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autoregressive model with multiple individual fixed effects is proposed. The expression for a 
modified likelihood function is obtained for estimation and inference in a fixed-T context. 
Using a bias-corrected likelihood approach makes it possible to reduce the estimation bias to 
a term of order 1/T². The small sample performance of the bias corrected estimator is 
investigated in a Monte Carlo simulation study. The simulation results show that the bias of 
the maximum likelihood estimator is substantially corrected for designs that are broadly 
calibrated to the data used in the empirical analysis, drawn from the 1968-1993 Panel Study 
of Income Dynamics. The empirical results show that it is important to account for individual 
unobserved heterogeneity and dynamics in the variance, and that the latter is driven by job 
mobility. The model also explains the non-normality observed in logwage data. 
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1 Introduction

Estimates of individual earnings processes are useful for a variety of purposes, which include testing between

different models of the determinants of earnings, building predictive earnings distributions, or calibrating

consumption and saving models. Having a good description of the individuals’ earnings dynamics is crucial

since the conclusions of many economically relevant models clearly depend on the properties of the earnings

process used as an input.

This paper presents a model for the heterogeneity and dynamics of both the levels and the volatilities

of individual wages, given past observations and unobserved characteristics. The motivation behind this

specification is related to two strands of the literature on earnings dynamics.

The first one has focused on modelling the heterogeneity and time series properties of the conditional

mean of earnings (Lillard and Willis, 1978; MaCurdy, 1982; Abowd and Card, 1989; among others), whereas

the modelling of the conditional variance, or higher order moments of the process, has been mostly neglected.1

However, in many applications it is important to understand also the behavior of the variance. This is the case

if we consider an individual trying to forecast her future earnings, in order to guide savings or other decisions.

As the individual faces various sorts of risk, she will be interested in forecasting not only the level of earnings

but also its variability. Moreover, this person would act very differently if she knows that the risk she suffers

is permanently higher, than if it is only due to a period of higher volatility. The properties of the individual

variances are thus fundamental both for describing wage profiles over time and for better understanding

what drives fluctuations on them. In fact, some recent studies stress the relevance of considering a variance

that varies over time and across individuals (Meghir and Windmeijer, 1999; Chamberlain and Hirano, 1999;

Meghir and Pistaferri, 2004; Albarrán, 2004; Alvarez and Arellano, 2004; Jensen and Shore, 2008).

A second literature studies the increase in the cross-sectional variance of earnings in the United States

since the late 1970s (Autor et al., 2008). This growth in the variance among individuals is associated with

an increase in the aggregate inequality. However, we do not know much how the conditional variance of

wages behaves during a period of increasing aggregate inequality.

In this paper I propose a model for the conditional variance of wages with the two main ingredients that

are also present in the conditional mean: individual unobserved heterogeneity and dynamics. In addition,

the model is estimated on data drawn from the Panel Study of Income Dynamics (PSID).

In particular, I build a dynamic panel data model with linear individual fixed effects in the conditional

mean and multiplicative individual effects in an autoregressive conditional heteroskedasticity (ARCH) vari-

ance function.2 It is well known that failure to control for this individual heterogeneity can lead to misleading

conclusions. This problem is particularly severe when the unobserved heterogeneity is correlated with ex-

planatory variables. Such a situation arises naturally in a dynamic context. Here, I adopt a fixed effects

1One important exception to this is Meghir and Pistaferri (2004) as explained below.
2Therefore, with this model, we can say to what extent the time evolution of the variance is determined by state dependence

effects or by permanent unobserved individual heterogeneity.
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perspective leaving the distribution for the unobserved heterogeneity completely unrestricted and treating

each effect as one different parameter to be estimated.

There is an extensive literature on how to estimate linear panel data models with fixed effects (see

Chamberlain, 1984, and Arellano and Honoré, 2001, for references), but there are no general solutions for

non-linear cases. If the number of individuals n goes to infinity while the number of time periods T

is held fixed, estimation of non-linear models with fixed effects by maximum likelihood suffers from the

so-called incidental parameters problem (Neyman and Scott, 1948). This problem arises because the un-

observed individual characteristics are replaced by inconsistent sample estimates that bias the estimates

of the model parameters. In particular, the bias of the maximum likelihood estimator (MLE) is of or-

der 1/T . The most recent reaction to the fact that micro panels are short is to ask for approximately

unbiased estimators as opposed to estimators with no bias at all. This approach has the potential of

overcoming some of the fixed-T identification difficulties and the advantage of generality. Methods of

estimation of nonlinear fixed effects panel data models with reduced bias properties have been recently

developed (see Arellano and Hahn, 2007, for a review). There are automatic methods based on simu-

lation (Hahn and Newey, 2004; Dhaene and Jochmans, 2009), bias corrections based on orthogonalization

(Cox and Reid, 1987; Lancaster, 2002) and their extensions (Woutersen, 2002; Arellano, 2003a), and cor-

rections based on bias reducing priors (Bester and Hansen, 2007; Arellano and Bonhomme, 2009), analyt-

ical bias corrections of estimators ( Hahn and Newey, 2004; Hahn and Kuersteiner, 2004), of the moment

equation (Carro, 2007; Fernández-Val, 2009) and of the concentrated likelihood (DiCiccio and Stern, 1993;

Severini, 1998; Pace and Salvan, 2006; Bester and Hansen, 2009).3

Following this perspective, I consider a modified likelihood function for estimation and inference. Using

a bias-corrected concentrated likelihood makes it possible to reduce the estimation bias to a term of order

1/T 2, without increasing its asymptotic variance (Arellano and Hahn, 2006). This is very encouraging since

the goal is not necessarily to find a consistent estimator for fixed-T , but one with a good finite sample

performance and a reasonable asymptotic approximation for the samples used in empirical studies.

The small sample performance of the bias corrected estimator is investigated first in a Monte Carlo

exercise. The simulation results show that the bias of the MLE is substantially corrected for sample designs

that are broadly calibrated to the one used in the empirical application. Then the empirical analysis is

conducted on data on the annual earnings of prime-age males, as is typical in this literature. The empirical

results show that it is important to account for individual unobserved heterogeneity and dynamics in the

variance, and that the latter is driven by job mobility. The model also explains the non-normality observed

in logwage data.

In a similar sample for male earnings, Meghir and Pistafferi (2004) also find strong evidence of state

3So far there are not general theoretical properties in the literature that would help us to narrowing the choice between
these alternative bias reducing estimation methods.
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dependence effects as well as evidence of unobserved heterogeneity in the variances.4 However, there exist

two important differences between their paper and this one, both in terms of the model and the estimation

method. First, they consider a two-shock model, which is assumed to consist of a permanent and a transitory

component (both unobserved), and they propose a particular specification for the conditional variance of

each shock. On the contrary, I consider a parsimonious single-shock model and propose a specification for

the conditional variance of the observed variable, that is, the individual earnings.5 Second, with respect

to the estimation method, Meghir and Pistafferi (2004) recover orthogonality conditions and implement a

within-group GMM estimator which is only consistent when T → ∞ and has a bias of order 1/T in a

fixed-T context.6 In addition, their method depends critically on the linear specification they asume for

the conditional variances. The bias-corrected likelihood approach adopted in this paper is consistent when

T → ∞, but it also reduces the estimation bias to a term of order 1/T 2.7 Moreover, one of the main

advantages of the present approach over other methods for estimating non-linear panel data models is its

generality, that is, the estimation method does not depend on specific assumptions related to functional

forms. In this paper I use an exponential specification that implies a conditional variance that is always

nonnegative regardless of the parameter values and, in addition, it has a known steady-state distribution

(Nelson, 1992); but the same approach could also be used without major changes in other models and, in

particular, in a quadratic specification as the one used in Meghir and Pistafferi (2004).8

Summing up, the contributions of the paper are twofold. First, from a methodological perspective, I

adapt a version of the modified likelihood based on Arellano and Hahn (2006) to a dynamic conditional

variance model. Second, from a practical point of view, I show how to apply this new methodology in a

relevant empirical context. Two limitations of the current analysis are the following: (i) so far there is not

adjustment for measurement error; and (ii) there is not explicit treatment of job changes. It is known that

measurement error may be important for PSID earnings data and that part of the variance in wages may

be due to job mobility, so these issues need to be addressed in further work.

The rest of the paper is organised as follows. Section 2 presents the nonlinear dynamic model and

the likelihood function. Section 3 reviews alternative approaches for correcting the concentrated likelihood

adapted to this particular setting. Section 4 studies the finite sample performance of the bias correction in

simulated data. Section 5 shows the estimates from the empirical application on individual earnings. Finally,

Section 6 concludes with some remarks on a future research agenda.

4Also Lin (2005), using a subsample of the dataset considered by Meghir and Pistaferri (2004), finds statistically significant
evidence of ARCH effects in earnings dynamics. He considers an ARCH-fixed effects estimator in a “quasi-linear” setting. Here
I consider a different econometric framework, which allows me to handle models with multiple effects and estimators without
being constrained to the availability of differencing schemes.

5Meghir and Windmeijer (1999) and Albarrán (2004) use single-shock models as well but without an application to data.
6Notice that although the MLE also has a bias of order 1/T , the within-group GMM estimator is asymptotically inefficient

because it uses arbitrary non-optimal moment conditions. The reason why they cannot do fixed-T consistent GMM estimation
is due to a problem of weak instruments.

7The difference between having an estimator with a fixed-T bias of order 1/T as opposed to our estimator which has a bias
of order 1/T 2 is not negligible, as shown in Section 4 in the simulations for the MLE.

8These differences are discussed in more detail below.
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2 The Model and the Likelihood Function

In this section, I present a model for the heterogeneity and dynamics of the conditional mean and the condi-

tional variance of individual wages, given past observations and unobserved characteristics. This specification

would be useful for estimating the conditional distribution of earnings (Chamberlain and Hirano, 1999) and

for describing how shocks propagate along that distribution.

2.1 A Model for the Propagation of Shocks

For the conditional mean of standardized logwages I consider an autoregressive specification where i and t

index individuals and time, respectively:9

yit = η1i + αyit−1 + eit; (i = 1, ..., n; t = 1, ..., T ) ,

where {yi0, ..., yiT }
n
i=1 are the observed data,10 η1i describes permanent differences across individuals, eit

reflects shocks that individuals receive every period, and the parameter α measures the persistence on the

level of wages to those shocks (net of individual unobserved heterogeneity).11

Regarding the variance of the process, most of the literature has generally assumed homoskedastic shocks

or it has been done inference for α robust to heteroskedasticity. But I am interested in a model for the

propagation of shocks along the distribution of individual wages, not only the conditional mean. So I also

consider a model for the conditional variance that changes over time and across individuals according to the

following specification:

yit = η1i + αyit−1 + eit = η1i + αyit−1 + h
1/2
it ǫit,

hit = exp {η2i + β [|ǫit−1| − E (|ǫit−1|)]} ,

where eit is thus an exponential ARCH process, in which the η2i’s are individual fixed effects, ǫit are i.i.d.

shocks with zero mean and unit variance, and β measures the persistence on the volatilities of wages to

those shocks (net of individual heterogeneity).12 This formulation implies that hit is always nonnegative,

regardless of the values of the parameter (Nelson, 1992).13

Similarly to the mean, this model captures two patterns of wage volatility. The first one is individual

heterogeneity, η2i, meaning that wages of different individuals can vary differently. For instance, there can be

permanent differences on the volatilities of wages between civil servants and workers of a sales department

and also between workers of sales departments in big and small firms. The second one is dynamics, β,

reflecting the response on the volatility of wages to idiosyncratic shocks (large shocks may translate into

larger subsequent volatilities).

9In case of unbalanced panels, Ti should be indexed on individuals. I omit the subindex to simplify the notation.
10I assume that yi0 is observed for notational convenience, so that the actual number of waves in the data is T + 1.
11I focus on a first-order process to simplify the presentation and because this specification turns out to be a good description

of the data used in the empirical analysis for the idiosincratic part of the variation, net of aggregate shocks (see section 5).
12Notice that the estimation method that I consider is not dependent on this particular specification.
13In the empirical analysis, we approximate the absolute value function by means of a differentiable function.
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The following two equations summarize the model so far:

E
(
yit|y

t−1
i , hi1,ηi

)
= η1i + αyit−1,

V ar
(
yit|y

t−1
i , hi1,ηi

)
= h (ǫit−1, η2i) = exp {η2i + β [|ǫit−1| − E (|ǫit−1|)]} ,

where ηi = (η1i, η2i)
′

is the vector of individual fixed effects.14

2.2 The Individual Likelihood Function

I complete the specification with a normality assumption15 and an assumption about initial conditions.

Under the assumption that ǫit ∼ N(0, 1) the model, given past observations and individual characteristics,

is normal heteroscedastic. Formally,

ǫit|y
t−1
i , hi1,ηi ∼ N(0, 1) ⇒ yit|y

t−1
i , hi1,ηi ∼ N(η1i + αyit−1, hit).

Then, the individual likelihood, conditioned on initial observations and fixed effects, is:

f (yi1, ..., yiT |yi0, hi1,ηi0) =

T∏

t=1

f
(
yit|y

t−1
i , hi1,ηi0, θ0

)
,

where θ = (α, β)
′

denotes the vector of common parameters.

The log-likelihood for one observation, ℓit, differs from the linear model with normal errors through the

time-dependence of the conditional variance. For any individual i and t > 1, I have:

ln f
(
yit|y

t−1
i , hi1,ηi, θ

)
= ℓit (θ, ηi) ∝ −

1

2
lnh (ǫit−1, η2i) −

1

2

(yit − αyit−1 − η1i)
2

h (ǫit−1, η2i)
,

but evaluation of the likelihood at t = 1 requires pre-sample values for ǫ2it and hit.

Initial conditions. For t = 1,

yi1 = αyi0 + η1i + h
1/2
i1 ǫi1,

where hi1 = h (yi0, yi,−1, yi,−2, ..., ηi). This is a model for f
(
yi1|yi0, yi(−1), yi(−2), ..., ηi0

)
or for f (yi1|yi0, ǫi0, ηi0)

where ǫi0 resumes all the past values of yit. Here, I make the additional assumption that hi1 is given by the

steady-state unconditional variance of eit given fixed effects:

ϕ (ηi, θ) = plimT→∞

1

T

T∑

t=1

(yit − αyit−1 − η1i)
2
.

Following Bollerslev (1986), I approximate this function by the mean of the squared residuals:

hi1 ≈
1

T

T∑

t=1

e2
it.

14In the sequel, for any random variable (or vector of variables) Z, zit denotes observation for individual i at period t, and
zt
i = {zi0, ..., zit} the set of observations for individual i from the first period to period t.
15See section 5 for a check of the validity of this assumption on real data.
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Therefore, the individual likelihood function becomes:

Li (θ, ηi) =

T∏

t=2

1

h
1/2
it

φ

(
yit − αyit−1 − η1i

h
1/2
it

)
·

1

h
1/2
i1

φ

(
yi1 − αyi0 − η1i

h
1/2
i1

)
,

where

hit =





1
T

T∑
t=1

e2
it if t = 1,

exp {η2i + β [|ǫit−1| − E (|ǫit−1|)]} if t > 1,

and φ (·) denotes the probability density function of a standard normal variable.

3 Correcting the Likelihood Function

In this section, I adopt an analytically bias corrected approach that deals with dynamics and multiple fixed

effects in the estimation of a nonlinear panel data model.

3.1 The Bias-Corrected Concentrated Likelihood

The MLE of θ, concentrating out the ηi, is the solution to:

θ̂ ≡ arg max
θ

1

n

n∑

i=1

[
1

T

T∑

t=1

ℓit (θ, η̂i (θ))

]
; η̂i (θ) ≡ arg max

ηi

1

T

T∑

t=1

ℓit (θ, ηi) .16 (1)

In the context of nonlinear models, fixed effects MLE suffers from the incidental parameters problem noted

by Neyman and Scott (1948). In this case, the incidental parameters would be the individual effects ηi. The

problem arises because these unobserved individual effects are replaced by noisy sample estimates. As only

a finite number T of observations are available to estimate each ηi, the estimation error of η̂i (θ) does not

vanish as the sample size n grows, and this error contaminates the estimate of the common parameter due

to the nonlinearity.

Formally, let

L (θ) ≡ lim
n→∞

1

n

n∑

i=1

E

[
T∑

t=1

ℓit (θ, η̂i (θ))

]
.

Then, from the usual maximum likelihood properties, for n → ∞ with fixed-T , θ̂T = θT + op (1) , where

θT ≡ arg maxθ L (θ) . In general, θT 6= θ0, but θT → θ0 as T → ∞.

An alternative approach to describe the same problem is the following. Due to the noise in estimating

the individual effects, the expectation of the concentrated likelihood is not maximized at the true value of

the common parameter, θ0. In fact, the bias in the expected concentrated likelihood at an arbitrary θ can

16The ML estimates for the individual fixed effects would be obtained as

η̂i ≡ η̂i

(
θ̂
)

= arg max
ηi

1

T

T∑

t=1

ℓit

(
θ̂, ηi

)
.
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be expanded in orders of magnitude of T :

E

[
1

T

T∑

t=1

ℓit (θ, η̂i (θ)) −
1

T

T∑

t=1

ℓit (θ, η̄i (θ))

]
=

βi (θ)

T
+ o

(
1

T

)
,

where η̄i (θ) maximizes a unfeasible (and unbiased) target likelihood limT→∞ E
[
T−1

∑T
t=1 ℓit (θ, ηi)

]
. The

idea behind the analytically bias-adjusted approach is to avoid the problem of having an expected con-

centrated likelihood that is not maximized at the true value of the θ, by correcting the likelihood itself.

Therefore, I will consider an estimator that maximizes a bias-corrected concentrated likelihood function like:

θ̂BC ≡ arg max
θ

1

n

n∑

i=1

[
T∑

t=1

ℓit (θ, η̂i (θ)) − βi (θ, η̂i (θ))

]
.17 (2)

Letting βi be an adjustment term, the bias-corrected MLE (BCE), θ̂BC , will be less biased than the

MLE, θ̂. For further discussion on the estimation method and a formal analysis of the asymptotic properties

of the bias-corrected estimators when n and T grow at the same rate see Arellano and Hahn (2006).

3.2 Estimation of the Bias

The form of the approximate bias is:

βi (θ) ≈
1

2
trace

(
H−1

i (θ, ηi) Υi (θ, ηi)
)
,

where

Hi (θ, ηi) ≡ −
1

T

T∑

t=1

∂2ℓit (θ, ηi)

∂ηi∂η′

i

,

Υi (θ, ηi) ≡

m∑

l=−m

ωT,lΓl (θ, ηi) ,

and

Γl (θ, ηi) ≡
1

T

min(T,T+l)∑

t=max(1,l+1)

[
∂ℓit (θ, ηi)

∂ηi
·
∂ℓit−l (θ, ηi)

∂η′

i

]
.18

In practice, for estimating the bias I use the corresponding sample counterparts. The quantity m is a

bandwidth parameter and ωT,l denotes a weight that guarantees positive definiteness of Υi (θ, ηi).
19

Interpretation of the Bias Expression. The two objects involved in the expression for the bias

(i.e. the inverse hessian and the outer product term) are very familiar in a likelihood setting. In terms of

17Now, the corresponding estimates for the individual fixed effects would be obtained as

η̂BC
i ≡ η̂i

(
θ̂BC

)
= arg max

ηi

1

T

T∑

t=1

ℓit

(
θ̂BC , ηi

)
.

18Detailed derivations are given in the Appendix 7.1.
19In principle, m could be chosen as a suitable function of T to ensure bias reduction but, given that in practice T will be

small and that the procedure is known to fail for values of m at both ends of the admissible range (m = 0 and m = T − 1), m
will be chosen equal to 1, 2 or 3. Regarding ωT,l, I use Bartlett weights.
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the Information Identity, the bias would have the interpretation of a penalty to the expected concentrated

likelihood for being apart from the true value, θ0 (Bester and Hansen, 2009).

Standard Error Estimates. I calculate standard errors of the estimates using Individual Block-

Bootstrap, that is fixed-T large-n non parametric bootstrap. The assumption of independence across in-

dividuals allows me to draw complete time series for each individual to capture the time series dependence.

Therefore, I draw yi = (yi1, ..., yiTi
)
′

S times to obtain the simulated data
{
y
(s)
i , y

(s)
i(−1)

}S

s=1
. Then, for each

sample, I compute the corresponding estimates of the common parameters

{(
θ̂, θ̂BC

)(s)
}S

s=1

, and calculate

the empirical distribution as an approximation of the distribution of θ̂ and θ̂BC .20

3.3 Alternative bias reducing estimation methods

In this subsection, I discuss the relationship between the analytically bias-corrected likelihood approach and

other bias adjusted estimation methods for nonlinear panel data models with fixed effects that have been

recently developed.

Carro (2007) considered an estimator of a dynamic probit model with a scalar fixed effect that relied

on an analytical bias correction to the moment equation. His correction, inspired in a generalization of

Cox and Reid (1987), involved both sample and analytical expected likelihood derivatives. In the present

context, a generalization of Carro’s estimator to multiple effects would be infeasible because the corre-

sponding expected quantities lack closed form expressions. They would need to be replaced by numerical

approximations, leading to a different type of estimator with unknown properties.

Hahn and Kuersteiner (2004) considered a bias corrected estimator for a general dynamic model with a

scalar fixed effect using sample likelihood derivative quantities evaluated at maximum likelihood estimates.

The method I use is equivalent to using a bias correction of the score as opposed to a bias correction of

the estimator, hence implicitly updating in estimation the values of the parameters at which corrections are

evaluated. Moreover, formulating the correction at the level of the likelihood, as I do, provides an objective

function based method and greatly simplifies the form of the correction term, both relative to corrections

of estimators or of moment equations, specially with multiple effects. Thus, the expression for the bias in

the likelihood, in the case of multiple fixed effects, is much simpler than in the moment equation or in the

estimator itself.

The analytic correction used in this paper is closely related to the penalty function independently obtained

by Bester and Hansen (2009).21 In fact, the estimator in (2) is equivalent to

(
θ̂BC

η̂BC

)
= arg max

θ,η

1

n

n∑

i=1

[
T∑

t=1

ℓit (θ, η) − βi (θ, η̂i (θ))

]
,

20Notice that, contrary to the block bootstrap procedure used in the time-series literature (Horowitz, 2003), here I do not
need to choose any bandwidth.

21More specifically to the HS penalty that they consider.
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whereas the one proposed in Bester and Hansen would be

(
θ̃BC

η̃BC

)
= arg max

θ,η

1

n

n∑

i=1

[
T∑

t=1

ℓit (θ, η) − βi (θ, η)

]
,

or, equivalently,

θ̃BC ≡ arg max
θ

1

n

n∑

i=1

[
T∑

t=1

ℓit (θ, η̃i (θ)) − βi (θ, η̃i (θ))

]
,

where

η̃i (θ) ≡ arg max
ηi

[
T∑

t=1

ℓit (θ, ηi) − βi (θ, η)

]
.

Under general conditions, η̃i (θ) is asymptotically equivalent to η̂i (θ), so θ̃BC will have similar bias-reducing

properties as θ̂BC .

4 Monte Carlo Study

The practical importance of the bias corrections depends on how much bias is removed for the small T

that is often relevant in econometric applications. In this section, the small sample performance of the

bias-corrected estimator BCE, θ̂BC , is explored relative to the fixed effects MLE, θ̂, in an AR(1)-EARCH(1)

specification broadly calibrated to the one used in the empirical application, in terms of the sample size, the

panel dimensions, and the variability across individuals, as detailed below.

The model design is the following

yit = αyit−1 + η1i + h
1/2
it ǫit, (t = 1, ..., T ; i = 1, ..., n)

hit = exp

(
η2i + β

[√
ǫ2it−1 + Λ −

√
2/π

])
,

ǫit ∼ N(0, 1),

where Λ is a small positive number used to approximate the absolute value function by means of a rotated

hyperbola, and
√

2/π is an approximation for E (|ǫit−1|) given that ǫit ∼ N(0, 1).

The process was started at yi0 = 0, then 700 time periods are generated before the sample actually

starts. The data were generated with η1i ∼ N (0, 1) , and η2i ∼ N (−2, 1) . Other model parameters are set

as follows: T = {8; 16}, n = {200; 2, 000}, and θ = (α = {0.5; 0.0} , β = {0.5; 0.0})
′

. Then, 100 Monte Carlo

replications are used for each design, with just ǫit redrawn in each replication, and I draw yi 50 times, at

each stage, to obtain the simulated data for the individual block-bootstrap.22

22As explained in Section 5, in the empirical analysis I use data on 2,066 individuals for the period 1968-1993 of the PSID.
It is a very unbalanced panel with, on average, 16 time observations per individual. In addition, the sample is restricted to
individuals with at least nine years of usable wages data. This means that, conditional of the initial observations yi0, Ti would
be at least 8. For these reasons I initially set T = {8; 16}, and n = 2, 000. Eventually, I have also simulated the model for
n = 200, because I expect the bias corrected estimators to improve much more with T than with n, whereas a smaller n speeds
up computation. The values chosen for the parameters that determine the distributions of the unobserved individual effects
try to mimic the behavior of similar moments in the data. In the case of η1i, the values 0 and 1 approximate, respectively, the
mean and variance of the sample distribution of individual means on logwage data. Analogously for η2i, -2 and 1 approximate
the mean and variance of the sample distribution of individual logvariances.
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The vector of common parameters, θ, is estimated by maximum likelihood, θ̂, and applying the ana-

lytically bias-corrected estimator with m = 2, θ̂BC , defined in equations (1) and (2), respectively. Given

the complexity of the design, I can not get a closed form solution for the estimator of the individual fixed

parameters as a explicit function of θ. Therefore, to maximize the likelihood function, I use a double Quasi-

Newton’s method algorithm. In each step of the algorithm, η̂i (θ) is computed such that, for that given value

of θ, the individual likelihood is maximized with respect to ηi.
23 The same procedure applies for the bias

corrected likelihood.24

I present results for two different data generating processes: one with scalar individual fixed effects (one

in which η1i is omitted), and another with multiple fixed effects (the one described above). Tables 1 and

2 report the median bias, the median absolute error and the sample standard deviation, along with the

standard error and the corresponding 0.95 coverage rates for each design.25 Failure refers to the fraction of

cases of divergence or failure to converge in the nonlinear solution over the 100 Monte Carlo replications.

Table 1 reports the results corresponding to the DGP with scalar fixed effects for n = 200.26 Given that

the design does not included individual effects in the mean, the estimate of α is almost not biased. On the

contrary, the MLE of β is seriously downward biased, even for T = 16. After applying the correction, the

estimate for β is closer to the true value of the parameter, specially when T = 16. In addition, we can see

that the standard errors estimated by individual block-bootstrap represents a good approximation to the

Monte Carlo standard deviation.

Table 2 reports the results corresponding to the DGP with multiple fixed effects for n = 200. Once again,

the bias-corrected estimator can remove a substantial part of that bias, now both in the estimate of α and

β, when T is relatively small.

5 Estimation Results

In this section, I apply the analytically bias-corrected likelihood methodology to estimate an empirical model

for the conditional mean and the conditional variance of prime-age male earnings. As Meghir and Pistafferi

(2004), I use data on 2,066 individuals for the period 1968-1993 of the PSID. It is an unbalanced panel

with 32,066 observations. We select male heads aged 25 to 55 with at least nine years of usable wages data.

Step-by-step details on sample selection are reported in Appendix 7.2. Sample composition by year and

demographic characteristics are presented in Appendix 7.3.

The dependent variable is annual real wages of the heads, so we exclude other components of money

income for labour as labour part of farm income, business income, overtime, commissions, etc. Figures 1

23Strictly speaking, I compute n individual maximizations inside the one for θ.
24In addition, for computing the analytical bias expression I need to calculate numerical derivatives.
25The coverage rate reports the fraction of times the .95 confidence interval contained the true value, with the confidence

interval obtained by the 0.025 -0.975 quantiles of the distribution of the 50 bootstrap-sample estimates.
26I do not report here the results for n = 2, 000, because - as expected - increasing the number of individuals from n = 200

to n = 2, 000 has little effect on the magnitude of the estimated bias.
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and 2 plot the mean and the variance of log real wages against time for education group and for the whole

sample. These figures look very similar to the ones in Meghir and Pistaferri (2004, pp. 4-5) and, as they say,

reproduce well known facts about the distribution of male earnings in the U.S. (Levy and Murnane, 1992).

5.1 Estimation of the Model

The dependent variable that I use in the estimation, yit, is logwages residuals from first stage regressions

on year dummies, education, a quadratic in age, dummies for race, region of residence, and residence in

a SMSA.27 In this version of the model, I deal with aggregate effects in the variance by regarding yit as

standardized wages.28

The equation estimated is

yit = αyit−1 + η1i + h
1/2
it ǫit, (t = 1, ..., Ti; i = 1, ..., n)

hit = exp

(
η2i + β

[√
ǫ2it−1 + Λ −

√
2/π

])
. (3)

Given the results in the previous section, I estimate the vector of common parameters, θ, by maximum

likelihood and using the analytically bias-corrected estimator. The first two columns in Table 3 summarize

the estimation results. As in the Montecarlo exercise, I obtain that the maximum likelihood estimate is below

the corrected one. In fact, after applying the bias correction, I obtain estimates for both parameters over

0.5. Not only the persistence in the mean is significant. Also the state dependence effects in the volatility of

wages seem important.

Correlations between unobserved heterogeneity and observed outcomes. The main advantage

of adopting a fixed effects perspective is that we can capture unobserved permanent heterogeneity among

individuals in a very robust way. If we were able to observe that individual heterogeneity, including observed

measures would be much better in terms of estimation. However, many individual characteristics are usually

unobserved for the econometrician, as in the regression summarized below.

Another nice feature of this approach is that we obtain estimates of the individual fixed effects and,

therefore, we can evaluate the relation between those effects and measurable outcomes.

Table 4 reports projection coefficients and bootstrap standard errors from linear regressions of the es-

timated fixed effects in the volatilities of logwages on some observed outcomes for the individuals in the

sample.29,30 Results show that being married, older, and white, are negatively associated with individual

27In earnings dynamics research it is standard to adopt a two step procedure. In the first stage regression, the log of real
wages is regressed on control variables and year dummies to eliminate group heterogeneities and aggregate time effects. Then,
in the second stage, the unobserved heterogeneity and dynamics of the residuals are modelled. Given the large samples that
are used to form the residuals, the fact that the estimation is performed in two stages is of little consequence.

28I define standardized logwages yit as the individual logwages net of aggregate effects both in the mean, µt, and in the
variance, σ2

t . Formally,
log wit = µ̂t + σ̂tyit.

where µ̂t and σ̂2
t are calculated each year as the sample mean and the sample variance, respectively.

29For variables that change over time, we take as a reference point the last observation for each individual in the sample.
30We also compute the sample correlation between the effects in levels and in the variances. We find a negative correlation,

meaning that higher levels of earnings are related with lower volatilites.

11



fixed effects in the variance. Also, being a technical worker, a manager, or having large values of tenure.

On the other hand, being a sales or a services worker, having moved from one job to other at least once, or

having a low educational degree, are associated with higher volatility. The direction of the association is the

one that one would expect.

Risk Tolerance. The 1996 wave of the PSID includes a module on risk preferences data. The index of

risk tolerance (inverse of risk aversion) is obtained from answers to hypothetical questions about lotteries,

as designed by Barsky et al. (1997). For those individuals with information available on the risk tolerance

index (around 54 per cent of the original sample), we run a simple regression of the estimated individual

fixed effects over dummies for each index category.31 Figure 3 shows the estimated coefficients (solid line)

along with the corresponding 0.95 confidence intervals (dotted lines) obtained by bootstrap. As shown in

the figure, risk-tolerant individuals seem to be associated with higher values of the individual fixed effects

in the variance, whereas the pattern is less clear for the fixed effects in the mean. However, the differences

are not statistically significant.

5.2 Checking for Nonnormality

In this section, I apply deconvolution tecniques as in Horowitz and Markatou (1996) to estimate the dis-

tribution of the errors and check the normality assumption. Although the assumption of normality is not

necessary for the validity of the analytically bias-corrected estimator, checking this distributional assumption

turns out useful for other purposes as illustrated below.

The tecnique that I use is a normal probability plot of residuals in first-differences, as shown in Figure 4.

The differenced residuals are represented in the x-axis, whereas the values in the y-axis represent the inverse

normal of the cumulative distribution of the empirical distribution of the data. If the data are approximately

normally distributed, the points should form an approximate straight line.32

The top part of Figure 4 shows the normal probability plot of the residuals in first-differences.33 The

figure indicates that the tails of the distribution of errors are thicker than those of the normal distribution.

The bottom part of Figure 4 reports the corresponding plot for the standardized residuals in first-differences.

Now, we obtain almost a straight line meaning no departure from normality. Similar conclusions may be

reached in terms of the kurtosis of those distributions, as reported in Table 5, given that the kurtosis for the

31The index can take values .15, .28, .35 and .57.
32The figure also contains the corresponding pointwise confidence intervals, displayed as dotted lines.
33Estimated residuals and estimated standardized residuals respectively defined as

êit = yit − α̂BCyit−1 − η̂1i.

and

ǫ̂it =
yit − α̂BCyit−1 − η̂1i

h
1/2

it (η̂2i, ǫ̂it−1)
,

where
hit (η̂2i, ǫ̂it−1) = exp

{
η̂2i + β̂BC

[
|ǫ̂it−1| −

√
2/π

]}
.
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standardized residuals in first-differences is closer to 3.

Fit of the model. Given the distributional assumption, the initial conditions and the parameter

estimates, θ̂BC and η̂i, now I simulate an unbalanced panel of standardized logwages observations with

the same dimension as the PSID sample, and - with this simulated panel - I evaluate the fit of the model.

Figure 5 shows the kernel densities of logwages in the data and according to the model. The main conclusion

is that the model does a good job fitting the data.

5.3 Individual Heterogeneity

Similarly to the previous exercise, in this section I conduct counterfactuals to evaluate the existence of

individual heterogeneity on the data.

The first one - Counterfactual 1 - is obtained using the model, the observed initial conditions and the

parameter estimates, θ̂BC and η̂2i, but now with η1i = η̄1,∀i, where η̄1 = N−1
∑N

i=1 η̂1i. The second -

Counterfactual 2 - is generated using the model, the initial conditions and the parameter estimates, θ̂BC

and η̂1i, but now with η2i = η̄2,∀i, where η̄2 = N−1
∑N

i=1 η̂2i.

Figure 6 reports the distribution of individual sample means on real logwage data, on simulated data and

for the counterfactual 1 (η1i = η̄1,∀i). Analogously, Figure 7 shows the distribution of individual logvariances

on real data, simulated data and counterfactual 2 (η2i = η̄2,∀i). In the figures, we can see that there exists

significant variation across individuals not only in the means but also in the variances, and this variation is

successfully captured by the model.

Moreover, using these counterfactuals we can say how much of the variance in logwages is due to individual

heterogeneity in the mean and how much due to individual heterogeneity in the variance. In particular, for

the counterfactual 1, the sample variance of logwages is equal to 0.7345, whereas for the counterfactual 2 the

corresponding sample variance is 0.8718. That is, variation in η̂1i accounts for by 26 per cent of the total

variation in logwages, whereas variation in η̂2i accounts for by 13 per cent.

5.4 Quantiles of log normal wages

Regarding dynamics, given the model specification, we can calculate the effects of the propagation of past

shocks at different parts of the wage distribution. As derived in Appendix 7.4, I estimate mean marginal

effects of past shocks over different quantiles of the logwage distribution as

Ê

(
∂Qτ (yit)

∂ǫit−s

)
=

1

NT

N∑

i=1

T∑

t=1

[
∂Qτ (yit)

∂ǫit−s

]
=

1

NT

N∑

i=1

T∑

t=1

[
∂µit

∂ǫit−s
+ qτ

∂h
1/2
it

∂ǫit−s

]
,

with

µit = αyit−1 + η1i,

hit = exp
(
η2i + β

[(
ǫ2it−1 + Λ

)1/2
− (2/π)

1/2
])

.
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where Qτ (yit) is the τth quantile of the logwage distribution and qτ the τth quantile of the N(0, 1).

The first row in Table 6 reports the estimates with respect to ǫit−1, and the second row the corresponding

estimates for ǫit−2. The main result is that past shocks seem to have some effect over logwages even two

periods later. Moreover, it seems that the effects with respect to ǫit−1 increase slightly with the quantiles,

althought - as shown in Figure 8 - these differences are not statistically significant.

5.5 Job changes

The model abstracts for specific reasons for shocks as, in particular, job changes. Modelling job mobility is

out of the scope of the paper but, to evaluate in an informal way if state dependent effects are related to job

changes, I consider a sample where individuals in different jobs are treated as different individuals.34

I apply the same sample selection as before and use data on 1,346 individuals and 17,485 observations.

Results are reported in the second block of two columns in Table 3. We can see that the significant ARCH

effects in the variance disappears as soon as we consider a sample without job changes.

5.6 Measurement Issues

As stated in the Introduction, in this model there is not adjustment for measurement error although it is

known that reporting errors may be important for PSID earnings data. Error components models for the

covariance structure of earnings can easily accomodate a measurement error component. On the contrary, in-

cluding a measurement component in the type of models like the one considered here, given the non-linearities,

is essentially more complicated, and beyond the limits of this paper. Nevertheless, my model would be still

consistent with a model in which a measurement error would be interpreted as a fixed effect, in line with some

recent findings of the literature on measurement error (Bound et al., 2001; Gottschalk and Moffitt, 2009).

Another relevant issue is the extent to which attrition from the PSID may have affected the results. In

this paper, I assume that attrition is all accounted for by the permanent characteristics in the individual

fixed effects. To provide some evidence for this I compare previous estimates in section 5.1 to those obtained

using only individuals who are 16 or more years in the sample (921 individuals). This kind of selection

mimics attrition bias since it eliminates individuals observed for a shorter time period. Looking at the

bias-corrected estimates in the third block of two columns in Table 3, the main conclusion is that they are

not very different to those reported in the first two columns.35

34A model in which individual heterogeneity is treated as fixed would work worse in a sample with many job changes. Instead,
I am considering

yijt = αyijt−1 + η1ij + eijt; individual i in job j,

yij′t = αyij′t−1 + η1ij′ + eijt; individual i in job j′,

as two different individuals.
35Fitzgerald et al. (1998) show that the PSID data set has experienced a significant amount of attrition, although there do

not find indications that this causes noticeable bias.
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5.7 Other Model Specification Options and Generality of the Estimation Method

Alternative Model Specifications. The model in this paper turns out to be a good description of the

data used in the empirical analysis for the idiosincratic part of the variation in earnings, net of aggregate

shocks. Apart from that, there are other reasons for preferring this particular specification.

First, the order of the autoregressive process can be determined empirically. I select a first-order process,

but I also tried a second lag and the corresponding estimated coefficient was not significant.

Second, for the ARCH function I select an exponential specification because it implies a conditional

variance that is always nonnegative regardless of the parameter values and, in addition, it has a known

steady-state distribution (Nelson, 1992). A linear specification in the squared shocks, like the one used by

Meghir and Pistafferi (2004), imposes some restrictions on the values of the parameters to guarantee the

convergence of high-order moments. In addition, their estimation method depends critically on the linearity

assumption. The bias-corrected likelihood approach adopted in this paper does not depend on specific

assumptions related to functional forms. Moreover, the bias corrected estimator has a bias of O
(
T−2

)
,

whereas the bias of the within-group GMM estimator used by Meghir and Pistafferi (2004) is of O
(
T−1

)
.

Finally, I choose a single-shock specification and model the conditional variance of the observed variable

to describe how shocks propagate along the earnings distribution. This is in contrast to models in the

tradition of Hall and Mishkin (1982), which distinguish between a permanent and a transitory shock. The

model in Meghir and Pistafferi (2004) belongs to this category. Their innovation is to make the variance

of each shock a function of individual effects and dynamics. A two-shock model can be mapped into a

one-shock model, but the mapping is not straightforward (Arellano, 2003b). Given that there is just one

observable variable, the identification of the two-shock model critically hinges on the unit root assumption

for the permanent component. However, when the autoregressive roots are estimated no evidence is found

of a unit root, at least not in my sample (see also Alvarez and Arellano, 2004, and Guvenen, 2009). In

the Hall and Mishkin (1982) approach a permanent income shock was interpreted as a common factor in a

bivariate model of consumption and income. However, from the point of view of developing a descriptive

model of distributional income dynamics using only income data, the one-shock approach seems natural. This

strategy connects directly with the perspective adopted in Chamberlain and Hirano (1999), who consider a

decision maker who estimates the distribution of future income on the basis of her own income and the

income of others using a panel such as PSID, but who lacks information on two latent shocks concerning

herself or other agents.

Generality of the Estimation Method. As mentioned before, one of the main advantages of the

bias-corrected approach over other methods is its generality. To illustrate this, I have also estimated the

following alternative model proposed by Meghir and Windmeijer (1999) using the analytically bias-corrected
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likelihood methodology:

yit = αyit−1 + η1i + g
1/2
it ǫit, (t = 1, ..., Ti; i = 1, ..., n)

git = exp

(
η2i + β

[√
y2

it−1 + Λ

])
. (4)

This is a convenient specification, in terms of building the moment conditions, but it is more difficult

to interpret because the conditional variance of eit, git, it is a function of the past values of the dependent

variable instead of the past values of the error.

The last two columns in Table 3 report the corresponding estimation results for the MLE, θ̂, and the

analytically bias-corrected estimator, θ̂BC . Although the estimates of β are a bit different, the main results

do not change.

6 Conclusions

In this paper I propose a model for the conditional mean and the conditional variance of individual wages. It

is a non linear dynamic panel data model with multiple individual fixed effects. For estimating the parameters

of the model, I assume a distribution for the shocks and apply bias corrections to the concentrated likelihood.

This corrects the bias of the estimated parameters from O
(
T−1

)
to O

(
T−2

)
, so the estimator has a good

finite sample performance and a reasonable asymptotic approximation for moderate T . In fact, Monte

Carlo results show that the bias of the MLE is substantially corrected for samples designs that are broadly

calibrated to the PSID dataset.

The main advantage of this approach is its generality. As we have seen, the method is generally applicable

to take into account dynamics and multiple fixed effects. Another advantage is that the fixed effects are

estimated as part of the estimation process.

The empirical analysis is conducted on data drawn from the 1968-1993 PSID dataset. In line with

some previous references, I find a corrected estimate for the autoregressive coefficient in the mean less than

1 (Alvarez and Arellano, 2004; Guvenen, 2009), and positive ARCH effects for the variance (Meghir and

Pistafferri, 2004). Job changes seem to be driving this dynamics in the variance. I also find important

permanent differences across individuals in the variance. In addition, it turns out that this location-scale

model explains the non-normality observed in logwage data.

Finally there are two issues, at least, that require further research: a more comprehensive model that

include job changes, and the comparison with female workers in terms of wage profiles.
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7 Appendix

7.1 First Order Bias of the Concentrated Likelihood at an arbitrary value of

the common parameter θ

Following Arellano and Hahn (2006, 2007), let me obtain the expression for the first order bias of the con-

centrated likelihood at an arbitrary value of the common parameter θ.

Let ℓi (θ, ηi) =
∑T

t=1 ℓit (θ, ηi) /T where ℓit (θ, ηi) = ln f (yit|yit−1, θ, ηi) denotes the log likelihood of one

observation. Let

η̄i (θ) = arg max
ηi

plimT→∞
ℓi (θ, ηi) ,

and

η̂i (θ) = arg max
ηi

ℓi (θ, ηi) ,

so that under regularity conditions η̄i (θ0) = ηi0.

Following Severini (2002) and Pace and Salvan (2006), the concentrated likelihood for unit i

ℓ̂i (θ) = ℓi (θ, η̂i (θ)) ,

can be regarded as an estimate of the unfeasible concentrated log likelihood

ℓ̄i (θ) = ℓi (θ, η̄i (θ)) .

Now, define

uit (θ, ηi) =
∂ℓit (θ, ηi)

∂θ
, vit (θ, ηi) =

∂ℓit (θ, ηi)

∂ηi
,

ui (θ, ηi) =
1

T

T∑

t=1

uit (θ, ηi) , vi (θ, ηi) =
1

T

T∑

t=1

vit (θ, ηi) ,

Hi (θ) = − lim
T→∞

E

[
∂vi (θ, η̄i (θ))

∂η′

i

]
.

When ηi0 is a vector of fixed effects, the Nagar expansion for η̂i (θ) − η̄i (θ) takes the form

η̂i (θ) − η̄i (θ) = H−1
i (θ) vi (θ, η̄i (θ)) +

1

T
Bi (θ) + Op

(
1

T 3/2

)
, (A.1)

where

Bi (θ) = H−1
i (θ)

[
Ξi (θ) vec

(
H−1

i (θ)
)

+
1

2
E

(
∂

∂η′
vec

∂vi (θ, η̄i (θ))

∂η′

)
′ (

H−1
i (η) ⊗ H−1

i (η)
)
vec (Υi (η))

]
,

Υi (θ) = Υi (θ; θ0, ηi0) = lim
T→∞

TE
[
vi (θ, η̄i (θ)) vi (θ, η̄i (θ))

′
]
,

Ξi (θ) = Ξi (θ; θ0, ηi0) = lim
T→∞

TE

[
∂vi (θ, η̄i (θ))

∂η′
⊗ vi (θ, η̄i (θ))

′

]
.
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Next, expanding ℓi (θ, η̂i (θ)) around η̄i (θ) for fixed θ,

ℓi (θ, η̂i (θ)) − ℓi (θ, η̄i (θ)) =
∂ℓi (θ, η̄i (θ))

∂η′
(η̂i (θ) − η̄i (θ))

+
1

2
(η̂i (θ) − η̄i (θ))

′ ∂2ℓi (θ, η̄i (θ))

∂η∂η′
(η̂i (θ) − η̄i (θ)) + Op

(
1

T 3/2

)

=
∂ℓi (θ, η̄i (θ))

∂Θ′
(η̂i (θ) − η̄i (θ))

+
1

2
(η̂i (θ) − η̄i (θ))

′

E

(
∂2ℓi (θ, η̄i (θ))

∂η∂η′

)
(η̂i (θ) − η̄i (θ)) + Op

(
1

T 3/2

)

= vi (θ, η̄i (θ))
′

(η̂i (θ) − η̄i (θ))

−
1

2
(η̂i (θ) − η̄i (θ))

′

Hi (θ) (η̂i (θ) − η̄i (θ)) + Op

(
1

T 3/2

)
.

Substituting (A.1)

ℓi (θ, η̂i (θ)) − ℓi (θ, η̄i (θ)) =
1

2
vi (θ, η̄i (θ))

′

H−1
i (θ) vi (θ, η̄i (θ)) + Op

(
1

T 3/2

)
.

Taking expectations

E [ℓi (θ, η̂i (θ)) − ℓi (θ, η̄i (θ))] =
1

2T
trace

(
H−1

i (θ) Υi (θ)
)

+ Op

(
1

T 3/2

)
.

So the bias in the expected concentrated likelihood at an arbitrary θ is

bi (θ) =
1

2
trace

(
H−1

i (θ)Υi (θ)
)
.

Thus,
N∑

i=1

T∑

t=1

ℓit (θ, η̂i (θ)) −

N∑

i=1

b̂i (θ) ,

is expected to be a closer approximation to the target likelihood than
∑N

i=1

∑T
t=1 ℓit (θ, η̂i (θ)) .

7.2 Sample Selection

Starting point: PSID 1968-1993 Family and Individual - merged files (53,005 individuals).

1. Drop members of the Latino sample (10,022 individuals) and those who are never heads of their

households (26,945 individuals) = Sample (16,038 individuals).

2. Keep only those who are continuously heads of their households, keep only those who are in the sample

for 9 years or more, and keep only those aged 25 to 55 over the period = Sample (5,247 individuals).

3. Drop female heads = Sample (4,036 individuals).

4. Drop those with a spell of self-employment, drop those with missing earnings, and drop those with

zero or top-coded earnings data = Sample (2,205 individuals).

5. Drop those with missing education and race records, and those with inconsistent education records =

Sample (2,148 individuals).
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6. Drop those with outlying earnings records, that is, a change in log earnings greater than 5 or less than

-3 and those with noncontinuous data = FINAL SAMPLE (2,066 individuals and 32,066 observations).

Table A.1. Sample selection

Number of individuals Meghir & Pistaferri (2004) Hospido (2009) Difference

Starting point 53,013 53,005 8

Latino subsample (10,022) 42,991 (10,022) 42,983 8

Never Heads (26,962) 16,029 (26,945) 16,038 -9

Heads, Age, Ti¿9 (11,490) 4,539 (10,791) 5,247 -708

Female (876) 3,663 (1,211) 4,036 -373

Self-employment, missing wages (1,323) 2,340 (1,831) 2,205 135

Missing education and race (187) 2,153 (57) 2,148 5

Outlying wages (84) 2,069 (82) 2,066 3

FINAL SAMPLE: Individuals 2,069 2,066

FINAL SAMPLE: Observations 31,631 32,066

7.3 Sample composition and descriptive statistics

Table A.2. Distribution of observations by year

Year Number of observations Year Number of observations Year Number of observations

1968 655 1977 1229 1986 1583

1969 694 1978 1263 1987 1536

1970 738 1979 1310 1988 1486

1971 780 1980 1380 1989 1434

1972 856 1981 1419 1990 1392

1973 943 1982 1464 1991 1348

1974 1018 1983 1506 1992 1315

1975 1098 1984 1559 1993 1256

1976 1178 1985 1626

Table A.3. Descriptive Statistics

1968 1980 1993

Age 36.99 36.61 41.45

(6.58) (9.22) (5.74)

HS Dropout 0.44 0.25 0.12

HS Graduate 0.41 0.55 0.60

Hours 2272 2153 2135

(573) (525) (560)

Married 0.84 0.83 0.83

White 0.68 0.66 0.69

Children 2.80 1.39 1.36

(2.06) (1.28) (1.23)

Family Size 4.90 3.53 3.51

(2.01) (1.58) (1.45)

North-East 0.18 0.16 0.16

North-Central 0.27 0.25 0.23

South 0.39 0.42 0.44

SMSA 0.68 0.67 0.53

Note: Standard deviations of non-binary

variables in parentheses.
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7.4 Quantiles of log normal wages

Let logwages y = log(w) ∼ N(µ, σ2) with cdf

Pr(log w ≤ r) = Φ

(
r − µ

σ

)
.

The τth quantile of the logwage distribution, Qτ (log w), is the value of r such that

Φ

(
Qτ (log w) − µ

σ

)
= τ,

so that
Qτ (log w) − µ

σ
= Φ−1 (τ) ≡ qτ ,

where qτ is the τth quantile of the N (0, 1) distribution. Given that

Pr(log w ≤ r) = Pr(w ≤ exp r),

so that

Pr(log w ≤ Qτ (log w)) = Pr(w ≤ expQτ (log w)) = τ,

and, therefore, the τth quantile of the wage distribution, Qτ (w), is

Qτ (w) = exp Qτ (log w) = exp (µ + qτσ) .

In the conditional case, regarding µ and σ as functions of log wit−1, we would write

∂ log Qτ (wit)

∂ log wit−1
=

∂µit

∂ log wit−1
+ qτ

∂σit

∂ log wit−1
,

and estimate mean elasticities at different parts of the wage distribution as

Ê

(
∂ log Qτ (wit)

∂ log wit−1

)
=

1

NT

N∑

i=1

T∑

t=1

[
∂ log Qτ (wit)

∂ log wit−1

]
=

1

NT

N∑

i=1

T∑

t=1

[
∂µit

∂yit−1
+ qτ

∂σit

∂yit−1

]
.

Alternatively, regarding µ and σ as functions of ǫit−1, we can write

∂Qτ (yit)

∂ǫit−1
=

∂µit

∂ǫit−1
+ qτ

∂σit

∂ǫit−1
,

and estimate mean marginal effects at different parts of the logwage distribution as

Ê

(
∂Qτ (yit)

∂ǫit−1

)
=

1

NT

N∑

i=1

T∑

t=1

[
∂Qτ (yit)

∂ǫit−1

]
=

1

NT

N∑

i=1

T∑

t=1

[
∂µit

∂ǫit−1
+ qτ

∂σit

∂ǫit−1

]
.

In general, we would obtain a impulse-response function considering different periods,

∂Qτ (yit)

∂ǫit−s
=

∂µit

∂ǫit−s
+ qτ

∂σit

∂ǫit−s
, for s > 1.

In particular, for my model I have

µit = αyit−1 + η1i,

σit = h
1/2
it = exp

{
1

2

(
η2i + β

[(
ǫ2it−1 + Λ

)1/2
− (2/π)

1/2
])}

,
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so that

∂µit

∂yit−1
= α,

∂σit

∂yit−1
= σit ×

β

2
×

ǫit−1
[
ǫ2it−1 + Λ

]1/2
×

1

h
1/2
it−1

,

∂µit

∂ǫit−1
= αh

1/2
it−1,

∂σit

∂ǫit−1
= σit ×

β

2
×

ǫit−1
[
ǫ2it−1 + Λ

]1/2
,

∂µit

∂ǫit−2
= α2h

1/2
it−2 +

1

2
αβh

1/2
it−1 ×

ǫit−1ǫit−2√
ǫ2it−2 + Λ

,

∂σit

∂ǫit−2
= σit ×

β

2
×

ǫit−1
[
ǫ2it−1 + Λ

]1/2
× σit−1 ×

β

2
×

ǫit−2
[
ǫ2it−2 + Λ

]1/2
,

and so on.
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TABLES

Table 1. AR(1)-EARCH(1) model with scalar fixed effects.

Properties of T=8 T=16

θ̂ =
(
α̂, β̂

)
Bias MAE SD SE CR0.95 Failure Bias MAE SD SE CR0.95 Failure

α = 0.5 MLE -0.002 0.021 0.030 0.029 0.91 0.00 0.000 0.012 0.017 0.018 0.92 0.00

BCE 0.003 0.024 0.035 0.036 0.97 0.08 0.000 0.010 0.017 0.018 0.94 0.02

β = 0.5 MLE -0.638 0.638 0.162 0.165 0.01 -0.138 0.138 0.066 0.062 0.28

BCE -0.421 0.421 0.228 0.244 0.63 -0.040 0.047 0.066 0.064 0.96

α = 0.5 MLE -0.022 0.030 0.036 0.035 0.91 0.00 -0.001 0.011 0.015 0.017 0.91 0.00

BCE -0.002 0.022 0.029 0.034 0.96 0.07 -0.003 0.010 0.017 0.020 0.93 0.01

β = 0.0 MLE -0.722 0.722 0.139 0.166 0.00 -0.214 0.214 0.064 0.063 0.05

BCE -0.111 0.111 0.268 0.295 0.94 -0.012 0.031 0.090 0.086 0.97

α = 0.0 MLE 0.005 0.023 0.037 0.035 0.93 0.00 0.001 0.015 0.020 0.020 0.90 0.00

BCE 0.018 0.041 0.051 0.049 0.99 0.03 0.013 0.032 0.034 0.029 0.92 0.01

β = 0.5 MLE -0.633 0.633 0.163 0.161 0.01 -0.138 0.138 0.064 0.059 0.28

BCE -0.202 0.202 0.352 0.278 0.99 0.036 0.050 0.063 0.064 0.96

Note: Bias=median bias, MAE=median absolute error, SD =sample standard deviation, SE=bootstrap standard error, CR=fraction

of times the .95 bootstrap CI contained the true value, Failure=fraction of times of divergence or failure to converge.

DGP: The process was started at yi0 = 0, then 700 time periods are generated before the sample actually starts.

yit = αyit−1 + h
1/2

it ǫit, (t = 1, ..., T ; i = 1, ..., n)

hit = exp
(
η2i + β

[√
ǫ2it−1

+ Λ −
√

2/π
])

,

ǫit ∼ N(0, 1), η2i ∼ N (−2, 1) , n = 200.

100 Monte Carlo replications are used for each design, with just ǫit redrawn in each replication.

yi was drawn 50 times, at each stage, to obtain the simulated data for the individual block-bootstrap.
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Table 2. AR(1)-EARCH(1) model with multiple fixed effects.

Properties of T=8 T=16

θ̂ =
(
α̂, β̂

)
Bias MAE SD SE CR0.95 Failure Bias MAE SD SE CR0.95 Failure

α = 0.5 MLE -0.257 0.257 0.061 0.060 0.01 0.00 -0.103 0.103 0.023 0.020 0.01 0.00

BCE -0.121 0.121 0.111 0.111 0.83 0.10 -0.040 0.051 0.059 0.054 0.87 0.07

β = 0.5 MLE -0.568 0.568 0.240 0.235 0.82 -0.044 0.059 0.097 0.098 0.92

BCE -0.050 0.105 0.317 0.276 0.94 0.054 0.055 0.097 0.094 0.70

α = 0.5 MLE -0.263 0.263 0.036 0.033 0.00 0.00 -0.108 0.108 0.026 0.021 0.01 0.00

BCE -0.084 0.084 0.134 0.126 0.96 0.09 -0.042 0.050 0.053 0.064 0.98 0.07

β = 0.0 MLE -0.079 0.079 0.014 0.016 0.18 -0.090 0.090 0.020 0.018 0.17

BCE 0.048 0.082 0.289 0.238 0.93 -0.021 0.068 0.107 0.104 0.93

α = 0.0 MLE -0.167 0.167 0.060 0.057 0.07 0.00 -0.059 0.059 0.021 0.020 0.18 0.00

BCE -0.052 0.052 0.079 0.082 0.94 0.13 0.008 0.015 0.039 0.039 0.98 0.11

β = 0.5 MLE -0.608 0.608 0.266 0.222 0.68 -0.057 0.071 0.101 0.094 0.84

BCE 0.050 0.050 0.257 0.265 0.95 -0.049 0.050 0.134 0.098 0.98

Note: Bias=median bias, MAE=median absolute error, SD =sample standard deviation, SE=bootstrap standard error, CR=fraction

of times the .95 bootstrap CI contained the true value, Failure=fraction of times of divergence or failure to converge.

DGP: The process was started at yi0 = 0, then 700 time periods are generated before the sample actually starts.

yit = αyit−1 + η1i + h
1/2

it ǫit, (t = 1, ..., T ; i = 1, ..., n)

hit = exp
(
η2i + β

[√
ǫ2it−1

+ Λ −
√

2/π
])

,

ǫit ∼ N(0, 1), η1i ∼ N (0, 1) , η2i ∼ N (−2, 1) , n = 200.

100 Monte Carlo replications are used for each design, with just ǫit redrawn in each replication.

yi was drawn 50 times, at each stage, to obtain the simulated data for the individual block-bootstrap.

Table 3. α and β estimates.

[1] Model Eq.(3) [2] Job Changes [3] Attrition [4] Model Eq.(4)

α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
MLE 0.4822 0.4832 0.3768 0.0642 0.5659 0.5245 0.4904 0.3713

(0.0114) (0.0495) (0.0146) (0.0985) (0.0159) (0.0439) (0.0091) (0.0306)

BCE 0.5690 0.5790 0.4569 0.0757 0.6056 0.5693 0.5432 0.4145

(m=2) (0.0388) (0.0974) (0.0360) (0.1531) (0.0310) (0.0908) (0.0095) (0.0321)

Sample Individuals Observations Individuals Observations Individuals Observations Individuals Observations

size 2,066 32,066 1,346 17,485 921 18,645 2,066 32,066

Note: Bootstrap SE in parentheses.
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Table 4. Correlations with observed variables.
Dependent variable: η̂2i [1] [2] [3] [4]

Birth Cohort 0.0088 0 .0106 0.0031 0.0074

(0.0025) (0.0026) (0.0027) (0.0029)

Married -0.5122 -0.4677 -0.4708 -0.3703

(0.0673) (0.0673) (0.0673) (0.0674)

White -0.6189 -0.4385 -0.4587 -0.4463

(0.0820) (0.0863) (0.0864) (0.0865)

Technical Workers -0.4582 -0.4951 -0.4426

(0.0863) (0.0867) (0.0986)

Administrators -0.4374 -0.4938 -0.4781

(0.1037) (0.1036) (0.1083)

Sales workers 0.2175 0.2311 0.1636

(0.1125) (0.1123) (0.1125)

Services workers 0.3259 0.2871 0.1859

(0.1095) (0.1100) (0.1088)

Operatives workers 0.0821 0.0872 0.0245

(0.0935) (0.0935) (0.0932)

Movers 0.8019 0.5504

(0.0702) (0.0761)

Dropout 0.2158

(0.1181)

Graduate -0.0446

(0.0748)

Tenure: 1-2 years 0.0079

(0.1677)

Tenure: 2-3 years -0.1614

(0.1171)

Tenure: 4-9 years -0.4318

(0.1053)

Tenure: 9-19 years -0.8226

(0.0988)

Tenure: 20 years or more -0.8870

(0.1002)

Constant -18.3945 -21.9209 -7.8407 -15.6994

(4.9083) (5.0164) (5.2528) (5.6893)

Note: Bootstrap SE in parentheses. Number of observations=2066 individuals.

Omitted group: Craftsman workers, Stayers, College, Tenure<1 year.

Table 5. Distribution of Residuals and Standarized Residuals in First Differences.
Kurtosis

Residuals in First Differences 21.3237 (1.0024)

Standarized Residuals in First Differences 3.4598 (0.0977)

Note: Bootstrap SE in parentheses.

Table 6. Mean Marginal Effects with respect to past shocks at different quantiles.

τ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

ǫit−1 0.2543 0.2589 0.2622 0.2650 0.2677 0.2703 0.2732 0.2765 0.2811

(0.0207) (0.0206) (0.0205) (0.0205) (0.0205) (0.0205) (0.0205) (0.0205) (0.0205)

ǫit−2 0.1455 0.1452 0.1451 0.1449 0.1448 0.1447 0.1445 0.1444 0.1441

(0.0193) (0.0190) (0.0188) (0.0184 (0.0184) (0.0182) (0.0180) (0.0178) (0.0175)

Note: Bootstrap SE in parentheses.
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FIGURES

Figure 1. The mean of log wages.
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Note: PSID 1968-1993. Whole sample size: 2,066 individuals and 32,066 observations.

Figure 2. The variance of log wages.
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Note: PSID 1968-1993. Whole sample size: 2,066 individuals and 32,066 observations.
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Figure 3. Correlations with Risk Tolerance.
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Note: PSID 1996, module on risk preferences data. Sample size: 1,535 individuals. Dotted lines represent 95% bootstrap
confidence intervals.

Figure 4. Distribution of Residuals and Standarized Residuals in First Differences.
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Note: PSID 1970-1993. Sample size: 27,934 observations. Dotted lines represent 95% pointwise bootstrap confidence intervals.
See footnote 33 for the definition of estimated residuals and estimated standardized residuals.

Figure 5. Kernel densities of logwages and simulated logwages.
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Note: PSID 1968-1993. Sample size: 32,066 observations. Bandwidth 0.10.
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Figure 6. Kernel density of individual means.
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Note: PSID 1968-1993. Sample size: 32,066 observations. Bandwidth 0.10.

Figure 7. Kernel density of individual logvariances.

0
.2

.4
.6

−6 −4 −2 0 2 4

Data Model
Counterfactual: homogeneous variances

Note: PSID 1968-1993. Sample size: 32,066 observations. Bandwidth 0.10.

Figure 8. Mean Marginal Effects of Past Shocks over the Distribution of Wages.
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Note: PSID 1968-1993. Sample size: 32,066 observations. Dotted lines represent 95% bootstrap confidence intervals.
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