

non-migrant population. This disproportion is particularly high for emigrants who hold a university 

degree: 6.65% of emigrants, relative to only 3.40% of residents in Cape Verde. 

Analyzing the information available for each of the two main destination countries, we uncover finer 

patterns of emigrant selection than those provided by aggregate numbers. Actually, there seems to be 

clear positive selection only for emigrants to the United States. Except at the university level, the 

educational attainment of emigrants residing in Portugal is actually lower than that of residents in Cape 

Verde.
10

 Given these differences across countries, it is not obvious how to approximate the educational 

attainment of the residual 25% of emigrants for which no educational data are available (mainly residing 

in France). We opt for the conservative assumption (in the sense that it yields maximum ‘brain drain’) 

that the residual emigrants have the same educational attainment as emigrants residing in the United 

States. The results of this assumption are presented in the fourth column of Table 4. 

With this distribution of emigrant educational attainment in hand, we can now compute a measure of 

‘brain drain’. The measure traditionally used in the literature is the one proposed by Docquier and 

Marfouk (2006), i.e. the fraction of Cape Verdean university degree holders residing abroad. Using this 

definition and according to our data displayed in Table 4, the ‘brain drain’ in Cape Verde is 40%. This 

number is much lower than the 67.5% reported by Docquier and Marfouk (2006), who provide the only 

existing numbers for ‘brain drain’ in Cape Verde.
11

 Most likely this difference is due to Docquier and 

Marfouk (2006)’s source of data on educational attainment in Cape Verde,
12 

in addition to discrepancies 

in the classification of educational degrees, particularly the ‘high-skilled’.
13

 Since the proportion of 

high-skill individuals is low among Cape Verdean, small differences in the classification of ‘high-skill’ 

are potentially capable of producing large differences in measuring ‘brain drain’. For this reason, we 

                                                      

 

10 This finding is consistent with a lower cost of emigration to Portugal relative to the United States, perhaps because of the 

common language, shorter geographical distance or longer emigration tradition. 

11 Carrington and Detragiache (1998) and Collier et al. (2004) provide numbers for several African countries, but not for Cape 

Verde. 
12 For most developing countries, Docquier and Marfouk (2006) use Barro and Lee (2001) as their source of information on 

educational attainment. This is missing for Cape Verde, and the criterion indicated for these cases is to use “neighboring 

countries”. 
13 In Docquier and Marfouk (2006) the highly-skilled group includes all those who attended university, even if they did not 

complete a degree. Comparability of classifications of educational degrees in Cape Verde, the US and Portugal is discussed in 

Appendix B.  
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propose to consider alternative measures of ‘brain drain’, namely focusing on groups with relatively 

higher weight in the population. For instance, the probability of emigration given at least an intermediate 

secondary level is 43%, and that for Docquier and Marfouk (2006) is 44%. 

A final qualification regarding the traditional brain drain measures has to do with potential educational 

upgrading after migration. The magnitude of this phenomenon will likely affect ‘brain drain’ numbers. 

Indeed, 20% of immigrants from Cape Verde in the United States arrived before age 10 and they 

subsequently present higher educational degrees. Migrating early in life affects the educational 

attainment in destination countries. However, it is very difficult to distinguish between the fraction of 

the difference that is attributed to unobserved heterogeneity and the fraction that is attributed to the fact 

that those individuals are entering in a different educational system. This possibility can be explored by 

switching the educational attainment of those migrants who emigrate early in life with the educational 

attainment of those with same characteristics departing later. Batista et al. (2007) show that important 

differences between migrants and non-migrants remain nevertheless. 

4. Econometric model and identification strategy  

The hypothesis of ‘brain gain’ suggests that the mere possibility of one’s migration in the future may 

improve his or her educational attainment in the origin country even if this person ends up never 

migrating. In this section, we propose an econometric model and methodology to identify this ‘brain 

gain’ effect, i.e. to explicitly estimate the impact of the own future probability of migration on schooling 

decisions in Cape Verde. 

Econometric model 

In order to estimate this ‘brain gain’ effect, we propose the following latent variable model. There are 

three latent variables S
*
, M

*
(a) and M

*
, which govern, respectively, the decisions on: educational 

attainment, S; (future) migration decision made at age a, M(a), when the decision of completing 

education is also made; and actual migration decision, M, made at the age of actual migration. These 

choices may be represented in a timeline in the following way:  

 

While the first two latent variables, S
*
 and M

*
(a), are known simultaneously, the third one, M

*
, may be 

thought of as an update to M
*
(a) at some point in the future: 

  S
*
 

M
*
 (a) 

time  M
*
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)(2

*

10

* ')( εβββ +++=  (2) 
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imii aMM ε+= )(

**  (3) 

Basically, the idea behind (1) - (3) is that at age a individual i makes two human capital investment 

decisions: she decides whether it is worthwhile to invest in further education or not and whether it is 

worthwhile to migrate or not. According to these rules, child i will acquire education (Si = 1) as long as 

the education latent variable Si
*
 is non-negative. Similarly, migration in the future will occur (Mi = 1) as 

long as the respective latent variable is non-negative, i.e. Mi
* 

imi aM ε+= )(
* ≥ 0. 

The latent variable governing the education decision, Si
*
, depends on several factors (Xi) that potentially 

vary at the individual, household and regional levels. In addition, it is also influenced by the 

determinants of the own migration decision at the date schooling choices are made, )(
*

aM i . This latent 

variable in turn depends on several covariates (Yi) that potentially also include individual, household and 

regional characteristics, and depends in addition on the determinants of the educational decision, Si
*
. In 

the future, however, regardless of the individual migration plans at age a, there may be unexpected 

shocks (εmi) that impact the realized actual migration decision, Mi, as described in (3). 

Mathematically, the three latent variables depend on vectors of variables Xi and Yi which include 

individual, family, and locality-level characteristics of child i and additive random error terms, εsi , εm(a)i 

and εmi, which may be correlated. For example, it is possible that individual i has an innate ability to 

learn, which could decrease both the costs of acquiring education and of migrating (e.g. if this ability 

facilitates the study of foreign languages and integration in foreign communities). 

Model (1) - (3) presents a practical problem if one is interested in estimating its parameters: we do not 

observe the migration decision at age a, but only the actual migration decision realized at some point in 

the future, Mi. This problem occurs even if one is only really interested in estimating α1. In order to 

overcome this problem, we can rewrite the previous model as follows: 

                   
iiii XMS 12

*
10

* '' εααα +++=   where we observe  )0(1 * ≥= ii SS  (4) 

                  
iiii YSM 22

*
10

* '' εβββ +++=   where we observe  )0(1 * ≥= ii MM  (5) 

Identification strategy 

Under this framework, our ‘brain gain’ test will depend crucially on the value taken by parameter α1. 

Several estimation issues arise in its estimation. First, as previously discussed, there may be unobserved 

characteristics of the individual that simultaneously make her both more likely to emigrate in the future 
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and more likely to get a higher educational attainment. Second, there is likely reverse causality, i.e. this 

individual may emigrate with a higher likelihood if she is more educated, for example. We therefore 

need exclusion restrictions on X with respect to Y in order to identify our parameter of interest. In 

particular, we need variables that affect the migration decision and are known at the time the education 

decision is made, but which do not directly affect this education decision. For this purpose, we exploit 

the full history of migration in the household, which we have available from our survey, and propose 

that the full actual duration (as measured at the date of the survey) of the longest migration spell in the 

family that started when the child is aged 12 or less years old (which we will simply label in the rest of 

the paper as “family migration duration at age 12”) is used as an instrument in our baseline results.
14

 

The length of the family migration spell provides us with information regarding the success of the 

closest migration experience to the child. Indeed, longer migration spells in the household likely reflect 

more successful migration experiences that should translate into deeper access to migrant networks. This 

network access should help facilitate migration for other household members. In contrast, a short 

duration of family migration might be consequence of a failure in the migration experience, which could 

decrease importantly the perceived net benefits of future migration. Considering the maximum duration 

of a family migration spell further ensures that we are capturing this effect, as it allows us to exclude 

smaller “trial” or “follow-up” migration experiences. Considering the actual full duration as measured 

at the date of the survey provides us with a comparably good measure of the family migration 

experience success, regardless of whether the migration spells are completed or ongoing at the time of 

the educational decision. Presumably education decision makers will have further information on the 

success of family migration experiences, but we cannot measure this additional information so that we 

take the measured duration of family migration as the best possible approximation to the degree of 

success of family migration experiences. 

Notice that the underlying reasons for failure or success of family migration experiences should be 

exogenous to an individual child’s educational decision, except for the information provided regarding 

the potential benefits of education if the child migrates at some point in the future – and this is exactly 

the sort of ‘brain gain’ argument we aim to test. Note in addition that, unlike the exclusion restrictions 

proposed in the related literature,
15

 this instrument presents individual variability on its own (as opposed 

to household or regional variability only). Consequently, this measure appears to be a good candidate for 

instrumenting the probability of an individual child’s future migration at the time her educational 

investment is being decided. 

                                                      

 

14 The choice of age 12 corresponds to the age at which the decision to pursue secondary schooling is made by Cape Verdean 

children. Moving this threshold to age 13 or 14 does not significantly change results. 
15 This is the case of the historical regional rates of migration previously used by Hanson and Woodruff (2002) and McKenzie 

and Rapoport (2006). 
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We nevertheless consider a number of issues that could be regarded as potential weaknesses of our 

identyificatij strategy and modify our specification to ensure that the instrument is not capturing any 

family migration effect that is correlated to educational choices. First, our baseline estimates are based 

on a sample of dependents whose parents were both not migrants at the time the educational decision is 

made. This option attempts to purge any effects of migration to the family structure (such as the absence 

of parents in their roles of models and guardians, as well as the requirement of older children to take on 

household responsibilities, be it working at home or outside). Second, success or failure of the family’s 

migration experience may be correlated with the level of education of the migrant, which in turn could 

affect the educational level of the child. For this reason, it is reassuring that parental education is also 

included in the main regression. Finally, a successful family migration experience may generate 

remittances and savings that relieve credit constraints and facilitates increased educational attainment. 

Although self-reported credit constraints in our survey do seem to be minor for the case of Cape Verde, 

we evaluate the hypothesis that family migration may promote asset accumulation and therefore relieve 

financial constraints impeding children’s educational attainment by checking how asset accumulation 

varies with family migration duration and family migration status. The results are presented in Tables 5 

and 6. We look at asset accumulation between 1997 and 2005, as available in our survey, for one 

aggregate and three disaggregate asset types: land, house and car ownership. There is no statistical 

evidence in our case that the duration of family migration spells significantly promotes any category of 

asset accumulation, as displayed in Table 5. Table 6 also shows that there is no statistical evidence that 

having a migrant in the family promotes asset accumulation. 

We believe that once we focus on dependents whose parents were both not migrants at the time of 

education decisions, and we control for parental education and asset ownership in the education 

equation, it is appropriate to assume that “family migration duration at age 12” is only correlated with 

the individual schooling decision through the own probability of future migration. 

Formal econometric tests support our arguments in favor of the adequacy of the instruments used in this 

paper. Despite all control variables included in our baseline specification (displayed in Table 7, and 

further discussed in the following section), “family migration duration at age 12” remains a relevant 

instrument. In the first stage regressions, it is individually significant at the 1% level, and an F-test on 

the excluded instrument rejects the hypothesis of it not having explanatory power, regardless of the 

critical values used: 10 from Staiger and Stock (1997)’s rule-of-thumb; 8.96 from Stock and Yogo 

(2005)’s more carefully derived results. Because our F-statistic is computed taking into account 

clustering at the household level, we deem our comparison with i.i.d. critical values as conservative.
 16

 

                                                      

 

16 Note that, to the best of our knowledge, there is not available in the econometric literature a precisely suitable critical value 

against which to compare our F-statistic to test for weak instruments (i.e. no critical values exist that account for clustered 

standard errors). For this reason, we take into account both the Staiger and Stock (1997) rule-of-thumb for a suitable instrument, 
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As a robustness check, we choose to exploit an additional, still parsimonious, econometric specification 

using both “family migration duration at age 12” and “regional proportion of migrants” as exclusion 

restrictions. The latter variable is given by the fraction of migrants in the locality where the child resides, 

and is closely related to the historical regional rates of migration previously used in the related 

microeconometric literature, namely by Hanson and Woodruff (2002) and McKenzie and Rapoport 

(2006). The underlying idea is that past migration proxies well for existing networks, which strongly 

affect current migration at the regional level, through their effects on the net benefits of migrating. 

In order for this to be a valid instrument, it is important that the reasons that first started historical 

migration are uncorrelated with the current motives to complete intermediate secondary education. In 

the case of Cape Verde, this fact seems all the more plausible since migrations in Cape Verde started 

centuries ago due to droughts and famines, fully exogenous to the decision of acquiring education 

nowadays. In any event, our specification includes several regional variables (such as island dummies, 

local unemployment rates, and local ratios of skilled relative to unskilled workers), which should capture 

any remaining general equilibrium effects on educational choices. 

The first stage regressions for our alternative specification (adding “local proportion of migrants” as an 

instrument) are displayed in columns (3) and (4) of Table 7. Both instruments are individually 

significant in this set of regressions. The outcome of F-tests on the excluded instruments, however, 

depends on the estimation method used: the hypothesis of weak instruments is clearly rejected when 

robust methods, such as LIML (Limited Information Maximum Likelihood) or CUE (Continuously 

Updated GMM Estimator) are used, whereas this is not necessarily the case for 2SLS. Since changes in 

the estimated coefficients of interest are small when different estimation methods are used (namely 

2SLS vs. LIML), we feel reassured that this is not a problem.
17

 However, taking a conservative 

perspective, we will adopt as baseline specification the one with the single exclusion restriction provided 

by “family migration duration at age 12”. 

Finally, the specification that includes more than one instrument provides us with a joint test for the 

exogeneity of both “family migration duration at age 12” and “local proportion of migrants”. 

Exogeneity of both instruments cannot be rejected by a Sargan-Hansen test of overidentifying 

restrictions (robust to clustering at the household level). 

                                                                                                                                                                     

 

and the Stock and Yogo (2005) 2SLS/LIML critical values for an instrument that meets the maximal 10% size distortion for a 

5% Wald test criterion, even though these critical values are computed assuming i.i.d. errors. An alternative possible criterion 

for the strength of an instrument could be not to exceed the maximal bias of 10% of the IV estimator relative to the OLS 

inconsistency. Critical values for this criterion are, however, only available when at least three instruments are used. Using these 

critical values, we can already reject the null of weak instrument, despite the fact that critical values for this criterion are 

decreasing in the number of instruments. 
17 Note that we are still comparing F-statistics adjusted for clustering at the household level, whereas the critical values used for 

comparison are computed assuming i.i.d. errors, which should lead to too little rejections of the null of weak instruments. 



14 

 

 

Estimation 

In order to estimate our model, and most crucially, our parameter of interest, α1, we focus first on a 

standard linear probability model. This has the advantage of simplicity and better-established properties 

and tests (e.g. for the weak instrument potential problems discussed above). In addition, as shown by 

Angrist (1991), the use of 2SLS to estimate binary outcomes can be justified and indeed shown to 

consistently estimate average treatment effects. 

In a linear setting, 
*

)|( iii SXSP =
 
and 

*
)|( iii MXMP = . Therefore, one can write 

iii uSS 1

*
+=  and 

iii uMM 2

*
+= . The regression model hence becomes: 
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In this context, α1 can be simply estimated by 2SLS on (6). 

The non-linear model (4)-(5) can also be estimated consistently following Mallar (1977), taking into 

account the characteristics of our model (namely the dependent variables’ continuity) that make it 

different from the model underling conventional “IV Probit” estimates. The method proposed by Mallar 

(1977) consists of estimating a reduced form of the index
*

iM in equation (5), which we can then use as 

a regressor in the structural estimation of equation (4). Note that it is possible to follow this two-stage 

procedure given the continuity of the index function, 
*
iM . 

The model to be estimated therefore becomes: 
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The same strategy will apply to the structural estimation of equation (5). Notice that, as pointed out in 

Maddala (1983), we can only identify the actual parameter up to a constant. If (ε1i, ε2i) is distributed 

following a bivariate normal, 
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Given its appropriateness to precisely capture the effect of a certain probability of future migration (a 

positive and small number limited to be between 0 and 1) on the probability of acquiring a certain level 
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of education, this non-linear model is particularly relevant to interpret the discrete variable IV results, as 

well as to perform precise counterfactual exercises. 

5. Empirical results 

In this section, we summarize the main empirical results in this paper. In particular, we present, interpret 

and discuss the robustness of our ‘brain gain’ estimates. 

Preliminary evidence 

Before estimating the ‘brain drain’ or ‘brain gain’ parameters of interest discussed in the previous 

section, we start by examining the results in Table 8, which display simple OLS and Probit estimates of 

the (intermediate secondary) schooling attainment of migrants relative to non-migrants. Note that we 

restrict our sample to dependents aged 16-30 who never migrated before age 16.
18

 Focusing on those 

who stayed in Cape Verde until at least age 16, we can safely assume that the schooling decision was 

made before emigration – recall that intermediate secondary schooling should be completed before or 

around age 16 (allowing for repetition). This enables us to estimate the effect of the probability of future 

emigration on the decision to complete schooling for this subsample.
19

   

In addition, we choose to focus on a subsample of dependents whose parents were both not migrants at 

the time educational decisions were made (i.e. when dependent is 12 years old, as described in the 

previous section). This restriction helps us to isolate the effect of the expected own probability of 

migration, which cannot in this way be confounded with other effects, such as those of parental 

migration. 

Finally, note that the measure of educational attainment we use is that of a certain school grade by 

children in a certain age interval. This specification allows us to evaluate what the effect of migration is 

on attaining a given school level for children at a precisely-defined age. In our baseline model we 

consider attainment of an intermediate secondary school grade (9 years) by dependents aged 16-30 years 

old whose parents were both not migrants at the date of educational decisions.
20

 This grade is relevant 

because it is attained by around 40% of students and it is not compulsory, unlike primary schooling. 

                                                      

 

18
 Changing this threshold to age 18 did not significantly change our results. We choose to focus on dependents aged no more 

than 30 years old to ensure we have full information on these individuals, particularly at the household level (given the design of 

the survey, as detailed in Appendix A). This is also a particularly interesting interval to analyze as this corresponds to a prime 

working age, at which migration decisions peak. 
19 In addition, choosing this subsample to run our regressions is most suited to the characteristics of our survey, which, as 

described in Table 3, fails to capture early emigrants who left with their whole families. By focusing on individuals aged 16 

to 30 years old who emigrated after age 16, we are able to minimize any selection effects that the use of our survey could 

imply. (This is confirmed by further detailed comparisons between our survey and census data, available from the authors 

upon request.) 
20 McKenzie and Rapoport (2006) also take completed school grades as their dependent variable, but require the use of 

censored-order probit models to account for problems caused by right-censoring. Because we consider a particular grade only, 

in addition to adopting appropriate age intervals, right-censoring for our variable of interest is unlikely. 
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Complete secondary schooling (12 years) would also be interesting to study, but is only attained by a 

small fraction of individuals. 

Without controlling for any other covariates, there seems to be a striking statistically significant 

difference between the educational attainment of migrants relative to non-migrants (nearly +16pp for 

OLS). Following the standard in the literature on determinants of educational attainment, we consider 

whether the observed educational differences are still relevant after controlling for the traditional 

covariates: (i) individual level characteristics empirically related to performance (gender, age); (ii) 

household level proxies for available resources (number of children, asset ownership), as well as for the 

quality of family environment (highest completed parental educational level) and for perceptions of the 

quality of schooling (which are likely related to the expected benefits to be derived from education); 

and, finally, (iii) local level variables such as island, urban area, and other average local variables (such 

as unemployment, average per capita household expenditure and the skill to unskilled labor force ratio) 

that may affect local returns to schooling. After controlling for all regressors, there is a difference of a 

little less than 14pp between the educational attainment of migrants and non-migrants, which remains 

strongly significant. The signs of all significant coefficients are as expected and do not vary with the 

type of estimation. 

Estimating the ‘brain gain’ effect 

We now turn to estimating our parameter of interest, which can be interpreted as a measure of the ‘brain 

gain’ effect, i.e. the impact that the own future probability of migration has on individual educational 

attainment. Following the identification strategy proposed and defended in the previous section, we start 

by using “duration of family migration at age 12” as an exclusion restriction. 

We begin by simply using 2SLS to estimate equation (6). Results are displayed in Table 9, column (1). 

The estimated effect is substantial and statistically significant: an increase in the probability of migration 

by 10pp would increase the probability of attaining intermediate secondary schooling by 11.2pp, ceteris 

paribus.  

In column (2) of Table 9, we estimate the same equation (6), but now using a sample of all dependents 

aged between 16 and 30 years old who did not migrate before age 16 instead of only those individuals 

whose parents were both non-migrants when the individual was 12 years old. This allows us to evaluate 

the effect of having migrant parents on the educational impact of the expected own probability of 

migration: in this instance, as shown in column (2), evidence points to a lower impact of expected own 

migration, which can be understood as it being positively correlated to parental migration educational 

effects. 

As discussed in the previous section, our initial focus on a standard linear probability model is justified 

by its simplicity. However, because we are interested in precisely capturing the effect of a certain 

probability of future migration (a positive number limited to be between 0 and 1) on the probability of 
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acquiring a certain level of education, the non-linear Mallar (1977) model is better suited for our 

purposes.
21

 Columns (3) and (4) in Table 9 present results of the non-linear estimation of our model. 

Standard errors are bootstrapped. The coefficient on the latent variable for emigration is still positive 

and significant, suggesting the relevance of the brain gain hypothesis. The coefficients on parental 

absence take the same signs and statistical imprecision as in the 2SLS case. The remaining question 

regards the economic or quantitative significance of these effects. In the next section, we will use 

simulation techniques to generate counterfactual scenarios of education and emigration in order to 

evaluate the importance of this causal effect. 

Robustness check 1: instrument choice 

In our baseline specification, we explore the information content conveyed by family networks in 

determining an individual’s likelihood to emigrate (as provided by the maximum duration of earlier 

migration in the household). We now turn to check the robustness of our findings by including a proxy 

for local migration networks as an additional determinant of an individual’s probability to emigrate. In 

particular, we estimate our model using different techniques, including two exclusion restrictions 

provided to us by the “duration of family migration at age 12” and the “local proportion of migrants”. 

(Recall that the adequacy of this procedure is discussed in Section 4.) 

The results from this robustness check are displayed in Table 10. As 2SLS is less robust to the inclusion 

of weak instruments than LIML (Limited Information Maximum Likelihood) or CUE (Continuously 

Updated GMM Estimator),
22

 and we can only marginally reject the null hypothesis of joint weak 

instruments, we include estimation results for these two methods as well as for the initial 2SLS and most 

appropriate two-stage non-linear Mallar (1977) method. 

The estimated coefficients on the probability of future emigration are remarkably stable across 

estimation methods: 2SLS, LIML and CUE yield similar magnitudes, pointing to an effect in the 

interval 8.9-10pp for a 10pp increase in the migration probability, although the LIML and CUE 

estimates are slightly less statistically significant than the coefficient obtained using 2SLS. Relative to 

the baseline specification, there is a (small) decrease in the magnitude of the estimated effect both using 

2SLS and the Mallar (1977) non-linear method. Overall including an additional instrument does not 

greatly change results. 

                                                      

 

21
 In other words, we do not want to capture the effect of migrating or not [0,1], but the effect of a certain probability of future 

migration (a number between 0 and 1). We believe that this distinction is essential in order to understand why the results using 

the linear probability model should not be interpreted directly. 
22

 See Stock and Yogo (2005) for a discussion and evidence on this topic. 
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Robustness check 2: sample choice 

One may think that our estimates are capturing a local effect on a particular subgroup of individuals. In 

particular, one could conjecture that the ‘brain gain’ effect should be concentrated on those who actually 

end up migrating at some point in the future. 

In order to check this hypothesis we consider the following latent variable for the decision of obtaining 

education for individuals who never migrated: 

        
isiii XMS εααα ++=+= ')1Pr( 210

*

 
where we observe  )0(1 * ≥= ii SS  (10) 

According to (10), child i’s educational attainment (Si) depends on Pr (Mi = 1), the probability of own 

future migration. 

In order to identify our parameter of interest (α1), the first step in our empirical procedure is the 

estimation of the probability to emigrate for dependents aged 16 to 30 who never migrated. We then 

proceed to a second step in which we use characteristics of individuals at age 12 (using our full history 

of residents and migrants’ lives and associated characteristics) to predict their probability of emigration 

at that age. In a third and final step, this predicted probability of future emigration evaluated at age 12 is 

used as an independent variable. To account for the estimation procedure of the probability of future 

migration, standard errors are bootstrapped. 

The results obtained from this procedure are summarized in Table 11. We find that the effect of the own 

probability of future migration on those who never migrated seems to be actually larger than for 

comparable individuals who migrated from age 16. Indeed, the estimated coefficients displayed in Table 

11 are larger than those obtained in any of the specifications we considered before. For the case of 

2SLS, the interpretation of the coefficient is very clear: an increase in the probability of own future 

migration of 10pp would increase the probability of attaining intermediate secondary schooling by 9 to 

12.5pp, ceteris paribus. 

6. Counterfactual results: educational responses to migration barriers 

The objective of this section is to illustrate the economic significance of the ‘brain gain’ estimates we 

obtained. In particular, we derive the quantitative implications on educational attainment of changing 

barriers to migration (e.g. caused by tightened immigration policies in destination countries) by using 

our estimation of the non-linear simultaneous-equation Mallar (1977) model. Unlike existing studies, 

which assume the educational attainment of current and return emigrants would have been the same had 

they not emigrated, our model allows us to consider the impact of migration policy shocks on both 

education and migration decisions.  
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Using this framework, we start by examining the impact of changes in migration barriers on emigration 

and, as a consequence, on the educational attainment of individuals aged 16-30 who never resided away 

from Cape Verde until age 16 (following the estimation methodology adopted in the previous section). 

Our simultaneous equation model allows us to evaluate the differential impact on educational attainment 

for those who choose to emigrate and for those who do not. 

We then turn to analyzing the impact of the same shock on the emigration and educational decisions of 

all Cape Verdean born individuals aged 16 to 30. This includes individuals who emigrated before age 

16, who will potentially have obtained (further) education after migration. For this reason, in this 

exercise we complement our survey with data from the censuses of the main host countries. 

Changes in migration barriers for individuals who resided in Cape Verde at least until age 16 

We begin by creating a counterfactual shock decreasing emigration prospects in our empirical model.
23

 

It basically consists of exogenously reducing the constant term in the migration equation (5) by an 

amount δ.σ2, where δ is an arbitrary positive value and σ2 is the variance of the error term in the reduced 

form of the migration equation.
24

 This shock may be interpreted as an increase in emigration barriers 

that do not directly affect the incentives to invest in education - for example, a tightening in immigration 

policies of receiving countries.  

As detailed in Appendix C, given our parameter estimates and the individual values of Xi and Yi in our 

sample, we can simulate individual decisions of educational attainment and migration and, given those 

decisions, calculate the educational attainment of migrants and of non-migrants, as displayed in column 

(2) of Table 12. Indeed, columns (1)-(2) in Table 12 show that our procedure approximates well actual 

migration rates and educational attainment of both migrants and non-migrants. 

For a given counterfactual shock, we can re-compute relevant parameters, and again simulate individual 

migration and education decisions. Columns (3)-(6) in Table 12 describe what happens when barriers to 

migration gradually increase. First, as expected, a gradual increase in migration barriers implies a 

gradual decrease in the probability of emigration. Second, as a consequence, educational attainment 

(especially of non-migrants) is strikingly affected by the lower probability of migration: when 

emigration falls by 11pp, the probability of attaining intermediate secondary education decreases by 

16pp for non-migrants (implying an elasticity of 0.32), whereas the reduction for migrants is smaller but 

still sizable (nearly 7pp, implying an elasticity of 0.10).
25

 Note that the educational costs of closing 

migration possibilities seem to be non-linear (indeed non-monotonically increasing): instead of cutting 

                                                      

 

23 Appendix C presents in detail the derivations underlying our methodology. 
24 Notice that due to the endogeneity of migration and educational attainment, a decrease in the constant term of (5) would affect 

the reduced form of both the migration and the educational attainment equations. 
25

 This asymmetric behavior is due to the positive correlation between the reduced form error terms (u1i, u2i). In the 

counterfactual world, when it becomes harder to emigrate, only those who have very high random draws, u2i, will eventually 

emigrate. Those individuals also present high u1i, decreasing the effect of the overall reduction on S* due to the fall in M*. 
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the stock of migrants from 13% to 2% as in the example above, it is much less costly in terms of 

educational attainment to bring the stock of emigrants down from say 13% to 9% of Cape Verdean 

nationals (which implies an elasticity of 0.19 for non-migrants, and 0.07 for migrants). Overall, these 

counterfactual results are strongly supportive of the hypothesis of ‘brain gain’ as opposed to ‘brain 

drain’.
26

 

Changes in migration barriers for all individuals who were born in Cape Verde  

The counterfactual scenarios just described may be over-estimating the educational costs of restricting 

migration. Indeed, changes in migration barriers may prompt those who emigrated before age 16 to 

return to Cape Verde, and these individuals may be more likely to have attained intermediate secondary 

schooling than the corresponding person in Cape Verde or an emigrant departing at an older age. To 

investigate this possibility, we now propose a way to account for the number and characteristics of 

individuals who migrated before age 16 by combining information from census data of the destination 

countries.  

As detailed in Appendix C, we propose to re-weight the original survey individual observations in order 

to account for the missing individuals who migrated before age 16.
27

 The idea is to use weights in order 

to increase the importance of migrants who departed after age 16 in our sample and whose 

characteristics match the characteristics of all migrants. 

Table 13 shows the reweighted results. Compared to Table 12, both non-migrants and migrants display 

slightly increased educational performance. This happens because our counterfactual scenarios now 

indirectly include some of the migrants departing before age 16, who are better educated than those who 

are leaving later in life. Nevertheless, it is clear that educational attainment still falls visibly when 

emigration decreases: a 12pp decrease in the probability of migrating is associated with a fall of 12pp in 

the educational attainment for non-migrants (implying an elasticity of 0.26), and a drop of 3pp in the 

educational attainment for migrants (implying an elasticity of 0.06). Once more, we observe that the 

educational costs of closing migration possibilities seem to be non-linear: it is much less costly in terms 

of educational attainment to bring the stock of emigrants down from 17% to 13% of Cape Verdean 

nationals (implying an elasticity of 0.17 for non-migrants, and 0.05 for migrants), than from 17% to 3% 

(implying an elasticity of 0.29 for non-migrants, and 0.08 for migrants). This evidence is again 

suggestive of the importance of the ‘brain gain’ mechanism, now even after we account for the 

                                                      

 

26 Note that additional human capital gains from emigration are created by return migration. We abstract from this channel in the 

present exercise as return migration does not seem quantitatively important for our specific counterfactual exercise: indeed, only 

4% of all emigrants aged 16 to 30 years old report to have returned. This is consistent with the odds of temporary migration 

increasing with the age of migration (Lacuesta, 2006). A more adequate treatment of the ‘brain gain’ from return migration can 

be found in Batista et al. (2007). 
27 Recall that early emigrants (before age 16) are not well described in our survey, as they mostly left with their whole families. 
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educational upgrade by early migrants who may return when migration policies are made more 

restrictive. 

A caveat to the real world validity of these counterfactual simulations has to do with the fact that most 

developed countries are adopting immigration policies that are selective relative to the educational 

attainment of potential immigrants. This is not taken into account in our simple counterfactual exercise 

and raises important questions: How quantitatively relevant is the fact that many countries are only 

willing to admit skilled immigrants in detriment of those unskilled? In other words, how strong are the 

effects of distortionary immigration policies on educational attainment in the sending country? This is an 

essential direction for future research that is left unanswered by our analysis. 

7. Why does the own future probability of migration matter for educational 

decisions? 

According to our empirical results, there is a sizable positive effect of the own future probability of 

emigration on educational attainment. This finding raises further questions. In particular, one would like 

to understand the mechanisms underlying this effect. 

The original ‘brain gain’ theory hinged on the traditional selection arguments proposed by Borjas (1987) 

and emphasized that the option of emigrating to a country where returns to schooling are higher should 

increase an individual’s incentive to acquire education. Our evidence points however to returns to 

education in the United States never overcoming returns to education in Cape Verde.
30

 Why should then 

the possibility of own future migration create incentives for acquiring education at home?  

Hatton and Williamson (2001) observe that emigration out of African countries seems to be significantly 

determined by cross-country real wage differentials. In the likely event that wage differentials between 

Cape Verde and the destination countries of its emigrants have not been competed away 
31

 - as assumed 

by the standard Roy model selection arguments used by Borjas (1987) - it may then be more appropriate 

to consider the alternative model of Jasso and Rosenzweig (2005), as proposed by Akee (2009). This 

model, which may be thought of as nested within the Roy model, takes the first (instead of the second) 

moments of the income distribution across countries (i.e. wage differentials) as determining incentives 

for the most educated individuals to emigrate. In this context, skilled individuals decide to emigrate 

despite the lower relative returns to education abroad because of the sizable absolute differences in 

wages.
33

  

                                                      

 

30 These results and related discussion are available from the authors upon request. 
31 Batista (2008) discusses other instances in which this is the case even within more closely integrated economies, namely 

within the European Union. 
33 Rosenzweig (2007), Belot and Hatton (2008) and Hanson and Grogger (2008) all present evidence supportive of this absolute 

wage differentials hypothesis - the first for Asian students in the US, and the latter two for immigrants in OECD countries. 
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Table 14 shows that indeed there are substantial differences between annual wages in Cape Verde and 

the US.
 34 

 The average 25-50 year old male, can earn around 12,000 additional international dollars after 

migrating to the US. This difference is significantly wider (21,000 additional international dollars) if we 

do not adjust for purchasing power differences, which makes sense for those who are able to save and 

remit US earnings to Cape Verde. If we take into account educational attainment, we observe that the 

US-Cape Verde wage differential for those who complete intermediate secondary schooling (9 grades) 

is only 540 international dollars, or 8% of the average unskilled annual wage in Cape Verde. This 

differential between educated and non-educated workers is much higher when we do not take PPP into 

consideration: it amounts to 4582 international dollars, or 232% of the average unskilled annual wage in 

Cape Verde. 

This evidence is supportive of the hypothesis that absolute wage differentials determine positive 

emigrant selection in Cape Verde (as opposed to relative returns to education). This seems to be 

especially the case when there is an intention to save and return to the origin country, or sizable 

remittances are sent back home. For individuals who emigrate with their whole family and who do not 

plan to return to the origin country, it is, however, not obvious that it compensates to invest in further 

education based on absolute real wage differentials alone. 

We argue that, in addition to the observed wage differentials, the incentive to acquire further education 

for individuals who plan to permanently emigrate in the future may also arise from decreased migration 

costs due to education (as may be true of language barriers or skill-selective immigration policies in 

most developed destination countries, for example). In this instance, individuals would be interested in 

acquiring more education to achieve a higher probability of emigration in the future, in line with the 

predictions of Chiquiar and Hanson (2005) for the Mexican case. This argument is similar to that of 

absolute wage differentials, but further explores the implications of nominal costs of migration, which 

may depend on individual levels of education. 

Preliminary evidence seems to be supportive of this argument: immigration policy in the US has 

traditionally been more skill-selective than in Portugal, which is consistent with the observed positive 

educational selection of emigrants being much stronger to the US than to Portugal. Selection patterns 

seem to also follow linguistic distances: evidence points to selection patterns of emigration to France 

being very similar to those of emigration to the US, whereas emigration to Spain closely resembles 

emigration to Portugal,
35

 which is in line with the Portuguese language (spoken in Cape Verde) being 

                                                      

 

34 The Portuguese census does not provide information on wages, and in other sources there are too few Cape Verdean in the 

sample. We compare information on wages earned by Cape Verdean in the US (from IPUMS, Ruggles et al. 2004) and in Cape 

Verde (from INE 2004).  
35 Considering immigrants in the French census coming from non-French speaking African countries, we observe that their 

selection pattern is similar to that of Cape Verdean immigrants in the United States. On the contrary, the Spanish census points 

to immigrant selection being very similar to that coming from the Portuguese census. 
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very similar to Spanish, but not to French and English. Immigration policies and linguistic distance may 

indeed be further motives than simple wage gaps for migrants to acquire additional education before 

leaving the origin country. 

8. Concluding remarks 

This paper contributes in various ways to the important but still scarce literature on the effects of 

emigration in origin countries. It departs from the essential premise that educational choices may depend 

on emigration options. This assertion has important implications. First, it demands an explicit test for the 

effect of the prospect of own future emigration on educational attainment – the original ‘brain gain’ 

hypothesis. Our empirical strategy uses full histories of migrants provided by our tailored microdata 

survey, allowing us to directly test this hypothesis unlike existing studies. Second, it suggests the need to 

correct for educational upgrading after emigration. This correction addresses an important shortcoming 

in past work assuming that the educational attainment of current and return emigrants would have been 

the same had they not emigrated. In our counterfactual simulations of changes in migration barriers, we 

take this consideration into account by combining our survey data with information from censuses of the 

main destination countries, while using a model simultaneously determining migration and educational 

decisions. 

Overall, our results point to ‘brain drain’ not being as serious a problem as traditionally thought. Indeed, 

this paper finds that massive emigration from Cape Verde seems to have significantly encouraged the 

accumulation of human capital in the country. Our estimates suggest that an increase in the probability 

of own future migration by 10pp increases the average probability of completing intermediate secondary 

schooling by around 11.2pp.  

The evidence obtained in this study should lead policymakers in both developing and developed 

countries not to focus their attention in restricting migration flows of educated individuals. Not only are 

destination countries likely to benefit from the inflow of these skilled immigrants, as is relatively 

undisputed, but these flows may also be beneficial for origin countries as Cape Verde. Indeed, while 

further studies on other source countries of educated migration are required to make a general argument, 

for this case at least, keeping the doors of rich countries open to educated migration may be regarded as 

a form of “efficient aid”. 
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Appendix A: Household survey 

The tailored data collection consisted of survey (face-to-face) interviews conducted by teams of local 

interviewers and one of the authors. The interviews were conducted from December 2005 to March 

2006. We were responsible for the recruitment and training of the local teams - made sure that each 

interviewer had at least a total of 18 hours of training in groups of 2-3 individuals. Training included 

lectures on the content/objectives of the survey; answering the questionnaire; and piloting (at least once 

per interviewer). 
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The survey questionnaire was submitted to 1066 households (997 complete interviews) in 30 (or 5%) of 

the 561 census areas of Cape Verde. It was composed of two modules: one on perceived 

quality/corruption of public services; and the other on migration characteristics of the household. The 

English translation for the full questionnaire is available at 

http://www.csae.ox.ac.uk/resprogs/corruption/cv/questcveng.pdf. 

The sampling process was such that sampled census areas were chosen randomly weighting by the 

number of households, and households within a census area were chosen randomly using standard 

techniques (n
th
 house, with second visits tried in the same day). The requirement condition for a 

household to be interviewed was family residence in the country anytime in 1985-2006. The 

requirement condition for a respondent within a household to be interviewed was to be aged 30 or more 

years old. 

There were two imperfections to the random sampling of households in the survey. One was differences 

in attempted interviews in the different census areas, and the other was the fact that we had non-

respondents. We use weighted data to account for these problems (although differences to unweighted 

data are negligible throughout) for which data collected from non-respondents are exploited (gender, 

approximate age, approximate schooling, and approximate income). 

Additional details on the fieldwork and survey can be found at  

http://www.csae.ox.ac.uk/resprogs/corruption/cv/cv.htm. 

Appendix B: Classification of educational attainment 

Comparing educational attainment from different sources is often difficult because of variations in 

classification. In all data sets, there are questions regarding complete levels of education. However, the 

disaggregation level is higher in some sources, which may make it difficult to draw comparisons with 

sources adopting lower disaggregation levels. For instance, Docquier and Marfouk (2006) identify the 

selection of migrants in three educational groups: less than 9 years of schooling (low education), 9-12 

years of schooling (medium) and over 13 (high). The Portuguese and the US census allow grouping 

migrants in such way since the group of people who have some college without having finished the 

degree (13-14 years of schooling) is identified separately. However, in the Cape Verdean census and in 

our survey, individuals must be classified either at the pre-university level (12 years of schooling) or at 

the completed university level (at least 15 grades of schooling). Therefore, the pre-university level also 

includes people who did not finish their university degree. 

As is detailed in Table A1 below, we group individuals in 4 groups: less than intermediate secondary 

(less than 9 years of schooling), completed intermediate secondary (between 9 and 11 years of 

schooling), completed secondary (between 12 and 14 years of schooling) and completed university 

degree (15 years of schooling or more). In comparison with Docquier and Marfouk (2006), both 
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classifications have the same low education group (less than 9 years). However, adding our second and 

third groups encompasses more than their intermediate group since our third group includes individuals 

who did not finish their university degree. For the same reason, our top group of education should be 

smaller than their high skilled. 

 

Table A1 – Comparison of educational classifications in Portugal (census), United States (census) and Cape Verde (survey)  

  Portugal 2001 

United States 2000 

(Completed) Cape Verde 2006 (Completed) 

LESS THAN 

INTERMEDIATE 

SECONDARY 

 No schooling 

Not applicable and no school 

(0,1) Illiterate (1) 

 Preschool  Pre-primary (2) 

1º Cycle = 4 years 

of schooling 
Attending  1-4 grades (4) Attending Primary (3) 

Incomplete   

 Complete    

2º Cycle = 6 years 

of schooling 
Attending   

Incomplete   

 Complete   

3º Cycle = 9 years 

of schooling 
Attending  Complete primary (4) 

Incomplete 5-8 grades (5) From 6 to 9 grades (5) 

COMPLETED 

INTERMEDIATE 

SECONDARY 

 Complete 9 grades (6) Secondary (6) 

  10 grades (7)  

Secondary = 12 

years of schooling 
Attending 11 grades (8)  

Incomplete 12 grades (no diploma) (9)   

COMPLETED 

SECONDARY 
 Complete High school graduate (10) Pre-University (7) 

  Some College no degree (11)  

  

Associate degree/occupational 

(12)  

Medium = 14 

years of schooling 
Incomplete   

Complete Professional degree (16)  

Baccalaureate = 15 

years of schooling 
Attending   

Incomplete   

Licentiate = 17 

years of schooling 
Attending   

Incomplete     

COMPLETED 

UNIVERSITY 

Baccalaureate Complete Bachelor (14) Bachelor (8) 

Licentiate Complete  University (9) 

 Master >= 17 years 

of schooling 
Attending   

 Incomplete   

 Complete Master (15)  

 Doctorate >= 20 

years of schooling 
Attending   

 Incomplete   

  Complete Doctorate (17)   
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Appendix C: Counterfactual exercise 

The structural system given by (4)-(5) can be expressed in reduced form as:
37
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where 1σ  and 2σ are the standard deviations of u1 and u2, respectively. 

Given that the error terms (ε1i, ε2i) in the structural model follow a bivariate normal distribution with 
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In order to predict individual decisions on migration and educational attainment, one needs to have 

estimates for the corresponding latent variables, M
*
 and S

*
. To obtain these estimates, we start by 

estimating (11) and (12). In addition, we need to predict the error terms (u1/σ1, u2/σ2) for each individual. 

To account for the correlation between these error terms, we must have estimates for structural 

parameters α1 and β1, and for the correlation between structural error terms ρ.
39

  

Using the two step method of Mallar (1977), we estimate α1 and β1.
40

 As this estimation procedure does 

not provide a direct estimate for the correlation between the two structural errors, we calibrate a 

covariance for (ε1i, ε2i) to match the educational attainment of migrants and non-migrants. We grid over 

different values in the interval [-1,1], and take cov(ε1i, ε2i)= ρ =-0.75. With the values for these 

parameters in hand, we can now compute σ1 and σ2. 

                                                      

 

37 Recall that a probit model estimates the coefficients up to the standard deviation of the error term. 

38 Notice that ( )211

11

1
1

1
εαε

βα
+

−
=u  and ( )112

11

2
1

1
εβε

βα
+

−
=u .  

39 Note that ( )ραα
βα

σ 1

2

1

2

11

2

1 21
1

1
++











−
=  and ( )ρββ

βα
σ 1

2

1

2

11

2

2 21
1

1
++











−
= . 

40 Our exclusion restrictions are family migration duration at age 12 for the migration equation; and number of children in the 

household, regional fraction of educated individuals, and quality of educational system as perceived by household’s head for the 

educational attainment regression. 
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Given our parameter estimates and the individual values of Xi and Yi in our sample, we are now ready to 

simulate individual decisions in 1000 different economies. The way to do it is to draw 1000 pairs of 

(u1i/σ1, u2i/σ2) per individual from the bivariate normal distribution described by (13). For each draw we 

estimate an individual decision of educational attainment and migration and, given those decisions, we 

calculate the educational attainment of migrants and of non-migrants.  

One way of creating a counterfactual shock to decrease emigration prospects in our empirical model is 

by exogenously reducing the constant term in the structural migration equation (5) by a certain amount: 

δ.σ2, where δ is an arbitrary positive value and σ2 is the variance of the error term in the reduced form of 

the migration equation.
41

 Therefore,
 
β0 becomes β0
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= β0-δσ2 < β0. This reduction may be interpreted as 

an increase in emigration barriers that do not directly affect the incentives to invest in education - for 

example, a tightening in immigration policies of receiving countries. The change in the constant term of 
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Taking into account this change in the constant terms of reduced form equations (11) and (12), we can 

simply re-predict individual decisions of educational attainment and migration for 1000 simulated 

economies and re-calculate educational attainment for migrants and for non-migrants. 

We propose to re-weight the original survey individual observations in order to account for the missing 

individuals who migrated before age 16. Assuming that there is a set of observable characteristics X 

(such as gender and a quartic on age) determining educational attainment in the same way for emigrants 

who departed before and after age 16, we would just need to use individual weights so as to increase the 

importance of migrants who departed after age 16 in our sample and whose characteristics match the 

characteristics of all migrants.
42

 

To see how this re-weighting procedure is implemented, consider the distribution of characteristics of all 

migrants, )|( migxf , where mig denotes the realized decision to migrate and x is the realization of X. 

Using Bayes rule, one can write: 

)|16(
),|16(

1
)(         where)16|()()|( migmigP

XmigmigP
xmigxfxmigxf >

>
≡>= θθ  

                                                      

 

41 Notice that due to the endogeneity of migration and educational attainment, a decrease in the constant term of (5) would affect 

the reduced form of both the migration and the educational attainment equations. In order to see this, just substitute equation (5) 

in (4) and vice versa. 
42 Reweighting data from the origin country instead of imputing the educational attainment observed in the destination country 

has the advantage that we do not need to consider directly educational upgrading from entering in a different educational 

system. One shortcoming might be that we miss some unobserved differences between migrants who are early (before age 16) 

and late migrants. 
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This expression connects the distribution of characteristics x for individuals who migrated after age 16, 

)16|( >migxf , available from our survey, to the distribution of characteristics of all migrants,

)|( migxf  available from census data in the destination countries, and which we would like to 

reproduce in a re-weighted sample. The link between these two distributions is given by the reweighting 

function θ(x): this is the ratio between the overall probability of migrating after age 16 (which can be 

computed from the information on all migrants available from the international censuses), 

)|16( migmigP > , and the probability of migrating after age 16 for an individual with certain 

characteristics X (which can be computed by estimating probit regression of the probability of migrating 

after age 16 depending on to gender and a quartic on age, again using information from the international 

censuses), ),|16( XmigmigP > .
43

 

  

                                                      

 

43 We use information from the US census 2001 (from Ruggles et al. 2004) to estimate )|16( migmigP >  and 

),|16( XmigmigP > . We only have information about the age of entry of migrants from Cape Verde to Portugal from the 

Portuguese Labor Force Survey. However, we do not have enough observations to perform this same estimation (recall that we 

are restricting the sample to migrants from Cape Verde between 16 and 30 years old). Because age of entry is not a variable in 

the Portuguese census, we must assume that the timing of migration is the same in both destination countries. This assumption 

seems appropriate according to tabulations in our survey for age of entry according to destination. 
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Table 1: Migration flows and stocks. 

  

Own Survey  International Censuses 

Flow of emigrants as % of residents in Cape Verde  

Between 2000 and 2005 3.96%  

Between 1995 and 2000  2.80% 

   

Flow of return migrants as % of current emigrants  

Between 2000 and 2005 19%  

Between 1995 and 2000  25% 

Source: Own survey, INE (2002) and international censuses of destination countries (Portugal, United 

States, France, Netherlands, Luxembourg, Italy and Spain) from Ruggles et al. (2004). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Main destinations of Cape Verdean emigrants. Percentage of total emigration flows. 

  Own Survey 

2000-2005 

Cape Verde Census  

1995-2000  

Portugal 54 55 

US 21 19 

France 12 8 

Netherlands 2 5 

Luxemburg 2 - 

Brazil 3 - 

Other 6 13 

Source: Own survey and INE (2002).  

 



 

 

 

 

 

 

Table 3: Characteristics of individuals born in Cape Verde according to their country of residence and migration status. 

  
Censuses 

Own 

Survey  

Own 

Survey 

Own 

Survey 

Residents Abroad 

Residents 

Abroad 

Residents in 

Cape Verde 

Return 

Migrants 
 

Portugal 

(2001) 

United 

States 

(2001) 

Total to 

Portugal 

and US 

Total to  

Main 

Destinations 

Total (*) 44060 27059 71119 100924 (*) 50283 (*) 431989 (*) 10627 (*) 

Gender        

Male population 51.27% 51.31% 51.29% 49.08% 51.99% 47.95% 64.46% 

Age        

0-10 years 7.85% 3.21% 6.09% 6.87% 0.35% 21.39% 2.42% 

11-20 years 14.17% 16.58% 15.09% 14.57% 11.19% 28.63% 4.85% 

21-30 years 20.06% 16.44% 18.68% 17.94% 33.92% 12.91% 5.45% 

31-40 years 24.66% 21.14% 23.32% 25.32% 25.00% 13.05% 17.58% 

41-50 years 20.33% 19.25% 19.92% 19.86% 20.45% 10.14% 15.76% 

51-60 years 5.82% 8.96% 7.01% 6.74% 8.04% 4.44% 11.52% 

61-70 years 4.73% 8.03% 5.99% 5.35% 0.87% 4.24% 18.79% 

71-80 years 1.74% 3.80% 2.52% 2.18% 0.17% 3.80% 20.61% 

81-90 years 0.58% 2.04% 1.14% 0.97% 0.00% 1.19% 3.03% 

>90 0.07% 0.54% 0.25% 0.19% 0.00% 0.02% 0.00% 

Source: Own survey and international censuses of destination countries (Portugal, United States, France, Netherlands, Luxembourg, 

Italy and Spain) from Ruggles et al. (2004).  

(*) Total number of residents abroad is sum of Cape Verde citizens living abroad divided by 0.92, as detailed in text. Number of 

residents in Cape Verde from INE (2002) census. Number of residents abroad from the survey uses fraction of residents abroad in 

total residents (11.64%). Number of return migrants from the survey uses fraction of return migrants in total residents (2.46%). 

 

 

 
 
 

Table 4: Educational attainment of individuals born in Cape Verde and aged 25 years old or more according to their country of 

residence. 

  

Censuses 

Residents Abroad 

Estimate (*) Own Survey 

  Portugal 

United 

States 

Total Portugal 

+ 

United States 

Residents 

Abroad 

Residents in 

Cape Verde 

      

Completed intermediate secondary (9 grades) or less 84.45% 29.80% 65.37% 56.47% 77.58% 

Completed secondary (12 grades) 9.34% 63.12% 28.12% 36.87% 19.02% 

Completed university 6.21% 7.06% 6.51% 6.65% 3.40% 

Source: Own survey and international censuses of destination countries (Portugal, United States, France, Netherlands, 

Luxembourg, Italy and Spain) from Ruggles et al. (2004).  

(*) As discussed in the text, it is assumed that 25% of all emigrants (those who do not emigrate to the United States and Portugal) 

share the educational attainment of those in the United States. 

 

 



 

 

 

 

 

 

 

 

Table 5: Difference in mean values of family asset acquisition for an additional year of family 

migration duration for dependents aged 16 to 30 who did not migrate before age 16. 

Land or House or Car Acquisition 1997-2005 -0.0012 

(0.0009) 

Land Acquisition 1997-2005 -0.0008 

(0.0010) 

House Acquisition 1997-2005 0.0015 

(0.0020) 

Car Acquisition 1997-2005 -0.0016 

(0.0019) 

Robust standard errors in parentheses, clustered at household level. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 

 

 

 

 

 

Table 6: Mean values of family asset acquisition by family migration status for dependents aged 16 to 30 

who did not migrate before age 16 and whose parents were both not migrants when dependent was age 12. 

Migrant in the 

Family 

No Migrant in the 

Family Difference 

Land or House or Car Acquisition 1997-2005 0.0450 0.0582 -0.0132 

(0.0140) (0.0148) (0.0204) 

Land Acquisition 1997-2005 0.0101 0.0137 -0.0033 

(0.0273) (0.0172) (.0323) 

House Acquisition 1997-2005 0.0981 0.0567 0.0414 

(0.0245) (0.0169) (0.0298) 

Car Acquisition 1997-2005 0.0695 0.0367 0.0327 

(0.0218) (0.0119) (0.0248) 

Robust standard errors in parentheses, clustered at household level. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 

 



 

 

 

 

 
Table 7: Probability of migration for dependents aged 16 to 30 who did not migrate before age 16 and whose parents 

were both not migrants when dependent was age 12.  

 (1) (2) (3) (4) 

 OLS PROBIT OLS PROBIT 

Duration of migration spell in household at age 12 
0.0050 0.0214 0.0047 0.0198 

  
(0.0015)*** (0.0056)*** (0.0015)*** (0.0056)*** 

Proportion of migrants in locality 
  0.2494 1.6416 

  
  (0.1066)** (0.6343)*** 

Male 
-0.0252 -0.1168 -0.0268 -0.1399 

 
(0.0185) (0.1014) (0.0185) (0.1021) 

Age 
0.0899 0.7687 0.0896 0.7652 

 
(0.0218)*** (0.1384)*** (0.0217)*** (0.1382)*** 

Age^2 
-0.0016 -0.0145 -0.0016 -0.0144 

  
(0.0005)*** (0.0029)*** (0.0005)*** (0.0029)*** 

Number of children in household 
-0.0055 -0.0332 -0.0051 -0.0325 

 
(0.0033)* (0.0199)* (0.0033) (0.0204) 

Asset ownership 
0.0492 0.3199 0.0464 0.3120 

 
(0.0238)** (0.1759)* (0.0236)** (0.1736)* 

Maximum parental education 
0.0114 0.0548 0.0112 0.0546 

 
(0.0031)*** (0.0144)*** (0.0031)*** (0.0144)*** 

Perceived quality of educational system in Cape Verde 
0.0057 0.0260 0.0053 0.0276 

  
(0.0074) (0.0418) (0.0074) (0.0409) 

Local ratio of educated to non-educated individuals 
0.1486 0.5766 0.1437 0.4559 

 
(0.0893)* (0.4408) (0.0894) (0.4333) 

Local average unemployment 
0.2322 0.7656 0.1910 0.2004 

  
(0.2639) (1.4026) (0.2614) (1.4026) 

Urban, Island Controls Included Included Included Included 

F-Statistic on Excluded Instruments 11.03 14.63 8.49 22.53 

Observations 1423 1423 1423 1423 

Robust standard errors in parentheses, clustered at household level. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 



 

 

 

 

 

 

     

Table 8: Probability of completing intermediate secondary schooling for dependents aged 16 to 30 who did not 

migrate before age 16 and whose parents were both not migrants when dependent was age 12. 

 (1) (2) (3) (4) 

  OLS OLS PROBIT PROBIT 

Own migration 0.1590 0.1459 0.4616 0.5505 

 (0.0406)*** (0.0410)*** (0.1319)*** (0.1557)*** 

Male  0.0044  -0.0090 

  (0.0268)  (0.0850) 

Age  0.0085  0.0058 

  (0.0316)  (0.1009) 

Age^2  -0.0006  -0.0014 

  (0.0007)  (0.0022) 

Number of children in household  -0.0217  -0.0685 

  (0.0074)***  (0.0219)*** 

Asset ownership  0.1043  0.3450 

  (0.0527)**  (0.1611)** 

Maximum parental education  0.0274  0.1039 

  (0.0038)***  (0.0147)*** 

Perceived quality of educational   0.0195  0.0777 

system in Cape Verde  (0.0137)  (0.0422)* 

Local ratio of educated to non-   0.2823  1.3380 

educated individuals  (0.1246)**  (0.5271)** 

Local average unemployment  -0.3446  0.0258 

  (0.4199)  (1.4418) 

Urban, Island Controls Not Included Included Not Included Included 

Observations 1599 1411 1599 1411 

Robust standard errors in parentheses, clustered at household level. 

* significant at 10%; ** significant at 5%; *** significant at 1% 
 

 



 

 

 

 

 

Table 9: Probability of completing intermediate secondary schooling for dependents aged 16 to 30 who did not 

migrate before age 16.  

  
(1) (2) (3) (4) 

2SLS 2SLS MALLAR MALLAR 

Own migration 1.1207 0.8219 0.9310 0.7019 

 (0.5177)** (0.3832)** (0.4216)** (0.3047)** 

Male 0.0282 0.0127 0.0947 0.0305 

 (0.0334) (0.0284) (0.1006) (0.0855) 

Age -0.0810 -0.0483 -0.6689 -0.4595 

 (0.0598) (0.0477) (0.3372)** (0.2403)* 

Age^2 0.0010 0.0004 0.0113 0.0072 

 (0.0012) (0.0010) (0.0064)* (0.0046) 

Number of children in -0.0187 -0.0221 -0.0474 -0.0665 

household (0.0078)** (0.0071)*** (0.0260)* (0.0230)*** 

Asset ownership 0.0489 0.0510 0.0734 0.0782 

 (0.0621) (0.0567) (0.2183) (0.2039) 

Maximum parental education 0.0162 0.0181 0.0573 0.0616 

 (0.0076)** (0.0063)*** (0.0279)** (0.0248)** 

Perceived quality of educational 0.0127 0.0137 0.0491 0.0536 

system in Cape Verde (0.0145) (0.0130) (0.0456) (0.0428) 

Local ratio of educated to non- 0.1429 0.2592 0.8968 1.3304 

educated individuals (0.1622) (0.1276)** (0.6263) (0.5141)*** 

Local average unemployment -0.6091 -0.2650 -0.7270 0.4137 

 (0.4896) (0.4031) (1.5950) (1.3562) 

Urban, Island Controls Included Included Included Included 

Observations 1411 1541 1411 1541 

Columns (1) and (3) include only dependents whose parents were both not migrants when dependent was 12 

years old. 

IV:  Duration of longest migration spell in household at age 12. 

Robust standard errors in parentheses, clustered at household level. Standard errors are bootstrapped for Mallar 

regressions. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 

 

 

 



 

 

 

 

 

Table 10: Probability of completing intermediate secondary schooling for dependents aged 16 to 30 who did not migrate 

before age 16 and whose parents were both not migrants when dependent was age 12.  

 (1) (2) (3) (4) 

  2SLS LIML CUE MALLAR 

Own migration 0.9035 0.9989 0.8905 0.5326 

 (0.4369)** (0.5051)** (0.4326)** (0.2747)* 

Male 0.0229 0.0253 0.0239 0.0526 

 (0.0312) (0.0324) (0.0311) (0.0967) 

Age -0.0610 -0.0698 -0.0603 -0.3664 

 (0.0529) (0.0582) (0.0526) (0.2335) 

Age^2 0.0006 0.0008 0.0006 0.0056 

 (0.0011) (0.0012) (0.0011) (0.0045) 

Number of children in household -0.0193 -0.0190 -0.0197 -0.0551 

 (0.0075)** (0.0077)** (0.0075)*** (0.0246)** 

Asset ownership 0.0613 0.0558 0.0670 0.1931 

 (0.0585) (0.0606) (0.0581) (0.1906) 

Maximum parental education 0.0187 0.0176 0.0183 0.0775 

 (0.0067)*** (0.0075)** (0.0067)*** (0.0226)*** 

Perceived quality of educational system in 0.0142 0.0136 0.0175 0.0584 

Cape Verde (0.0137) (0.0140) (0.0135) (0.0447) 

Local ratio of educated to non-educated 0.1739 0.1603 0.1779 1.2208 

individuals (0.1497) (0.1561) (0.1490) (0.6009)** 

Local average unemployment -0.5501 -0.5760 -0.5201 -0.0815 

 (0.4589) (0.4724) (0.4571) (1.5879) 

Urban, Island Controls Included Included Included Included 

Observations 1411 1411 1411 1411 

IVs:  Duration of longest migration spell in household at age 12; Proportion of migrants in locality. 

Robust standard errors in parentheses, clustered at household level. Standard errors are bootstrapped for Mallar regressions. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 

 



 

 

 

 

 
 

Table 11: Probability of completing intermediate secondary schooling for dependents aged 16 to 30 who never emigrated and whose 

parents were both not migrants when dependent was age 12. 

 (1) (2) (3) (4) 

  2SLS MALLAR 2SLS MALLAR 

Own migration 
1.2522 0.8924 0.8954 0.4901 

  
(0.6367)** (0.4629)* (0.5000)* (0.2933)* 

Male 
0.0396 0.1116 0.0310 0.0717 

 
(0.0318) (0.1035) (0.0313) (0.0992) 

Age 
-0.0962 -0.6588 -0.0638 -0.3518 

 
(0.0656) (0.3645)* (0.0556) (0.2439) 

Age^2 
0.0012 0.0109 0.0006 0.0051 

  
(0.0013) (0.0069) (0.0011) (0.0047) 

Number of children in household 
-0.0202 -0.0523 -0.0214 -0.0605 

 
(0.0084)** (0.0272)* (0.0081)*** (0.0250)** 

Asset ownership 
0.0332 0.0232 0.0503 0.1448 

 
(0.0644) (0.2307) (0.0612) (0.1982) 

Maximum parental education 
0.0138 0.0494 0.0178 0.0698 

 
(0.0086) (0.0299)* (0.0074)** (0.0238)*** 

Perceived quality of educational system in  
0.0087 0.0340 0.0109 0.0431 

Cape Verde  
(0.0149) (0.0463) (0.0147) (0.0456) 

Local ratio of educated to non-educated  
0.1605 0.8664 0.2132 1.1981 

individuals 
(0.1744) (0.6575) (0.1632) (0.6245)* 

Local average unemployment 
-0.6862 -1.2341 -0.5801 -0.5662 

  
(0.4726) (1.6164) (0.4635) (1.6140) 

Urban, Island Controls Included Included Included Included 

Observations 1242 1242 1242 1242 

IV:  “Duration of longest migration spell in household at age 12” in columns (1) and (2). “Duration of longest migration spell in 

household at age 12” and “Local proportion of migrants” in columns (3) and (4). 

Robust standard errors in parentheses, clustered at household level. Standard errors are bootstrapped for Mallar regressions. 

* significant at 10%; ** significant at 5%; *** significant at 1% 

 



 

 

 

 

 

Table 12: Counterfactual educational attainment of individuals born in Cape Verde aged 16 to 30 who did not migrate before age 16. 

 Survey 

(2006) 

Estimation Counterfactual scenarios for emigration 

  Lowest 

Migration 

Cost 

delta=-0.2 

 

 

 

delta=-0.5 

 

 

 

delta=-0.8 

Highest 

Migration 

Cost 

delta=-1.0 

Stock migrants (% of total Cape Verdean born) 10.83% 12.69% 9.44% 5.75% 3.34% 2.19% 

Non-migrants attaining intermediate secondary education 62.48% 61.88% 58.88% 54.01% 49.01% 45.65% 

Migrants attaining intermediate secondary education 76.41% 78.58% 77.23% 75.36% 73.67% 71.93% 

Source: Own survey (2006) and own computations.       
 

 

 

 

Table 13: Counterfactual educational attainment of all individuals born in Cape Verde aged 16 to 30. Reweighted in order to 

account for individuals missing in the survey. (*) 

  Estimation Counterfactual scenarios for emigration 

  Lowest 

Migration 

Cost 

delta=-0.2 

 

 

 

delta=-0.5 

 

 

 

delta=-0.8 

Highest 

Migration 

Cost 

delta=-1.0 

Stock migrants (% of total Cape Verdean born)  17.01% 12.94% 8.26% 5.05% 3.44% 

Non-migrants attaining intermediate secondary education  63.74% 61.14% 56.80% 52.23% 49.03% 

Migrants attaining intermediate secondary education  80.90% 79.99% 78.49% 77.42% 75.58% 

Source: Own survey (2006), Ruggles et al. (2004) and own computations. 

(*) Individuals missing in the survey are those migrants who migrated before age 16 and are currently aged 16 to 30 years old. 

 

 

 

Table 14: Average annual wages of Cape Verdean. Males between 25 and 50 years old. 

  Cape Verde US Difference 

US Dollars (nominal exchange rate)    

9 years of schooling or less 1975.6 18262.5 16286.9 

More than 9 years of schooling 3789.3 24658.0 20868.7 

Difference   4581.8 

    

International Dollars (PPP-adjusted)    

9 years of schooling or less 6378.4 18262.5 11884.1 

More than 9 years of schooling 12234.1 24658.0 12423.9 

Difference   539.8 

Source: Own computations based on data from Ruggles et al. (2004) for the US and INE (2004) for Cape Verde. Original 

numbers adjusted using nominal and PPP exchange rates from WDI (2006). 
 




