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This paper considers the identification and estimation of an extension of Roy’s model (1951) 
of occupational choice, which includes a non-pecuniary component in the decision equation 
and allows for uncertainty on the potential outcomes. This framework is well suited to various 
economic contexts, including educational and sectoral choices, or migration decisions. We 
focus in particular on the identification of the non-pecuniary component under the condition 
that at least one variable affects the selection probability only through potential earnings, that 
is under the opposite of the usual exclusion restrictions used to identify switching regressions 
models and treatment effects. Point identification is achieved if such variables are 
continuous, while bounds are obtained otherwise. As a result, the distribution of the ex ante 
treatment effects can be point or set identified without any usual instruments. We propose a 
three-stages semiparametric estimation procedure for this model, which yields root-n 
consistent and asymptotically normal estimators. We apply our results to the educational 
context, by providing new evidence from French data that non-pecuniary factors are a key 
determinant of higher education attendance decisions. 
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1 Introduction

Self-selection is probably one of the major issue economists have to deal with when trying
to measure causal effects such as, among others, returns to education, returns to sectoral
choice as well as migration benefits. The seminal Roy’s model (1951) of occupational
choice can be seen as an extreme setting of self-selection, where agents choose the sector
which provides them with the higher wage. The idea underlying this model has been
very influential in the analysis of choices of participation to the labor market (Heckman,
1974), union versus nonunion status (Lee, 1978, Robinson & Tomes, 1984), public versus
private sector (Dustmann & van Soest, 1998), college attendance (Willis & Rosen, 1979),
migration (Borjas, 1987), training program participation (Ashenfelter & Card, 1985, Ham
& LaLonde, 1996) as well as occupation (Dolton et al., 1989).

The standard Roy model is, however, restrictive in at least two dimensions. First, non-
pecuniary aspects matter much in general. For instance, in the context of educational
choice, it is most often assumed that individuals consider not only the investment value
of schooling, which is related to wage returns, but also the non-pecuniary consumption
value of schooling, which is related to preferences and schooling ability. Recent empirical
evidence suggest that these non-pecuniary factors are indeed a key determinant of schooling
decisions (Carneiro et al., 2003, and Beffy et al., 2009). Non-pecuniary aspects such as
working conditions may also matter when choosing an occupation. Similarly, migration
decisions are likely to be driven both by the ex ante monetary returns and the psychic
costs associated with the decision to migrate (Bayer et al., 2008). Second, as emphasized
by a recent stream of the literature on schooling choice (see Cunha & Heckman, 2007, for
a survey), agents most often do not anticipate perfectly their potential earnings in each
sector at the moment of their decision. Because of ex ante uncertainty, their decision
depends on expectations of these potential earnings rather than on their true values.1

In this paper, we explore what can be nonparametrically identified in a generalized Roy
model including these two aspects, when relying extensively on its detailed structure. An
original feature of our approach lies in the fact that we do not need any standard in-
strument, that is we do not rely on the availability of a variable affecting the selection
probability but not the potential earnings. Such instruments do not exist, for instance,
when the true model is a standard Roy model, possibly extended to account for ex ante
uncertainty. We first develop two strategies for identifying the covariates effects on sector-

1Note that even if there is no ex ante uncertainty, the decision also depends on expectation of the
measured outcomes if they are affected by (standard) measurement errors.
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specific earnings. The first one is based on exclusion restrictions between sector-specific
regressors, while the second one exploits an argument at infinity, which relies on a recent
result from a companion paper (d’Haultfoeuille & Maurel, 2009). We then study identi-
fication of the non-pecuniary component under the condition that at least one regressor
affects the selection probability only through ex ante monetary returns. By doing so, we
extend the standard Roy model, which does not include any non-pecuniary component,
to a setting where this component only varies according to a subset of the regressors. Al-
though natural, this kind of identifying condition has received very little attention in the
literature. d’Haultfoeuille (2010) considers a similar condition in sample selection models
but his assumption breaks down in the model considered here because of ex ante uncer-
tainty in the potential outcomes. Carneiro et al. (2003) also exploit instruments of these
kinds to estimate an extension of the Willis and Rosen’s model (1979) of demand for college
attendance, but without considering their identifying power. Under this assumption, we
show that the non-pecuniary component is point identified when at least one instrument
is continuous. When the instruments are discrete, we provide easy to compute bounds on
this non-pecuniary component. Noteworthy, our results are not based neither on a large
support condition on the covariates nor on parametric restrictions.

Finally, we show that the identification of the covariates effects and the non-pecuniary
component conveys information about the distribution of causal treatment effects. Even if
no standard instrument is available, we obtain bounds on the distribution of the monetary
benefits anticipated by the agents, which correspond in this setting to the marginal treat-
ment effect (see Heckman & Vytlacil, 2005). Standard average treatment effects are point
identified if the probability of selection ranges from zero to one, a result in line with the
one of Heckman & Vytlacil (2005) in the case of standard instrumental variable strategies.

On a related ground, a recent paper by Bayer et al. (2008) also considers the identification
of a generalized Roy model accounting for non-pecuniary factors. Our approach differs
from theirs in two main aspects. First, Bayer et al. (2008) do not account for ex ante un-
certainty, which may often be large. Second, their identification results are obtained under
alternative assumptions. They first show that the non-pecuniary factors associated with
each choice alternative and the unconditional wage distributions are identified provided
that the distribution of pecuniary returns has a finite lower bound. Although appealing
in that it does not require any exclusion restriction, the finite support assumption may be
restrictive, in particular when using log wages in utility functions, as for instance in Willis
& Rosen (1979). Bayer et al. (2008) alternatively prove identification under the assump-
tion of independence between alternative-specific wages and the exclusion restriction that
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a variable affects the non-pecuniary valuation of each choice alternative but not the wage
distributions.2 The independence assumption, however, is restrictive, and much of the
literature considering identification of Roy and the closely related competing risks mod-
els has produced alternative identification results without such an assumption (see, e.g.,
Heckman & Honore, 1989, Heckman & Honore, 1990 or Abbring & van den Berg, 2003).
The identification results we derive in our paper do not rely neither on the aforementioned
support condition nor on that independence assumption.

Apart from identification, we also propose a three-stages semiparametric estimation pro-
cedure when the effects of the covariates are linear. The first two stages allow to estimate
the covariates effects on potential earnings and correspond to Newey’s method (2008) for
estimating semiparametric selection models. The originality of the proposed estimation
procedure lies in its third stage, which is devoted to the non-pecuniary component. This
stage is rather simple as it amounts to estimate an instrumental linear model. The only
difficulty lies in estimating the dependent variable of this linear model, as it involves both
the first steps estimators and a nonparametric nuisance parameter. We show that the
corresponding estimator is root-n consistent and asymptotically normal. Monte Carlo sim-
ulations indicate that despite its multiple steps, the estimators perform fairly well in finite
samples.

Eventually, in the empirical section of the paper, we apply our semiparametric estima-
tion procedure to the context of higher education attendance decisions in France over the
nineties. For that purpose we suppose, in a same spirit as Carneiro et al. (2003), that the
local average income for high school graduates only affects the probability of attendance
through the ex ante returns to higher education. Consistently with the recent empirical
evidence on this question, our results suggest that non-pecuniary factors are a key deter-
minant of the decision to attend higher education. We are able to compare the influence
of non-pecuniary factors with the one of ex ante monetary returns to education, the distri-
bution of these returns being point identified on most of its support. Noteworthy, unlike
Carneiro et al. (2003), our results are obtained without imposing a factor structure on the
outcomes. According to our estimates, the median of these factors in the population repre-
sents 2.5 times the median of the returns to higher education, thus highlighting the major
role played by non-pecuniary determinants in the decision to enroll in higher education.

The remainder of the paper is organized as follows. Section 2 presents the extended Roy
model which is considered throughout the paper and gives identification results for the
covariates effects on earnings and for the non-pecuniary component. Section 3 develops a

2Bayer et al. (2008) refer to this exclusion restriction as the Commonality assumption.
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semiparametric estimation procedure for the extended Roy model, and proves root-n consis-
tency and asymptotic normality of the proposed estimators. Section 4 studies finite-sample
performances of the estimators. Section 5 applies the preceding estimators to recover an
estimate of the influence of non-pecuniary factors on higher education attendance decision
in France. Finally, Section 6 concludes. The proofs of our results are deferred to Appendix
A.

2 Identification

2.1 The setting

We consider an extension of the Roy model which is obtained by including ex ante un-
certainty as well non-pecuniary factors in the seminal Roy’s model (1951) of occupational
choice. Suppose that there are two sectors 0 and 1 in the economy, and let Yk, k ∈ {0, 1},
denote the individual’s potential outcome in sector k.3 These outcomes are not perfectly
observed by the individual at the time of her decision. Instead, she can only compute
the expectation E(Yk|X, η0, η1), where X are covariates observed by the econometrician
and (η0, η1) are sector-specific productivity terms known by the agent at the time of the
choice but unobserved by the econometrician. We will maintain the following assumption
throughout the article.

Assumption 2.1 (Additive decomposition) We have, for k ∈ {0, 1}, E(Yk|X, η0, η1) =

E(Yk|X, ηk) = ψk(X) + ηk. Moreover, X ⊥⊥ (η0, η1).

We can always suppose that ηk is mean independent of X, i.e. E(ηk|X) is constant. We
reinforce here mean independence into independence, ruling out for instance heteroskedas-
ticity. Such an assumption is commonly made when studying sample selection models (see,
e.g., Newey, 2008) or the standard Roy model (see, e.g., Heckman and Honoré, 1990). Be-
sides, we let νk = Yk−E(Yk|X, η0, η1) denote the unexpected shock on Yk and εk = ηk + νk

denote the sector-specific residual. Note that apart from the independence assumption, we
do not impose any restriction on (η0, η1, ν0, ν1), thus departing from, e.g., Carneiro et al.
(2003).4

3Notice that the subscript k refers to the sector and not to the individual. For the sake of simplicity
and in the absence of ambiguity, individual subscripts are omitted in this section.

4Carneiro et al. (2003) impose in particular a factor structure on the unobservables. Such restrictions
are useful to identify the joint distribution of (η0, η1, ν0, ν1), and thus to test for comparative advantage or
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Unlike Roy’s original model, we do not suppose that the sectoral choice is based only on
income maximization. Instead, we suppose that each individual chooses to enter the sector
which yields the highest expected utility, with the expected utility in sector k writing as
Uk = E(Yk|X, η0, η1) + Gk(X). Hence, Uk is assumed to be given by the sum of sector-
specific expected outcome E(Yk|X, η0, η1) and the non-pecuniary component associated
with sector k, Gk(X), which is supposed to depend on the covariates X. Thus, along with
the covariates X, the econometrician observes the chosen sector D, which satisfies

D = 1{U1 > U0}

= 1{η∆ > ψ0(X)− ψ1(X) +G(X)}, (2.1)

where G(X) = (G0 −G1)(X) and η∆ = η1 − η0. Finally, the econometrician also observes
the outcome in the chosen sector, that is

Y = DY1 + (1−D)Y0.

This model is quite general and can be applied to various economic settings, including
sectoral choice in the labor market, immigration or higher education attendance decisions
(see our application in Section 5). It is close to the class of generalized Roy models which
are considered in the treatment effects literature (see e.g. Heckman & Vytlacil, 2005).5

The difference lies in the fact that in these models, the factor G is random and can be
correlated with (η0, η1, ν0, ν1) in an unspecified way. Imposing our structure has two main
advantages with respect to the treatment effects literature. First, we are able to recover
the non-pecuniary factors entering the selection equation, and compare them with the ex
ante monetary returns which correspond in this setting to the marginal treatment effect.
Second, our approach does not rely on an instrument that affects the selection but not the
potential outcomes. We rely on the alternative condition that at least one regressor affects
the selection probability only through potential outcomes. In some contexts, this kind of
exclusion restriction may actually be easier to find (see our discussion in Subsection 2.3).

We will maintain the following assumptions subsequently.

Assumption 2.2 (Normalization) There exists x∗ such that ψ0(x∗) = ψ1(x∗) = 0.

to assess the importance of ex post uncertainty (see Cunha & Heckman, 2007). We do not consider these
issues here.

5We refer here to the static treatment effects literature. See the extension by Heckman & Navarro (2007),
who consider identification of dynamic discrete choice models which are used as underlying structural
frameworks for dynamic treatment effects.
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Assumption 2.3 (Restrictions on the errors, 1) E(|εk|) < ∞ for k ∈ {0, 1}. Moreover,
the distribution of η∆ admits a density, denoted by fη∆

, with respect to the Lebesgue mea-
sure.

Assumption 2.2 is an innocuous normalization which stems from the fact that adding a
constant to ψk and subtracting it to ηk does not modify the model. Assumption 2.3 is
a technical condition which is usual in competing risks or Roy models (see in particular
Heckman & Honore, 1990, for the case of Roy model and Lee, 2006 for the case of competing
risks models.).

2.2 Identification of (ψ0, ψ1)

Before detailing our key result on the identification of G, we present in this subsection
two strategies to recover (ψ0, ψ1). The first is rather standard and relies on exclusion re-
strictions, in a similar spirit as in, e.g., Heckman & Honore (1990). The second yields
identification at infinity, and presents the advantage of not requiring any exclusion restric-
tion. The first strategy relies on the following assumption.

Assumption 2.4 (Exclusion restrictions, 1) There exists X0, X1, Xc such that
X = (X0, X1, Xc) and ψ0 (resp. ψ1) depends only on (X0, Xc) (resp. on (X1, Xc)). More-
over, (X0, Xc) (resp. (X1, Xc)) and P (D = 1|X) are measurably separated, that is, any
function of (X0, Xc) (resp. of (X1, Xc)) almost surely equal to a function of P (D = 1|X)

is almost surely constant.

Basically, the measurable separation requirement6 of Assumption 2.4 ensures that ψ0(X)

(or ψ1(X)) and P (D = 1|X) can vary in a sufficiently independent way. This assumption
is weak and is, for instance, assumed implicitly in nonparametric additive regression (see,
e.g., Linton & Nielsen, 1995). The first part of Assumption 2.4 covers two rather different
situations. The first one is when X0 = X1 = ∅ but we observe some variables which affect
the non-pecuniary component but not the potential outcomes. This situation corresponds
to the standard instrumental setting in sample selection models as well as to the common-
ality condition of Bayer et al. (2008). The other one is when we observe some variables X0

and X1 which affect only one sector. In this latter case, no exclusion restriction between
the non-pecuniary factors and the potential outcomes is required.

Given the preceding exclusion restrictions and the additive decomposition assumption, it
is possible to identify ψ0 and ψ1 up to location parameters. Then full identification stems

6We adopt here the terminology of Florens et al. (2008) (see their Assumption A4).
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from the normalization of Assumption 2.2. Note that Theorem 2.1 does not provide any
result on the location parameters. In general, such parameters are identified only at infinity,
i.e. when P (D = 1|X) can be arbitrarily close to zero and one (see, e.g., Heckman, 1990).

Theorem 2.1 Suppose that Assumptions 2.1-2.4 hold. Then ψ0 and ψ1 are identified.

Alternatively, ψ0 and ψ1 can also be identified at the limit without any exclusion restriction,
under the following restrictions on the error terms.

Assumption 2.5 (Restrictions on the errors, 2) (i) X ⊥⊥ (ε0, ε1), (ii) for k ∈ {0, 1}, the
supremum of the support of εk is infinite and there exists bk > 0 such that E(exp(bkεk)) <

∞, (iii) for all u ∈ R,

lim
v→∞

P (ηk − η1−k > u|ηk + νk = v) = 1, k ∈ {0, 1}.

The first restriction reinforces the condition that X ⊥⊥ (η0, η1), by ruling out in particular
heteroskedasticity on the shocks (ν0, ν1). The second restriction is a light tail condition,
which is in practice fairly mild.7 The last one can be interpreted as a moderate dependence
condition between η0 and η1. When (η0, η1, ν0, ν1) is gaussian for instance, one can show
that it is equivalent to cov(η0, η1) < min(V (η0), V (η1)). In particular, when V (η0) = V (η1),
this condition is automatically satisfied, except in the degenerated case where η0 = η1.

Theorem 2.2 Suppose that Assumptions 2.1, 2.2 and 2.5 hold. Then ψ0 and ψ1 are
identified.

Theorem 2.2 is based on a result by d’Haultfoeuille & Maurel (2009), and on the fact that
under Assumption 2.5,

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x and k ∈ {0, 1}. (2.2)

In other words, individuals whose potential outcome in one sector tends to infinity will
choose this sector with a probability approaching one. Intuitively, this condition implies
that there is no selection issue when one of the potential outcome becomes arbitrarily large.
The idea of identification at infinity is similar to the one obtained by Heckman & Honore
(1989) and Abbring & van den Berg (2003) in the related competing risks model. Their

7If we consider the example of log-wages Yk = lnWk, the assumption is satisfied provided that there
exists bk > 0 such that E(W bk

k ) <∞. Hence, it holds even if wages have fat tails, Pareto like for instance.
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results can nevertheless not be used here because their strategies break down when turning
to generalized Roy models.8

An appealing feature of Condition (2.2) is that it is testable (see d’Haultfoeuille & Maurel,
2009). On the other hand, estimators corresponding to this setting have not been derived
yet. Therefore, we restrict in the estimation part (Section 3) to the case where exclusion
restrictions are available.

2.3 Identification of the non-pecuniary component

We now turn to the identification of G. We will suppose for that purpose that one of the
two frameworks displayed above can be used to identify (ψ0, ψ1). Then ε = Y −ψD(X) and
T = ψ0(X) − ψ1(X) are identified. Let X = (W,Z). Our analysis relies on the following
exclusion restriction.

Assumption 2.6 (Exclusion restrictions, 2) Almost surely, G only depends on W . More-
over, the distribution of T conditional on W is not degenerated.

Assumption 2.6 allows us to make T vary while holding the non-pecuniary componentG(X)

fixed. Hence, for Assumption 2.6 to be verified, one needs a variable which determines the
sector-specific potential outcomes but does not enter the non-pecuniary component. This is
the opposite of the kind of exclusion restrictions which are most often used to identify labor
supply and more generally switching regressions models. In some empirical situations, one
may feel more comfortable with the use of exclusion restrictions of that kind. In the example
of college attendance decision, standard instruments which are assumed to affect earnings
only indirectly through college attendance include in particular parental background and
distance to college. These instruments have been criticized on various grounds, related
in particular to the intergenerational transmission of ability and to the endogeneity of
geographical mobility.9 We propose to use instead local labor market conditions such as
average local labor market income. Noteworthy, though primarily relying on standard
exclusion restrictions to identify their model of college attendance, Carneiro et al. (2003)
also exploit similar exclusion restrictions. This kind of exclusion restrictions involving
local labor market income or local unemployment rate is actually quite natural in many

8Lee (2006) and Lee & Lewbel (2009) obtain identification of competing risks models without using
arguments at the limit. Their strategy cannot be extended easily either to generalized Roy models.

9It is also standard in this literature to exploit variations in attendance rates induced by the level of
tuition fees. Nevertheless, as detailed further, tuition fees are very low in France and vary little across
regions, so that they cannot be used as an instrument for higher education attendance.
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other economic situations, including the decision to apply for public sector jobs as well as
migration decisions.

Under Assumption 2.6, G can be identified up to a location parameter, using only the facts
that T is identified and P (D = 0|X) = Fη∆

(T +G(X)), where Fη∆
denotes the distribution

function of η∆. Such an identification can be achieved for instance if (i) there exists w1

such that for all w in the support of W , there exists z, z1 such that P (D = 1|W = w,Z =

z) = P (D = 1|W = w1, Z = z1), and (ii) Fη∆
is strictly increasing. However, this result

is not as positive as it might seem. Aside from being obviously necessary to assess the
weight of non-pecuniary factors, the location of G is indeed also crucial to determine the
distribution of treatment effects. For instance, the distribution function F∆ of the ex ante
treatment effect ∆ = E(Y1 − Y0|X, η0, η1) satisfies

F∆(u) = P (E(Y1|X, η0, η1)− E(Y0|X, η0, η1) ≤ u)

= E (Fη∆
(u+ T )) . (2.3)

Besides, recall that the selection equation implies that

P (D = 0|X) = Fη∆
(T +G(X)). (2.4)

If G is identified only up to a location parameter, then one can shift Fη∆
by any real

number, thus implying that in general this identification result does not yield informative
bounds on F∆.

We now show that the detailed structure of the generalized Roy model actually provides
either full or partial identification of the whole non-pecuniary component, including its
location. In the following, we omit the dependence in W for the ease of notation. Thus
the results must be understood to be conditional on W . We start from the following
observations:

E[Dη∆|T = t] = E [1{η∆ ≥ t+G}η∆] =

∫ ∞
t+G

ufη∆
(u)du,

E[D|T = t] =

∫ ∞
t+G

fη∆
(u)du.

First, suppose that T is continuous. Then, letting q0(t) = E(D|T = t), we obtain
∂E[Dη∆|T = t]

∂t
= (t+G)q′0(t).

Now, the definition of νi and the law of iterated expectations yield E(νi|D = i, T ) = 0. As
a result,

E(ε|T = t) = E[Dε1 + (1−D)ε0|T = t]

= E[Dη1 + (1−D)η0|T = t]

= E [Dη∆|T = t] + E[η0].

10



Thus, letting g0(t) = E(ε|T = t), we get

g′0(t) = (t+G)q′0(t). (2.5)

This equation ensures the identification of G provided that q′0(t) 6= 0 for at least one t ∈ S,
where S denotes the support of T . This will be the case for instance if P (η∆ − t ∈ S) > 0

for all t ∈ R, or under the stronger condition that fη∆
(u) > 0 for all u ∈ R. For the matter

of convenience, we suppose subsequently that the latter condition holds.

Assumption 2.7 For all u ∈ R, fη∆
(u) > 0.

Now consider the case where T has a discrete distribution and takes M values t1 < t2 <

... < tM . Then we cannot take the derivative of g0 and q0 anymore. However, the strategy
above can be adapted to yield bounds on G. Indeed, letting i < j, we have,

j−1∑
k=i

ti+1(q0(ti+1)− q0(ti)) +G(q0(tj)− q0(ti))

≤ g0(tj)− g0(ti) = −
∫ tj+G

ti+G

ufη∆
(u)du

≤
j−1∑
k=i

ti(q0(ti+1)− q0(ti)) +G(q0(tj)− q0(ti)).

In other words, G ∈ [Gij, Gij] with

Gij =

∑j−1
k=i ti+1(q0(ti+1)− q0(ti)) + g0(ti)− g0(tj)

q0(ti)− q0(tj)

Gij =

∑j−1
k=i ti(q0(ti+1)− q0(ti)) + g0(ti)− g0(tj)

q0(ti)− q0(tj)
.

Note that these ratios are well defined since Assumption 2.7 ensures that q0(ti) > q0(tj).
Finally, we can improve these bounds by optimizing over i < j. We sum up our results in
the following theorem.

Theorem 2.3 Suppose that (ψ0, ψ1) are identified, and that Assumptions 2.1, 2.3, 2.6 and
2.7 hold. Then:

• if the distribution of T is continuous, G is identified;

• if the distribution of T is discrete and takes values in {t1 < t2 < ... < tM}, then
G ∈ [G,G], with G = maxi<j Gij and G = mini<j Gij.
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In the discrete case, the length of the interval is lower than mini<j tj− ti. This can be best
seen when M = 2, where it is actually equal to t2 − t1. Hence, contrary to many other
examples in econometrics, large variations in the data are not desirable for identifying
G. On the other hand, such large variations may improve the accuracy of the related
estimators, since when ti is close to tj, q0(tj)− q0(ti) is close to zero and the fluctuations of
the estimated denominator of Gij and Gij are likely to make the estimators more unstable.

In the continuous case, identification of G can be achieved through Equation (2.5). How-
ever, this equation involves derivatives of nonparametric regressions, which are not esti-
mated accurately. Integrating between t0 ∈ S and T and using an integration by part, we
obtain

g0(T )− Tq0(T ) +

∫ T

t0

q0(u)du = α0 +Gq0(T ), (2.6)

where α0 = g0(t0)− t0q0(t0)−Gq0(t0). In other words,

ε−DT +

∫ T

t0

q0(u)du = α0 +DG+ ξ, E(ξ|T ) = 0 (2.7)

This equation is more convenient for estimating G as it does not depend on derivatives
terms. Moreover, once the left term has been estimated nonparametrically, it reduces to a
linear instrumental equation with only one regressor.10

2.4 Distribution of treatment effects

We now turn to the identification of the distribution of the ex ante treatment effect,
∆ = E(Y1 − Y0|X, η0, η1). Ex ante treatment effects are meaningful since they correspond
to what agents act on (see Cunha & Heckman, 2007). Besides, it corresponds to the ex
post treatment effect if (i) agents perfectly observe their potential outcomes (in which case
ν0 = ν1 = 0) or if (ii) the idiosyncratic shocks are equal across sectors (ν0 = ν1), as
postulated in standard regression models.11 Having identified T and G(.), the selection
Equation (2.4) shows that Fη∆

is identified for all u in the support of T +G(X). Thus, by
Equation (2.3), one can identify F∆(u) for all u such that the support of u+T is included in
the support of T +G(X). In particular, the complete distribution of the ex ante treatment

10In the case where the distribution of T conditional on W is discrete with an infinite support, Equation
(2.7) can be used to obtain bounds on G. In this case q0(u), defined as Sη∆(u + G) (where Sη∆ denotes
the survival function of η∆), is observed only for u in the support of T , so that the integral term is not
point identified in general. However, the monotonicity of q0(.) allows to bound this integral term, and one
may apply for instance Manski & Tamer’s (2002) results to set identify G.

11We conjecture that without further assumption on (ν0, ν1), not much can be learned on the distribution
of Y1 − Y0.
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effects ∆ will be identified as soon as T +G(X) has a large support. In that case, one can
recover standard treatment effect parameters such as the average treatment effect or the
average treatment on the treated. But even if this large support condition fails, it is still
possible to point identify a subset of the distribution of the ex ante treatment effect, and
bound F∆(u) for the rest of the distribution. Indeed, letting [M,M ] (resp. [P , P ]) denote
the support of T + G(X) (resp. of P (D = 0|X)), we have, by the monotonicity of Fη∆

,
F∆(u) ∈ [F∆(u), F∆(u)], with

F∆(u) = E
(
Fη∆

(u+ T )1{u+ T ∈ [M,M ]}
)

+P × P (u+ T > M) + 0× P (u+ T ≤M) (2.8)

F∆(u) = E
(
Fη∆

(u+ T )1{u+ T ∈ [M,M ]}
)

+1× P (u+ T > M) + P × P (u+ T ≤M). (2.9)

The distribution of the ex ante treatment effects on the treated can be identified in a
similar way, with

F∆|D=1(u) =
E{(Fη∆

(u+ T )− P (D = 0|X))× 1{G(X) ≤ u}}
P (D = 1)

. (2.10)

In our setting, the ex ante treatment effect ∆ is closely related to the marginal treatment
effect ∆MTE (Heckman & Vytlacil (2005)). Indeed, denoting by Sη∆

the survival function
of η∆, we have, under Assumption 2.7,

∆MTE(x, p) = ψ1(x)− ψ0(x) + S−1
η∆

(p)

Thus, ∆ = (ψ1 − ψ0)(X) + η∆ coincides with ∆MTE(X,Sη∆
(η∆)). Besides, one is able to

identify ∆MTE(x, p) for all p in the support of P (D = 1|X), since in that case there exists x
in the support of X such that S−1

η∆
(p) = (ψ0−ψ1+G)(x). Hence, the generalized Roy model

we consider allows to identify ∆MTE(x, .) on an interval which is generally larger than with
the local instrumental variable approach considered by Heckman & Vytlacil (2005).12

3 Semiparametric estimation

Although our identification results hold in a nonparametric setting, we focus here on semi-
parametric estimation in order to provide root-n consistent and asymptotically normal

12In this latter case indeed, ∆MTE(x, .) is identified only on the support of P (D = 1|X = x, Z), where
Z denotes a regressor affecting D which is excluded from the outcome equations. Intuitively, by allowing
to make all the regressors vary, our approach provides identification of ∆MTE(x, .) on a wider interval.
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estimators of ψ0(.), ψ1(.) and G(.). More precisely, we consider generalized Roy models
with linear index structures of the form:13

Y0 = X ′β0 + ε0

Y1 = X ′β1 + ε1

D = 1{−δ0 +X ′(β1 − β0 − γ0) + η∆ > 0}.
(3.1)

In this setting, the non-pecuniary component is of the form δ0 +X ′γ0. Let γ0k (resp. β0k,
β1k) denote the k-th component of γ0 (resp. β0, β1), and let λ0 = β0− β1 + γ0. We impose
the following assumptions, which correspond to the exclusion restrictions of Assumptions
2.4 and 2.6, as well as to the continuity of T conditional on W .

Assumption 3.1 (Exclusion restrictions) β01 = β12 = 0, γ01 6= β11 and γ02 6= −β02.
Moreover, there exists m such that γ0m = 0 and β0m 6= β1m.

Assumption 3.2 (Regularity of X) The support of X is bounded. For all x−m in the sup-
port of X−m = (X1, ..., Xm−1, Xm+1, ...), the distribution of Xm conditional on X−m = x−m

admits a continuously differentiable and positive density on its support, which is a compact
interval independent of x−m. Moreover, for all j, t 7→ E(Xj|X ′λ0 = t) is continuously
differentiable. Finally, the support of X ′λ0 is an interval.

Assumption 3.2 ensures that there is at least one continuous instrument, namely Xm.
As shown by Theorem 2.3, this condition is sufficient to provide point identification of
G(X). We also impose the support of X ′λ0 to be an interval. This condition is needed
in general to obtain point identification in single index models (see, e.g., Horowitz, 1998).
We propose a three-stages estimation procedure of the preceding model based on a sample
of (Y = DY1 + (1−D)Y0, X,D).

Assumption 3.3 (i.i.d. sample) We observe a sample (Yi, Xi, Di)1≤i≤n of i.i.d. copies of
(Y,X,D).

Let us assume, without loss of generality, that β1m − β0m is strictly positive. We define
ζ0 = −λ0/(β1m − β0m), so that ζ0m = 1, and η̃∆ = (η∆ − δ0)/(β1m − β0m). The first and
second stages of our procedure rely on the fact that we can rewrite the model as

D = 1{X ′ζ0 + η̃∆ > 0}

Yk = X ′βk + εk, k ∈ {0, 1},
(3.2)

13We suppose that the constant is not included in X, so that ε0 and ε1 do not necessarily have mean
zero.
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where Yk is observed when D = k, η̃∆ is independent of X and E(εk|D = k,X) only
depends on X ′ζ0.14 Besides, by Assumption 3.1, X1 (resp. X2) affects selection since
ζ01 6= 0 (resp. ζ02 6= 0) but not directly the outcome Y0 (resp. Y1). Hence, Equations
(3.2) correspond to Newey (2009)’s selection model and we follow his approach here. First,
we estimate ζ0 by a single index estimator ζ̂, for which we suppose Assumption 3.4 to be
satisfied. This is the case of many semiparametric estimators, such as the one of Klein &
Spady (1993) or Ichimura (1993). Secondly, we estimate β0 and β1 by series estimator, and
suppose that it satisfies Assumption 3.5. Note that it is possible to prove this condition
under more primitive assumptions (see Newey, 2008, p. S227).

Assumption 3.4 (Regularity of the first stage estimator) There exists (ψi)1≤i≤n, i.i.d.
random variables such that E(ψ1) = 0, E(ψ1ψ

′
1) exists and is non singular and

ζ̂ − ζ0 =
1

n

n∑
i=1

ψi + oP

(
1√
n

)
.

Assumption 3.5 (Regularity of the second stage estimators) Let k ∈ {0, 1}, there exists
(ψki)1≤i≤n, i.i.d. random variables such that E(ψk1) = 0, E(ψk1ψ

′
k1) exists and is non

singular and

β̂k − βk =
1

n

n∑
i=1

ψki + oP

(
1√
n

)
.

Since γ0 = β1 − β0 − ζ0(β1m − β0m), we then estimate γ0 by

γ̂ = β̂1 − β̂0 − ζ̂(β̂1m − β̂0m).

It is easy to see that Assumptions 3.4 and 3.5 imply the root-n convergence and asymptotic
normality of γ̂. The main difficulty actually lies in the estimation of δ0, which we now
consider in a third stage.

Define, in a similar spirit as before (but with a slight abuse of notations), Ti = X ′iλ0. The
third stage of our procedure is based on Equation (2.7), which writes here as

εi −DiTi +

∫ Ti

t0

q0(u)du = α0 +Diδ0 + ξi, E(ξi|Ti) = 0, (3.3)

where q0(u) = E(D|T = u). Let θ0 = (α0, δ0)′, Vi = εi − DiTi +
∫ Ti

t0
q0(u)du and Wi =

(1, Di)
′, so that Vi = W ′

iθ0 + ξi. We estimate θ0 with an IV estimator which, for technical
14Indeed, εk = ηk + νk with E(νk|D = k,X) = 0 by definition and E(η1|D = 1, X = x) = E(η1|η̃∆ >

−x′ζ0) (and similarly for k = 0). Note that in general, εk is not independent of X because νk is not.
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reasons, includes some trimming. We consider (unfeasible) instruments of the kind Si =

1{Xi ∈ X}(1, h(Ti))
′, where h(Ti) ∈ R and X is a set strictly included in the support of

X and such that {x′λ0, x ∈ X} is an interval.15 Then θ0 = E(S1W
′
1)−1E(S1V1), and we

estimate it by

θ̂ =

(
1

n

n∑
i=1

ŜiW
′
i

)−1(
1

n

n∑
i=1

ŜiV̂i

)
,

where

V̂i = ε̂i −DiT̂i +

∫ T̂i

t0

q̂(u, λ̂)du

Ŝi = 1{Xi ∈ X}
(

1, h
(
T̂i

))′
with ε̂i = Yi −X ′i(Diβ̂1 + (1−Di)β̂0), λ̂ = β̂0 − β̂1 + γ̂, T̂i = X ′iλ̂ and

q̂(u, λ) =

∑n
i=1DiK

(
u−X′iλ
hn

)
∑n

i=1K
(
u−X′iλ
hn

) . (3.4)

where K(.) is a kernel function and hn a smoothing parameter. The result on the third
step estimator θ̂ relies on the following conditions on h(.) and K(.).

Assumption 3.6 (Restrictions on the kernel) K is nonnegative, zero outside a compact
set, continuously twice differentiable on this compact set and satisfies

∫
K(v)dv = 1 and∫

vK(v)dv = 0. Moreover, K(.) and K ′(.) are zero on the boundary of this compact set.

Assumption 3.7 (Regular instruments) h(.) is twice differentiable and |h′′| is bounded.

Assumption 3.6 is satisfied for instance by the quartic kernelK(v) = (15/16)(1−v2)21[−1,1](v).
Assumption 3.7 is imposed to ensure that Ŝi − Si is small for large values of the sample
size n and behaves regularly.

Theorem 3.1 Suppose that nh6
n → ∞, nh8

n → 0 and that Assumptions 2.1, 2.3, 2.7,
3.1-3.7 hold. Then

√
n(θ̂ − θ0)

d−→ N
(
0, E(S1W

′
1)−1V (S1ξ1 + Ω11 + Ω21)E(W1S

′
1)−1

)
.

where Ω11 is defined by Equation (7.8) in Appendix A and

Ω21 = S1(1− F0(Ti))1{Ti ≥ t0}(Di − q0(Ti))/f0(Ti)

where F0(.) and f0(.) denote respectively the cumulative distribution function and the den-
sity of T1.

15Hence, these instruments depend on Xi and not on Ti only. This is not an issue since actually, one
can show that E(ξi|Xi) = 0.
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Recalling that θ0 = (α0, δ0)′, this theorem guarantees that the final estimator of δ0 is root-
n consistent and asymptotically normal. Its asymptotic variance depends on the three
variables Ω11, Ω21 and S1ξ1. The first one corresponds to the contribution of the estimators
of the first and second steps. The second one arises because of the nonparametric estimation
of q0(.). The third one corresponds to the moment estimation of the linear instrumental
model (3.3) in the last step.

4 Monte Carlo simulations

We investigate the finite-sample performance of the semiparametric estimators proposed
in the preceding section. Namely, we simulate the following model:

Y0i = X2iβ02 +X3iβ03 + η0i + ν0i

Y1i = X1iβ11 +X3iβ13 + η1i + ν1i

Di = 1{−δ0 +X1iβ11 −X2i(β02 + γ02) +X3i(β13 − β03 − γ03) + η1i − η0i > 0}.

The true values of the parameters are β02 = β03 = 1, β11 = 2, β13 = 0.5, γ02 = 0.5,
γ03 = −0.8 and δ0 = 0.8, so that Assumption 3.1 is satisfied with m = 1. We simulate
X1i and X2i independently and from a uniform distribution over [0, 4], while X3i is a
discrete regressor drawn from a Bernoulli distribution with parameter p = 0.5. We let
(η0i, η1i)

′ be joint normal, with mean µ = (0, 0)′ and variance Σ such that Σ11 = Σ22 = 1

and Σ12 = Σ21 = 0.5. (ν0i, ν1i)
′ are drawn from a heteroskedastic normal distribution,

with mean κ = (0, 0)′ and a conditional variance Ω(X) such that Ω11(X) = exp(X2/5),
Ω22(X) = exp(X1/5) and Ω12(X) = Ω21(X) = 0.5

√
Ω11(X)Ω22(X).

We implement the three-stages estimation procedure detailed in Section 3. More precisely,
we estimate in the first stage ζ0 = (β1− β0− γ0)/β11 by Klein & Spady’s (1993) semipara-
metric efficient estimator, with an adaptive gaussian kernel and local smoothing. In the
second stage, we implement Newey’s (2008) method in order to estimate separately β0, β1

and γ0. The series estimator of the selection correction term was computed using the inverse
Mills ratio transform (see Newey, 2008, equation (3.6)) and Legendre polynomials at order
6. Using Legendre polynomials instead of simple power series avoids numerical trouble due
to multicollinearity. In the third stage, we finally implement our proposed estimator for δ0

with the quartic kernel suggested in Section 3 and a bandwidth hn = 0.5σ(T̂ )n−1/7, where
σ(T̂ ) is the estimated standard deviation of T̂ . We choose the function h(x) = Φ(a0 +a1x)

for the instruments, where Φ(.) denotes the normal cumulative distribution and (a0, a1)

are obtained by a probit of D on T . Finally, no trimming was performed since it did not
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seem to improve the accuracy of the estimator in our setting.

The performance of the estimators for different sample sizes (namely n = 500, n = 1, 000

and n = 2, 000) are summarized in Table 1, which reports for each parameter the mean
estimate, the standard deviation and the root mean squared error (RMSE).

Sample size Parameter Mean Standard error RMSE

500 β02 0.989 0.117 0.118

β03 1.013 0.221 0.222

β11 2.016 0.155 0.156

β13 0.494 0.199 0.199

γ02 0.456 0.181 0.186

γ03 -0.803 0.347 0.347

δ0 0.866 0.575 0.578

1,000 β02 0.992 0.085 0.085

β03 0.996 0.157 0.157

β11 2.006 0.105 0.105

β13 0.506 0.146 0.146

γ02 0.456 0.127 0.134

γ03 -0.781 0.24 0.240

δ0 0.865 0.393 0.399

2,000 β02 0.989 0.058 0.059

β03 1.001 0.108 0.108

β11 2.01 0.071 0.071

β13 0.504 0.098 0.098

γ02 0.471 0.088 0.093

γ03 -0.792 0.168 0.168

δ0 0.833 0.276 0.278

The results were obtained with 1,000 simulations for each sample size.

Table 1: Monte Carlo simulations

The results indicate that the semiparametric estimation procedure proposed in Section 3
performs fairly well in this context. In particular, although the last stage estimator of the
non-pecuniary constant component δ̂ is as expected less precise than the estimators β̂0, β̂1

and γ̂, its finite sample performance still remains reasonable. In particular, although not
negligible until n = 1, 000, its bias seems to decrease quickly after.

18



5 Application to the decision to attend higher education

In this section, we apply our identification results and semiparametric method to estimate
the relative importance of non-pecuniary components and monetary returns to education
in the decision to attend higher education in France. We first briefly present in Subsection
5.1 the underlying theoretical schooling choice model on which we rely. Subsection 5.2
presents the data we use. Subsection 5.3 provides some details on the computation of
the streams of earnings and on the implementation of our estimation method. Finally,
Subsection 5.4 and 5.5 present the results and some robustness checks.

5.1 Decision to attend higher education and consumption value of schooling

We consider here a generalization of the Willis & Rosen’s model (1979) which accounts for
the consumption value of schooling.16 After completing secondary education, individuals
are assumed to decide either to enter directly the labor market with a high school degree
(k = 0) or to attend higher education (k = 1). They are supposed to make their deci-
sion D by comparing the expected discounted streams of future earnings related to each
alternative. When entering the labor market, individuals receive a stream of log-earnings
denoted by Y ∗k for each alternative k, and such that

Y ∗k = ψk(X) + ηk + νk,

where ψk(.) is an unknown function of observed individual covariates X, (η0, η1) are indi-
vidual productivity terms which are supposed to be known by the individual at the time
of her decision but unobserved by the econometrician and (ν0, ν1) represent random shocks
with means zero, which are unobserved by both the individual and the econometrician.
The expected utility Uk of each schooling decision k is supposed to be given by

Uk = E(Y ∗k |X, ηk) +Gk(X),

16On a related ground, Carneiro et al. (2003) also estimate a generalization of the Willis and Rosen
model accounting for non-pecuniary factors affecting the decision to attend college. Nevertheless, they
rely on a completely different factor loadings framework, which is quite demanding in terms of identifying
conditions. Apart from the existence of standard exclusion restrictions entering only the selection equation,
they also hinge on the availability in the NLSY 79 (National Longitudinal Survey of Youth 1979 ) of five
different cognitive ability measures in order to identify their factor model. Many datasets, including ours as
well as e.g. the U.S. Current Population Survey, lack such measurements. See also Carneiro & Lee (2009)
who estimate on the same dataset a semiparametric reduced-form model of college attendance decision
based on an extension of Heckman & Vytlacil (2005).
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where Gk(X) denotes the consumption value associated with the schooling decision k.17

After graduating from high school, the individual is supposed to make the decision which
yields the highest expected utility. Thus, the selection equation corresponds exactly to
Equation (2.1). Noteworthy, as opposed in particular to the U.S., tuition fees are very
low in most of the French higher education institutions (on average around 200 euros per
year over the period of interest). This suggests that G1−G0, which would in principe also
account for the direct costs of post-secondary schooling, can be interpreted in this context
as a truly non-pecuniary component.

5.2 The data

We use French data from the Generation 1992 and Generation 1998 surveys in order to
estimate the previous model of schooling choice.18 The Generation 1992 (resp. Generation
1998 ) survey consists of a large sample of 26,359 (resp. 22,021) individuals who left the
French educational system in 1992 (resp. 1998) and were interviewed five years later. The
two databases have the main advantage to contain information on both educational and
labor market histories (over the first five years following the exit from the educational
system). Furthermore, the surveys provide a set of individual covariates which are used as
controls in our estimation procedure such as gender, place of birth, nationality, parents’
profession, and place of residence. As most of the individual covariates are observed in
both dataset, we exploit the pooled dataset hereafter.

Our subsample of interest is constituted of respondents having at least passed the national
high school final examination. The labor market participation rate is fairly high for this
subsample. For individuals leaving the schooling system in 1992, it is equal to 99.7% for
males and 95.9% for females, while for those leaving education in 1998, it reaches 99.3%

for males and 97.2% for females. Thus, we decide to keep both males and females in our
final sample. Dropping individuals who only worked as temporary workers or who were out
of the labor force during the observation length, for whom wages are not observed in the
data, finally leaves us with a large sample of 24,474 individuals. Although not common in
the semiparametric literature estimating generalized Roy models, working with many ob-
servations is especially well suited for the semiparametric estimation procedure to perform

17As opposed to the investment value of schooling, which corresponds in this case to the expected
discounted stream of future log-earnings.

18Beffy et al. (2009) also rely on these data to estimate the influence of expected returns when choosing
a college major.
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well.19 We report below some descriptive statistics for the subsample of interest, accord-
ing to higher education attendance. 79.1% of our sample (with a slight increase over the
period, respectively 77.4% for Generation 1992 and 80.7% for Generation 1998 ) attended
higher education after graduating from high school. Note that, in a same spirit as in Willis
& Rosen (1979), we focus on higher education attendance and not graduation. Hence,
higher education dropouts are included in the subsample of higher education attendees.

Higher education
attendees High school level

Variable Mean Std. dev. Mean Std. dev.

Initial monthly log wage (1992 French Francs) 8.75 0.44 8.50 0.39

Secondary schooling track
L 0.15 0.36 0.04 0.19
ES 0.17 0.38 0.04 0.19
S 0.32 0.47 0.06 0.23
Vocational 0.04 0.20 0.66 0.47
Technical 0.32 0.46 0.21 0.41

Born abroad 0.03 0.16 0.02 0.15
Father born abroad 0.11 0.32 0.11 0.32
Mother born abroad 0.11 0.31 0.10 0.30

Male 0.47 0.5 0.49 0.50

Father’s profession
Farmer 0.06 0.25 0.08 0.27
Tradesman 0.11 0.31 0.11 0.32
Executive 0.26 0.44 0.10 0.30
Intermediate occupation 0.12 0.32 0.09 0.29
Blue-collar 0.17 0.38 0.30 0.46
White-collar 0.21 0.41 0.25 0.44

Age in 6th grade
≤ 10 0.10 0.29 0.03 0.17
11 0.84 0.37 0.72 0.45
≥ 12 0.07 0.25 0.25 0.43

Paris region 0.16 0.36 0.12 0.32

Number of higher education years 2.82 1.45 / /

Dropout rate 0.16 0.37 / /

Number of observations 19,365 5,109

Table 2: Descriptive statistics.

19Papers in this literature usually rely on the NLSY 79 (see Cunha & Heckman, 2007), resulting in
samples of around 1,000 observations.
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Functions ψ0(.), ψ1(.) and G(.) are assumed to depend on secondary schooling track,
whether the student is born abroad (and similarly for her parents), year of entry into
the labor market (1992 or 1998), gender, parental profession, age in 6th grade (which is
used as a proxy for ability)20 and a dummy for living in Paris region. Aside from this
common set of regressors, we also allow ψ0(.) (resp. ψ1(.)) to depend on the average local
log-earnings of high school (resp. higher education) graduates. These variables, which are
computed from the French Labor Force Survey (1990-2000), are used as proxies for local
labor market conditions (at the level of the French departements, which roughly correspond
to U.S. counties).21 We assume that the non-pecuniary component G(.) does not depend
on the average local log-earnings of high school graduates, following Carneiro et al. (2003).
Indeed, while migration costs implies that labor market conditions in the places where
individuals live while studying are likely to be correlated with the earnings perceived when
entering the labor market, there is no obvious reason why these local labor market variables
should enter the non-pecuniary factor G(.). Importantly, because G(.) is identified with
this single exclusion restriction, we can check the validity of this instrumental strategy
by letting G(.) depend on log-earnings for higher education graduates and testing for the
significance of the corresponding parameter.

5.3 Computation of the streams of earnings and estimation method

For each alternative, the discounted streams of log-earnings are set equal to

Y ∗k =

t0,k+A∑
t=t0,k

τ tyk,t,

where yk,t denotes the flow of log-earnings received during year t, τ denotes the annual
discount factor and A is the duration of active life. We account for the opportunity costs
incurred when entering higher education by allowing the year of entry into the labor market
(t0,k) to vary according to the schooling choice. For a given period t, the earnings variable
yk,t is either set equal to the log-wage wt earned during this period if the individual is
employed at that time, or to the unemployment log-benefits bt if the latter is unemployed.
We set the replacement rate equal to 0.7 as often done in the literature.

20Note the rationale behind using this variable as a proxy for ability lies in the fact that most of its
variation stems from grade retention, which is especially common in France and mainly based on schooling
performances.

21More precisely, these variables were constructed by taking the mean of local log-earnings over a 5-years
time span centered respectively in 1992 or in 1998.
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As already mentioned, we do not observe incomes at all periods in our data, so that we
cannot compute Y ∗ = DY ∗1 +(1−D)Y ∗0 . Still, we can recover an expectation of this stream
of income under additional assumptions on incomes dynamics. We suppose here that

yk,t = ρk1{t ≤ B}+ yk,t−1 + νk,t,

where ρk denotes the alternative k-specific return to experience and νk,t is a degree k-
specific unobserved individual productivity term which is assumed to be independently
and identically distributed over time, with mean zero. We introduce the dummy 1{t ≤ B}
to account for non significant marginal returns to experience after B years of work (see,
e.g., Kuruscu, 2006, for similar assumption on wage growth). We also suppose that νk,t is
independent of D, so that ρk is simply identified by ρk = E(yk,t− yk,t−1|D = k), for t ≤ B.
Then, we can compute when D = k the following predicted stream of income:

Yk = τ̃kyD,t0,D
+ ρkCk

= E(Y ∗k |X, η0, η1, νk,t0,k
),

where τ̃k = τ t0,k

(
1−τA+1

1−τ

)
and Ck = τ t0,k

(
τ

(1−τ)2

) (
1− (B + 1)τB +BτB+1

)
. The last

equality implies that E(Yk|X, η0, η1) = E(Y ∗k |X, η0, η1). In other terms, the model may
be written in terms of Yk instead of Y ∗k , and our identification strategy applies with Y =

DY1 + (1−D)Y0 instead of the unobserved variable Y ∗.

In practice, we set τ = 0.95, A = 45 years, B = 25 years, ρ0 = 0.025 and ρ1 = 0.042. These
latter values for ρ0 and ρ1 were obtained by regressing yk,t0,k+Tk

− yk,t0,k
on the number of

years Tk for which the income is observed, on the subsample satisfying D = k. Alternative
specifications on some of these parameters are considered in Subsection 5.5.

We estimate the model relying on the three-stages semiparametric procedure detailed in
Section 3. More precisely, we use for the first step a mixture of probit (see e.g. Coppejans,
2001) with K1 = 3 mixture components.22 The second step is performed with Newey
(2009)’s series estimator, with K2 = 9 approximating terms. δ0 is finally estimated with
the same specifications as in the Monte Carlo simulations.23

We also set estimate the distribution of the ex ante treatment effects ∆, namely F∆(u) =

E[Fη∆
(u+X ′(β0 − β1))]. For that purpose, we use the fact that, by (3.1),

P (D = 0|X) = Fη∆
(δ0 +X ′λ0) .

22We did not rely on Klein & Spady (1993)’s estimator as we did in the Monte Carlo simulations since
it becomes computationally cumbersome as the number of covariates increases.

23We estimated the model with several different values for the tuning parameters K1, K2 and the band-
width h used in the estimation of q0 in the third step. Our final results are robust to these specifications.
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Therefore, we can obtain an estimator F̂η∆
(.) on [M̂, M̂ ], the estimated support of δ0+X ′λ0,

by regressing nonparametrically 1−D on the index δ̂+X ′λ̂. On [M̂,+∞) (resp. (−∞, M̂ ]),
we simply set estimate Fη∆

(.) by [P̂ , 1] (resp. [0, P̂ ]), where P̂ (resp. P̂ ) is the supremum
(resp. infimum) of F̂η∆

(.). Finally, we estimate F∆(u) and F∆(u) with the empirical
analogs of (2.8) and (2.9). Bounds on the distribution of the ex ante treatment effects
for the treated are estimated similarly, relying on (2.10). In practice, we consider a kernel
estimator of Fη∆

with a gaussian kernel, and a bandwidth hn = 1.6σ(T̂ )n−1/5.

5.4 Results

Table 3 below reports the parameter estimates relative to the non-pecuniary component
G(.), while the estimates of (ζ, β0, β1) are deferred to Appendix C (Table 6). Overall,
the results for β0 and β1 display a similar pattern. In particular, the local average income
variables on which we rely to identify the non-pecuniary factors have a strong positive effect,
significant at the 1% level, on earnings. Similarly, individuals entering the labor market in
1998 (relative to 1992) have very significantly higher earnings, reflecting the business cycle.
As expected, males also earn significantly more for both levels of qualification. However,
some characteristics only affect the earnings of high school graduates or higher education
attendees. This is in particular the case of vocational secondary schooling tracks (resp.
majors in humanities) relative to technical tracks, which are positively (resp. negatively)
related to earnings for high school graduates.24 Conversely, parental profession affects more
significantly the earnings of higher education attendees, with negative signs associated
with blue collar professions for the father as well as with inactive, deceased or unemployed
mother or father.

Several patterns emerge from the estimates of G(.) displayed below. First, the results sug-
gest that individuals attending a general secondary schooling track, relative to a technical
track, value positively higher education attendance, with the related coefficients being sig-
nificant at the 1% level.25 Conversely, those getting a high school degree from a vocational
major have a much lower probability to attend higher education, with a parameter being
nevertheless only significant at the 10% level. This pattern is consistent with the fact
that the courses which are given in vocational secondary schooling tracks and, to a lesser
extent, in technical tracks, are much more oriented towards the labor market than they

24Aside from the main vocational track effect, the earnings of those graduating from a vocational sec-
ondary major are significantly less affected by the business cycle.

25Recall that G(.) = G0(.)−G1(.), so that a negative sign for a given coefficient of G(.) implies a positive
valuation of higher education compared to high school graduation.
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are in general tracks. The positive effect of entering the labor market in 1998 may actually
reflect the enlargement of access to higher education which took place in France during the
nineties. Individuals living in Paris region also have a higher probability to attend higher
education through these non-pecuniary factors, reflecting similarly a supply-side effect.26

Parental profession, in particular that of the father, has also a significant influence on the
non-pecuniary determinants of the decision to attend higher education. For instance, for
a given ex ante return to higher education, individuals whose father is employed, relative
to a white-collar position, as an executive, a tradesman or in an intermediate occupation
have a higher propensity to enroll in higher education. This pattern suggests that part
of the intergenerational transmission of human capital acts through non-pecuniary factors
affecting the higher education attendance decision. Interestingly also, for a given level
of expected monetary returns, males have a significantly higher probability of attending
higher education, with parameter significant at the 1% level. This may be seen as reflecting
higher educational aspirations for males than for females, transiting in particular through
differential parental attitudes towards boys and girls. Age in 6th grade, which is used as
a proxy for schooling ability, also affects the attendance decision through non-pecuniary
factors. Relative to those who were on time, individuals who were less than 10 (resp. more
than 12) when entering high school have a significantly higher (resp. lower) probability
to get some post-secondary education. These results may stem from a positive correlation
between schooling ability and taste (or motivation) for schooling. Finally, the positive
effects on higher education attendance of entering the labor market in 1998 and of living
in the Paris region are significantly diminished (at the 10% level only) for the individuals
graduating from a vocational high school. This result stresses once more the important
explanatory power of the secondary schooling track. Importantly, the coefficient related
to the local average income of higher education graduates is small and not significant at
standard levels. This suggests that it is reasonable to exclude from the non-pecuniary
factors the local average income of high school graduates, strengthening our confidence in
the validity of our identification strategy.

26The greater Paris area is indeed characterized by a particularly important density of post-secondary
institutions, covering a wide range of fields.
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Variable Baseline specification

Constant (δ0) -0.001 (0.127)

Local average income
Higher education graduates -0.012 (0.007)
High school graduates 0

Secondary schooling track
L -0.123*** (0.044)
ES -0.15*** (0.047)
S -0.148*** (0.045)
Vocational 0.244* (0.147)
Technical Ref.

Born abroad -0.033* (0.018)
Father born abroad -0.001 (0.011)
Mother born abroad -0.01 (0.015)

Entering the labor market in 1998
(relative to 1992) -0.09** (0.036)

Male -0.051*** (0.01)

Father’s profession
Farmer -0.013 (0.013)
Tradesman -0.024** (0.011)
Executive -0.056** (0.024)
Intermediate occupation -0.036*** (0.013)
Blue collar 0.001 (0.008)
Other -0.018* (0.011)
White collar Ref.

Mother’s profession
Farmer 0.05 (0.033)
Tradesman 0.001 (0.011)
Executive -0.019* (0.011)
Intermediate occupation -0.017 (0.011)
Blue collar 0.012 (0.008)
Other -0.014* (0.007)
White collar Ref.

Age in 6th grade
≤ 10 -0.042* (0.022)
11 Ref.
≥ 12 0.053** (0.026)

Paris region -0.033** (0.013)

Vocational × ...
Entering the labor market in 1998 0.03* (0.018)
Male 0.002 (0.014)
Paris region 0.049* (0.027)

Standard errors, presented in parentheses, were computed by boot-
strap with 1,000 bootstrap sample replicates. Significativity levels:
*** (1%), ** (5%) and * (10%).

Table 3: Determinants of non-pecuniary factors: parameter estimates



The estimated distributions of the ex ante returns to higher education are displayed in
Figure 1, respectively for the whole sample and for the subsample of higher education
attendees. The streams were divided by 1,000 for scaling reasons, so that these returns
must be compared to values which range from 0.3 to 2. A first striking point is that both
distributions are point identified for most values. Differences between the upper and lower
bounds appear only for u ≥ 0.36, and still for these values the identifying interval remains
small until u ' 0.65. Second, a lower bound E on E(Y1 − Y0) can be estimated, using
the upper bound of the distribution. We obtain E ' 0.07, which is quite large since it
corresponds roughly to one standard deviation of Y . Third, the heterogeneity on these
returns is also large. If we consider that the support of the distribution is [−0.6, 0.7], this
yields a range on the ex ante returns E(Y1 − Y0|X, η0, η1) which is equivalent to the one
of Y . This substantial ex ante dispersion of the returns to higher education is in line with
the conclusion of Cunha & Heckman (2007, p. 887) on U.S. data.
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Figure 1: Distribution of the ex ante returns to higher education.

As expected, the distribution of the ex ante returns is shifted towards the right for the
subsample of higher education attendees, with a close to 10% probability of having a
negative ex ante return, versus 30% for the whole sample. Hence, about 10% of the
individuals attending higher education choose to do so despite a negative ex ante return
to higher education, stressing the important role played by non-pecuniary factors in this
schooling decision. In a same spirit, denoting by F̂∆(.) the estimate of the cdf of the ex
ante returns, we observe that 1− F̂∆(0) ' 70.6%. Taking the difference with the predicted
access rate (82.1%) shows that the probability of attending higher education would fall by
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11.5 percentage points if non-pecuniary factors did not exist. For comparison purposes,
this decrease in higher education attendance rate is much larger than for instance the one
associated with a 10% permanent decrease in labor market earnings of higher education
attendees, namely 1.74 points only.

Several other results highlight the influence of non-pecuniary factors, relative to ex ante
monetary returns, in the decision to attend higher education. First, as shown in Table 4
reporting the quartiles of the distribution of ex ante returns and non-pecuniary factors,
the median non-pecuniary component (-0.263) is, in absolute terms, quantitatively much
larger than the median ex ante return to higher education (0.106). Interestingly, the fact
that the third quartile of the non-pecuniary component is negative suggests, in line with
Carneiro et al. (2003), that there is for most of the individuals what could be referred to as
a psychic gain of attending higher education.27 Aside from their large median magnitude,
non-pecuniary factors also have a fairly large dispersion, with an interquartile range equal
to 0.201 which is nevertheless smaller than the interquartile range for ex ante returns
(0.305).

Quartile Ex ante return Non-pecuniary factors

25% -0.088 -0.350
50% 0.106 -0.263
75% 0.217 -0.149

Table 4: Quartiles of ex ante returns and non-pecuniary factors.

Finally, Table 5 below reports the predicted probabilities of higher education attendance
which are obtained for fixed values of the non-pecuniary factors corresponding respectively
to the first and the last deciles of its sample distribution. These predicted attendance
rates suggest once more that non-pecuniary factors matter much when deciding whether
to attend higher education. Indeed, the predicted attendance rate falls steeply, by about
40 points, when making G vary from its first to its last decile. Overall, these results
suggest that the variation across individuals in non-pecuniary factors accounts for a very
substantial part of the observed decisions to attend higher education.

27Actually, it follows from the estimates of the non-pecuniary component that 83% of the individuals in
the sample have a psychic gain of attending higher education.
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Decile of G Predicted attendance rate

10%, G = −0.404 0.952
90%, G = 0.081 0.573

Table 5: Predicted higher education attendance rates prevailing for dif-
ferent values of G.

5.5 Robustness checks

We address in the following three potential concerns about our results. The first one is the
validity of our exclusion restriction. The second one is whether the generalized Roy model
is a correct specification for the selection equation. The third one corresponds to the way
we compute the stream of earnings.

5.5.1 Validity of the instrumental strategy

The non significance of the local average income of higher education graduates in the non-
pecuniary component supports our exclusion restriction, but is still not a definitive proof
of its validity. A reason why it might still not hold is that the decision to attend higher
education could depend on local social norms in terms of educational attainment.28 If
places where earnings are higher were also those where the social gratification related to
educational achievement is also higher, then the local labor market variables should not be
excluded from G(.). In order to cope with this potential concern, we include in the non-
pecuniary component the local rate of higher education graduates relative to those with
a secondary educational level or more. This rate, which is used to control for differences
across departements in these social norms, is computed at the departement level from the
French Census 1982 and 1990. The resulting estimates of γ (see Panel 1, Table 7) are very
similar to previously. Once more, the local average income of high school graduates does
not affect the non-pecuniary factors component. Gender, father’s and mother’s profession
and year of entry into the labor market remain the main determinants of this non-pecuniary
component. The distribution of the ex ante returns to education is also very similar to
previously (see Figure 2) and remains within the confidence intervals of that of the baseline

28Social norms may in particular act through social interactions on schooling choices. See in particular
Cipollone & Rosolia (2007) and Lalive & Cattaneo (2009) for recent empirical evidence on this issue.
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specification.29

5.5.2 A specification test

The generalized Roy model considered here imposes a particular structure on the selection
equation, which leads to Equation (3.3). As this equation is clearly overidentified, testing
this structure is possible. To do so, let us remark that that if the model is true, then the
regression between V = ε − DT +

∫ T
t0
q0(u)du and E(D|T ) is linear. We thus consider a

test of such a linear relationship against a nonparametric alternative. We implement the
simple differencing test suggested by Yatchew (1998, p. 701) on V̂ and a kernel estimator
of E(D|T ). We obtain a p-value of 2.24%, so that we do not reject the linear specification
at the 1% level. Hence, assuming this selection rule seems to be reasonable given our
data.30

5.5.3 Alternative computations of the streams of earning

Finally, we also investigate the sensitivity of our results to the way the streams of earn-
ings are computed. We reestimate the model with τ = 0.97 instead of τ = 0.95 (as, e.g.,
Carneiro et al., 2003), and B = 30 instead of B = 25. Results are displayed respectively
in Panel 2 and 3 of Table 7. Once more, non-pecuniary components estimates are robust
to this change. Standard errors, and thus the significance of some parameters, are slightly
more affected by the specification choice. For instance, the local income of higher education
graduates becomes significant at 10% (p-value=9%) when B = 30, as a result of a decrease
of the standard error, the point estimates remaining stable throughout the different speci-
fications. We also estimate the distribution of the ex ante returns to education with these
alternative specifications (see Figure 3). Returns with B = 30 are nearly indistinguishable
from the ones with B = 25. The distribution corresponding to τ = 0.97 slightly dominates
them, but remains within the confidence interval of the baseline specification. In a word,
our results are overall robust to alternative computations of Y .31

29A reason why the estimates remain very stable is that the correlation between the local rate of higher
education graduates and local average income variables is quite low (0.13 and 0.14 for high school and
higher education graduates, respectively).

30Note also that the estimated cdf of the ex ante returns to higher education is increasing, which provides
another check for the validity of our specification.

31We also estimate streams of earnings where people are aware of their own annual increase ρi of
log-earnings, instead of just anticipating an average increase. We estimate ρi by OLS and compute the
corresponding streams of earnings. The signs of γ remain the same but no coefficient is significant anymore.
This can be explained by 1) the importance of the errors on the estimated ρi and 2) the fact that the
sample we can use in this case comprises only 9,451 individuals.
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6 Conclusion

This paper focuses on the effect of covariates on the potential outcomes and on the non-
pecuniary component in a generalized Roy model. Our main contribution is to prove
the nonparametric identification of the non-pecuniary component under the non standard
assumption that at least one covariate affects the selection probability only through ex ante
returns. In particular, local labor market conditions often appear to be natural candidates
for this kind of exclusion restriction, which may be more convenient than the standard
one in certain settings. We also contribute to the treatment effects literature by providing
under this original instrumental strategy set identification results for the distribution of
the treatment effects. We propose a three-stages semiparametric estimation procedure
yielding root-n consistent and asymptotically normal estimators, the last stage allowing to
estimate the non-pecuniary component from an instrumental linear model. Finally, relying
on French data, we apply our method to quantify the relative importance of non-pecuniary
components and expected returns to schooling in the decision to attend higher education.
Consistently with the recent empirical evidence on this question, our results suggest that
non-pecuniary factors have a major influence on the attendance decision.

Aside from applying our results to the analysis of, e.g., public versus private sector or
migration decisions, another avenue for further research is the inference on the dependence
between the sector-specific unobservable components η0 and η1. From an economic point
of view, providing identification results on this dependence is especially worthwile since it
conveys information about the relative importance of general vs. specific human capital.
This dependence, which has received much attention in competing risks models (see, e.g.,
Peterson, 1976, van den Berg, 1997, Abbring & van den Berg, 2003), has been identified in
generalized Roy models by imposing a factor model (see Carneiro et al., 2003). However,
it would be interesting to conduct a more flexible analysis on this issue, without assuming
that the outcomes depend on a low-dimensional set of factors. We leave this question for
further research.
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7 Appendix A: proofs

Theorem 2.1

Recall that εk = ηk + νk for k ∈ {0, 1}. Because E(νk|X, η0, η1) = 0, we have E(νk|X,D =

k) = 0. Thus, by Assumptions 2.1 and 2.3,

E(ε1|D = 1, X = x) =
E(η1D|X = x)

P (D = 1|X = x)

=
E (η11{η∆ ≥ ψ0(x)− ψ1(x) +G(x)})

P (D = 1|X = x)
(7.1)

Now let us show that almost surely,

η∆ ≥ ψ0(x)− ψ1(x) +G(x)⇐⇒ Sη∆
(η∆) ≤ P (D = 1|X = x) (7.2)

where Sη∆
denotes the survival function of η∆. The first implication is obvious since Sη∆

is decreasing. Now suppose that Sη∆
(η∆) ≤ P (D = 1|X = x). Then η∆ ≥ inf Ax where

Ax = {u/Sη∆
(u) = P (D = 1|X = x)}. Now, for all interval I ⊂ Ax, P (η∆ ∈ I) = 0 by

definition of Ax. Hence, because ψ0(x)− ψ1(x) +G(x) ∈ Ax, almost surely,

η∆ ≥ inf Ax ⇒ η∆ ≥ ψ0(x)− ψ1(x) +G(x).

Hence, (7.2) holds. Then, by (7.1),

E(ε1|D = 1, X = x) =
E(η11{Sη∆

(η∆) ≤ P (D = 1|X = x)})
P (D = 1|X = x)

In other terms, there exists a measurable function h such that E(ε1|D = 1, X) = h(P (D =

1|X)). Now, by Assumption 2.4,

E(Y |D = 1, X) = ψ1(X1, Xc) + h(P (D = 1|X)).

Suppose that there exists ψ̃1 and h̃ such that

E(Y |D = 1, X) = ψ̃1(X1, Xc) + h̃(P (D = 1|X)).

Then
(ψ̃1 − ψ1)(X1, Xc) + (h̃− h)(P (D = 1|X)) = 0

By the measurably separation condition, this implies that ψ̃1 and ψ1 are almost surely equal
up to a constant. This constant is identified by Assumption 2.2. Thus, ψ1 is identified. ψ0

can be recovered by the same argument.
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Theorem 2.2

The proof relies on Theorem 2.1 of d’Haultfoeuille & Maurel (2009). Assumptions 1 and
2 of d’Haultfoeuille & Maurel (2009) are satisfied by conditions (i) and (ii) of Assumption
2.5. All we have to check is that Assumption 3 also holds. For that purpose, remark that
for k ∈ {0, 1},

P (D = k|X = x, Yk = y) = P (D = k|X = x, εk = y − ψk(x))

= P (ηk − η1−k > ψ1−k(x)− ψk(x) +G(x)|ηk + νk = y − ψk(x))

Thus, by Condition (iii) of Assumption 2.5,

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x.

In other words, Assumption 3 of d’Haultfoeuille & Maurel (2009) holds, so that the result
follows.

Theorem 3.1

Before proving the results, let us introduce some notations. Let Ui denote all the data
corresponding to individual i, let f(., λ) denote the density of X ′λ, q(u, λ) = E(D|X ′λ =

u), r(., λ) = q(., λ) × f(., λ) and define f0(u) = f(u, λ0), q0(u) = q(u, λ0) and r0(u) =

q0(u)f0(u). Consider the kernel estimators

f̂(u, λ) =
1

nhn

n∑
i=1

K

(
u−X ′iλ
hn

)
and r̂(., λ) = q̂(., λ)× f̂(., λ), where q̂(., λ) is defined by Equation (3.4). Let us also define
Si(λ) = 1{Xi ∈ X}(1, h(X ′iλ))′ and, for any µ = (r(.), f(.), λ, β̃0, β̃1),

Vi(µ) = Yi −X ′i(Diβ̃1 + (1−Di)β̃0)−DiX
′
iλ+

∫ X′iλ

t0

r(u)

f(u)
du.

Thus, V̂i = Vi(µ̂) and Vi = Vi(µ0), with µ̂ = (r̂(., λ̂), f̂(., λ̂), λ̂, β̂0, β̂1) and µ0 = (r0, f0, λ0, β0, β1).
Eventually, let g(Ui, θ, µ) = Si(λ)(Vi(µ)−W ′

iθ) and g(Ui, µ) = g(Ui, θ0, µ). Then E[g(U1, µ0)] =

0 and
n∑
i=1

g(Ui, θ̂, µ̂) = 0.

Thus, θ̂ is a two step GMM estimator with a nonparametric first step estimator, and we
follow Newey & McFadden (1994)’s outline for establishing asymptotic normality. Some
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differences arise however because of the estimation of λ in the nonparametric estimator of
q0. The proof of the theorem proceeds in three steps.

Step 1. We first show that µ 7→
∑n

i=1 g(Ui, µ) can be linearized in a convenient way. Let

G(Ui, µ) = ξi
∂Si
∂λ

(λ0)′λ+ Si(λ0)

[
−X ′i(Diβ̃1 + (1−Di)β̃0)−DiX

′
iλ

+q0(Ti)X
′
iλ+

∫ Ti

t0

∂q

∂λ
(u, λ0)′λ+

1

f0(u)
(r(u)− q0(u)f(u)) du

]
Note that ∂q/∂λ(., λ0) exists under Assumptions 2.3 and 3.2, by Lemma 8.1. Let us also
define µ̃ = (r̃, f̃ , λ̂, β̂0, β̂1) where r̃ = r̂(., λ0) and f̃ = f̂(., λ0). We shall prove that

1√
n

n∑
i=1

[g(Ui, µ̂)− g(Ui, µ0)−G(Ui, µ̃− µ0)] = oP (1). (7.3)

For that purpose, we use the decomposition

g(Ui, µ̂)− g(Ui, µ0)−G(Ui, µ̃− µ0) = R1i +R2i +R3i +R4i +R5i

where

R1i =
(

0, ξi1{Xi ∈ X}
(
h(T̂i)− h(Ti)− h′(Ti)(T̂i − Ti)

))′
R2i = Si(λ0)

[∫ T̂i

Ti

q̂(u, λ̂)du− q0(Ti)(T̂i − Ti)

]

R3i = Si(λ0)

∫ Ti

t0

q̂(u, λ̂)− q̃(u)− ∂q

∂λ
(u, λ0)(λ̂− λ0)du

R4i = Si(λ0)

∫ Ti

t0

q̃(u)− q0(u)− 1

f0(u)

(
r̃(u)− r0(u)− q0(u)(f̃(u)− f0(u))

)
du

R5i = (Vi(µ̂)− Vi(µ0))
(
Si(λ̂)− Si(λ0)

)
where q̃ = r̃/f̃ . We now check that for all k ∈ {1, ..., 5}, 1/

√
n
∑n

i=1 Rki = oP (1).

−R1i: by Assumption 3.2 and the Cauchy-Schwartz inequality, there exists C0 > 0 such
that |T̂i − Ti| ≤ C0||λ̂− λ0||. Thus, by Assumption 3.7,

√
n max
i=1,...,n

∣∣∣h(Xiλ̂)− h(Ti)− h′(Ti)(T̂i − Ti)
∣∣∣ ≤ √

nM max
i=1,...,n

|T̂i − Ti|2

≤ MC2
0

√
n||λ̂− λ0||2

= oP (1),

where M denotes an upper bound of |h′′|. Besides,
∑n

i=1 |ξi|/n = OP (1). Thus,∥∥∥∥∥ 1√
n

n∑
i=1

R1i

∥∥∥∥∥ = oP (1).
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−R2i: Let S0 = {x′λ0, x ∈ X}. Because X is strictly included in the support of X1,
S0 ( S. Besides, by definition of Si(λ0), Si(λ0) = Si(λ0)1{Ti ∈ S0}. Moreover, for all
i such that T̂i ∈ S0, there exists, by the mean value theorem, T̃i = tTi + (1 − t)T̂i, with
t ∈ [0, 1], such that

∫ T̂i

Ti
q0(u)du = q0(T̃i)(T̂i − Ti). Thus, when T̂i ∈ S0,

‖R2i‖ =

∥∥∥∥∥Si(λ0)1{Ti ∈ S0}

{∫ T̂i

Ti

[
q̂(u, λ̂)− q0(u)

]
du+

∫ T̂i

Ti

q0(u)− q0(Ti)(T̂i − Ti)

}∥∥∥∥∥
≤ C1

∣∣∣T̂i − Ti∣∣∣ [sup
u∈S0

∣∣∣q̂(u, λ̂)− q0(u)
∣∣∣+ max

i:T̂i∈S

∣∣∣q0(T̃i)− q0(Ti)
∣∣∣]

≤ C0C1

∥∥∥λ̂− λ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, λ̂)− q0(u)
∣∣∣+ max

i:T̂i∈S

∣∣∣q0(T̃i)− q0(Ti)
∣∣∣] ,

where C1 > 0 is a constant such that ‖Si(λ0)‖ ≤ C1. Besides, because q̂(., λ̂) and q0(.) are
bounded by 1, we have, when T̂i 6∈ S0,

‖R2i‖ ≤ 2C0C1

∥∥∥λ̂− λ0

∥∥∥1{Ti ∈ S0}.

Hence,

‖R2i‖ ≤ C0C1

∥∥∥λ̂− λ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, λ̂)− q0(u)
∣∣∣+ max

i:T̂i∈S

∣∣∣q0(T̃i)− q0(Ti)
∣∣∣

+21{Ti ∈ S0, T̂i 6∈ S0}
]
. (7.4)

By Assumption 3.4 and 3.5,
√
n
∥∥∥λ̂− λ0

∥∥∥ = OP (1). Let us now consider the term into

brackets in (7.4). By Lemma 8.2, supu∈S0
|q̂(u, λ̂)− q0(u)| = oP (1). Let us prove that

max
i:T̂i∈S

∣∣∣q0(T̃i)− q0(Ti)
∣∣∣ = oP (1) (7.5)

Fix ε > 0. Because q0(.) is continuous by Assumption 3.2 and S is compact, q0(.) is
uniformly continuous on S. Thus, there exists δ > 0 such that for all (u, v) ∈ S2 satisfying
|u− v| ≤ δ, we have |q0(u)− q0(v)| ≤ ε. As a consequence,

P

(
max
i:T̂i∈S

∣∣∣q0(T̃i)− q0(Ti)
∣∣∣ ≤ ε

)
≥ P

(
max
i:T̂i∈S

∣∣∣T̃i − Ti∣∣∣ ≤ δ

)
.

Because |T̃i − Ti| ≤ |T̂i − Ti| ≤ C0

∥∥∥λ̂− λ0

∥∥∥, the right-hand side tends to one. This
establishes (7.5). It remains to show that

1

n

n∑
i=1

1{Ti ∈ S0, T̂i 6∈ S0} = oP (1). (7.6)
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For all δ > 0, let Sδ = {s ∈ S0/∃s′ 6∈ S0/|s − s′| < δ}. Fix ε > 0 and let K > 0 be
such that P (Ti ∈ SK) < ε/2. For n large enough, P (C0

∥∥∥λ̂− λ0

∥∥∥ > K) < ε/2. Because

|Ti − T̂i| < C0

∥∥∥λ̂− λ0

∥∥∥, we have, for n large enough,

P
(
Ti ∈ S0, T̂i 6∈ S0

)
≤ ε

2
+ P

(
Ti ∈ S0, T̂i 6∈ S0, C0||λ̂− λ0|| ≤ K

)
≤ ε

2
+ P (Ti ∈ SK)

≤ ε.

Because ε was arbitrary, this proves that

E

[∣∣∣∣∣ 1n
n∑
i=1

1{Ti ∈ S0, T̂i 6∈ S0}

∣∣∣∣∣
]
→ 0.

This establishes (7.6) since convergence in L1 implies convergence in probability. As a
result,

∑n
i=1 R2i/

√
n = oP (1).

−R3i: By the mean value theorem, there exists λ̃u in the segment between λ0 and λ̂ such
that

q̂(u, λ̂)− q̃(u) =
∂q̂

∂λ
(u, λ̃u)

′(λ̂− λ0).

Because Ti is bounded, there exists C2 such that |Ti − t0| < C2. Thus,

|R3i| = ‖Si(λ0)‖

∣∣∣∣∣
[∫ Ti

t0

∂q̂

∂λ
(u, λ̃u)−

∂q

∂λ
(u, λ0)du

]′
(λ̂− λ0)

∣∣∣∣∣1{Ti ∈ S0}

≤ C1C2

∥∥∥λ̂− λ0

∥∥∥ sup
u∈S0

∥∥∥∥∂q̂∂λ(u, λ̃u)−
∂q

∂λ
(u, λ0)

∥∥∥∥ .
The supremum tends to zero in probability by Lemma 8.2. As a result,

∑n
i=1R3i/

√
n =

oP (1).

−R4i: following Newey & McFadden (1994, p. 2204), we have

|R4i| ≤ C11{Ti ∈ S0}
∫ Ti

t0

1

f̃(u)f0(u)
[1 + |q0(u)|]

[
|f̃(u)− f0(u)|2 + |r̃(u)− r0(u)|2

]
du

≤ 2C1C2

infu∈S0 f̃(u) infu∈S0 f0(u)

[(
sup
u∈S0

|f̃(u)− f0(u)|
)2

+

(
sup
u∈S0

|r̃(u)− r0(u)|
)2
]
.

Assumption 3.2 implies that the density of Ti is positive in the interior of S. Thus,
infu∈S0 f0(u) > 0. By uniform consistency of f̃ on S0 (see, e.g., Lemma 8.10 of Newey &
McFadden, 1994) the ratio is a OP (1). Thus it suffices to show that supu∈S0

|f̃(u)−f0(u)| =
oP (n−1/4) and similarly for r̃. The result follows from Assumption 3.6, the rate condition
on hn and Lemma 8.10 of Newey & McFadden (1994).
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−R5i: first, note that

|Vi(µ̂)− Vi(µ0)|1{Xi ∈ X} =

∣∣∣∣X ′i(Di(β1 − β̂1) + (1−Di)(β0 − β̂0)) +Di(Ti − T̂i)

+

∫ T̂i

Ti

q̂(u, λ̂)du+

∫ Ti

t0

[
q̂(u, λ̂)− q0(u)

]
du

∣∣∣∣1{Xi ∈ X}

≤ C0

(∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂0 − β0

∥∥∥+ 2
∥∥∥λ̂− λ0

∥∥∥)
+C2 sup

u∈S0

|q̂(u, λ̂)− q0(u)|.

With probability approaching one, there exists a compact which contains T̂i and Ti for all i.
Thus, because h′ is continuous, there exists C3 > 0 such that, with probability approaching
one, ∥∥∥Si(λ̂)− Si(λ0)

∥∥∥ ≤ C3

∥∥∥λ̂− λ0

∥∥∥ .
Thus, with probability approaching one,∣∣∣∣∣ 1√

n

n∑
i=1

R5i

∣∣∣∣∣ ≤ [
C0C3

√
n
∥∥∥λ̂− λ0

∥∥∥] [∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂1 − β1

∥∥∥+ 2
∥∥∥λ̂− λ0

∥∥∥
+C2 sup

u∈S0

|q̂(u, λ̂)− q0(u)|
]
.

By Assumptions 3.4 and 3.5, the first term into brackets in the right-hand side is a OP (1).
By Lemma 8.2 and Assumptions 3.4 and 3.5, the second term is a oP (1). The result follows.

Step 2. Now, let us show that 1/
√
n
∑n

i=1G(Ui, µ̃ − µ0) can be linearized. Let κ0 =

(λ0, β1, β0)′ and κ̂ = (λ̂, β̂1, β̂0)′. We have

G(Ui, µ̃− µ0) = P ′i (κ̂− κ0) + G̃(Ui, r̃, f̃),

with Pi = (P1i, P2i, P3i)
′ and

P1i = (Vi(µ0)−W ′
iθ0)

∂Si
∂λ

(λ0)′ − Si(λ0)

(
DiX

′
i + q0(Ti)X

′
i +

∫ Ti

t0

∂q

∂λ′
(u, λ0)du

)
P2i = −DiSi(λ0)X ′i

P3i = −(1−Di)Si(λ0)X ′i

G̃(Ui, r̃, f̃) = Si(λ0)

∫ Ti

t0

(1/f0(u))(r̃(u)− q0(u)f̃(u))du.

By the weak law of large numbers,

1

n

n∑
i=1

Pi
P−→ E [P1] .
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Moreover, we have λ̂ = (β̂0m − β̂1m)ζ̂. Thus, by Assumptions 3.4 and 3.5,

λ̂− λ0 =
1

n

n∑
i=1

ψ̃i + oP

(
1√
n

)
,

where, letting ψk1i denote the first component of ψki for k ∈ {0, 1},

ψ̃i = (ψ0mi − ψ1mi)ζ + (β0m − β1m)ψi.

Hence,

κ̂− κ0 =
1

n

n∑
i=1

(
ψ̃i, ψ1i, ψ0i

)′
+ oP

(
1√
n

)
.

Thus,
1√
n

(
n∑
i=1

Pi

)′
(κ̂− κ0) =

1√
n

n∑
i=1

Ω1i + oP (1), (7.7)

where
Ω1i = E[P1]′

(
ψ̃i, ψ1i, ψ0i

)′
. (7.8)

Thus, it suffices to focus on the nonparametric part of G, G̃(Ui, r̃, f̃). Now, G̃ is nearly the
linearized part of the consumer surplus example of Newey & McFadden (1994, p. 2204),
except that b is replaced by Ti. Thus, it suffices to modify slightly their proof (see Newey
& McFadden, 1994, p. 2211) to satisfy Conditions (ii), (iii) and (iv) as well as the technical
requirements of their Theorem 8.11. As a result, we get

1√
n

n∑
i=1

G̃(Ui, r, f) =
1√
n

n∑
i=1

Ω2i + oP (1), (7.9)

where Ω2i = Si(λ0)(1−F0(Ti))1{Ti ≥ t0}(Di−q0(Ti))/f0(Ti), F0(.) denoting the cumulative
distribution function of T . The result follows.

Step 3. Eventually, we establish the asymptotic normality of θ̂. By (7.3), (7.7) and (7.9)
and the central limit theorem,

1√
n

n∑
i=1

g(Ui, µ̂)
d−→ N (0, V (g(U1, µ0) + Ω11 + Ω21)) .

Thus, by definition of θ̂ and g(Ui, θ, µ),[
1

n

n∑
i=1

Si(λ̂)W ′
i

]
√
n(θ̂ − θ0)

d−→ N (0, V (g(U1, µ0) + Ω11 + Ω21)) .
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Now, recalling that by Assumption 3.7,
∥∥∥Si(λ̂)− Si(λ0)

∥∥∥ ≤ C3

∥∥∥λ̂− λ0

∥∥∥ for a given C3 > 0.
Thus, ∥∥∥∥∥ 1

n

n∑
i=1

Si(λ̂)W ′
i − E(S1(λ0)W ′

1)

∥∥∥∥∥ ≤ C3

(
1

n

n∑
i=1

‖Wi‖

)∥∥∥λ̂− λ0

∥∥∥
+

∥∥∥∥∥ 1

n

n∑
i=1

Si(λ0)W ′
i − E(S1(λ0)W ′

1)

∥∥∥∥∥ .
Thus, by the weak law of large numbers,

1

n

n∑
i=1

Si(λ̂)W ′
i

P−→ E(S1(λ0)W ′
1) = E(S1W

′
1).

Eventually, by Slutski’s lemma, and given that g(U1, µ0) = S1ξ1,
√
n(θ̂ − θ0)

d−→ N
(
0, E(S1W

′
1)−1V (S1ξ1 + Ω11 + Ω21)E(W1S

′
1)−1

)
.

This concludes the proof.

8 Appendix B: technical lemmas

Lemma 8.1 Suppose that Assumptions 2.3 and 3.2 hold. Then, for all u ∈ S, λ 7→ f(u, λ)

and λ 7→ r(u, λ) admit partial derivatives at λ0 which satisfy:

∂f

∂λ
(u, λ0) = − (E [X|T = u] f0(u))′ (8.1)

∂r

∂λ
(u, λ0) = − (E [DX|T = u] f0(u))′ (8.2)

Proof: let X−m = (X1, ..., Xm−1, Xm+1..., Xp) and fXm|X−m(., x) (resp. FXm|X−m(., x))
denote the density (resp. cumulative distribution function) of Xm conditional on X−m = x.
Let also δk denote the vector of dimension p, with 1 at the k-th component and 0 elsewhere.
We have

f(u, λ+ tδk) =

∣∣∣∣∣∣ E
[
fXm|X−m

(
u−X′−mλ−m−tXk

λm
, X−m

)]
if k 6= m,

E
[
fXm|X−m

(
u−X′−mλ−m

λm+t
, X−m

)]
if k = m.

Thus, by Assumption 3.2 and dominated convergence, λ 7→ f(u, λ) admits continuous
partial derivatives. Now, let F (., λ) denote the cumulative distribution function of X ′λ.
We have,

F (u, λ+ tδk) =

∣∣∣∣∣∣ E
[
FXm|X−m

(
u−X′−mλ−m−tXk

λm
, X−m

)]
if k 6= m,

E
[
FXm|X−m

(
u−X′−mλ−m

λm+t
, X−m

)]
if k = m.
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Thus, by Assumption 3.2 and dominated convergence, λ 7→ F (u, λ) admits continuous
partial derivatives, and after some rearrangements,

∂F

∂λk
(u, λ0) = −E [Xk|T = u] f0(u).

By Assumption 3.2 once more, u 7→ ∂F/∂λk(u, λ0) is continuously differentiable and

∂2F

∂u∂λ
(u, λ0) = − (E [X|T = u] f0(u))′ .

Then (8.1) follows from ∂f/∂λ = ∂2F/∂λ∂u = ∂2F/∂u∂λ.

The proof of (8.2) is similar, except that we use G0(u, λ) = E(D1{X ′λ ≤ u}) instead of
F (u, λ). The partial derivatives of λ 7→ G0(u, λ) exist and satisfy

∂G0

∂λ
(u, λ) = −E (DX|T = u) f0(u)

= −Sη∆
(u+ δ0)E (X|T = u) f0(u).

Then differentiability of u 7→ ∂G0/∂λ(u, λ) stems from Assumptions 2.3 and 3.2. Equation
(8.2) follows from the same argument as previously.

Lemma 8.2 Suppose that nh6
n →∞, nh8

n → 0 and Assumptions 3.2 and 3.6 hold. Then,
for all S ′ ( S and for all λu,n such that supu∈S′ ‖λu,n − λ0‖ = OP (1/

√
n), we have,

sup
u∈S′
|q̂(u, λu,n)− q0(u)| = oP (1) (8.3)

sup
u∈S′

∥∥∥∥∂q̂∂λ(u, λu,n)− ∂q

∂λ
(u, λ0)

∥∥∥∥ = oP (1) (8.4)

Proof: we first write

sup
u∈S′
|q̂(u, λu,n)− q0(u)| ≤ sup

u∈S′
|q̂(u, λu,n)− q̂(u, λ0)|+ sup

u∈S′
|q̂(u, λ0)− q0(u)| (8.5)

Let us first consider the the first term of the r.h.s. Since |q̂(u, λu,n)| ≤ 1, we have

sup
u∈S′
|q̂(u, λu,n)− q̂(u, λ0)| = sup

u∈S′

∣∣∣(r̂(u, λu,n)− r̂(u, λ0)) + q̂(u, λu,n)(f̂(u, λ0)− f̂(u, λu,n))
∣∣∣

f̂(u, λ0)

≤ sup
u∈S′

1

f̂(u, λ0)

[
|r̂(u, λu,n)− r̂(u, λ0)|+

∣∣∣f̂(u, λu,n)− f̂(u, λ0)
∣∣∣]

≤ 1

infu∈S′ f̂(u, λ0)

[
sup
u∈S′
|r̂(u, λu,n)− r̂(u, λ0)|

+ sup
u∈S′

∣∣∣f̂(u, λu,n)− f̂(u, λ0)
∣∣∣] . (8.6)
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Let us prove that
sup
u∈S′

∣∣∣f̂(u, λu,n)− f̂(u, λ0)
∣∣∣ = oP (1) (8.7)

The proof for r̂ is similar. By Assumption 3.6, there exists C4 > 0 such that |K(u)−K(v)| ≤
C4|u− v|. Thus,∣∣∣f̂(u, λu,n)− f̂(u, λ0)

∣∣∣ ≤ 1

nhn

n∑
i=1

∣∣∣∣K (u−X ′iλu,nhn

)
−K

(
u−X ′iλ0

hn

)∣∣∣∣
≤ C4C0 ‖λu,n − λ0‖

h2
n

≤ C4C0 supu∈S′ ‖λu,n − λ0‖
h2
n

= Op

(
1√
nh2

n

)
.

This establishes (8.7) since nh4
n →∞. Because

inf
u∈S′

f̂(u, λ0) ≥ − sup
u∈S′

∣∣∣f̂(u, λu,n)− f̂(u, λ0)
∣∣∣+ inf

u∈S′
f0(u),

and because infu∈S′ f0(u) > 0 by Assumption 3.2, we also have

1

infu∈S′ f̂(u, λ0)
= Op(1).

By (8.6), the first term of (8.5) tends to zero.

As for the second term, we can obtain the same decomposition as (8.6). Then Assumptions
3.2 and 3.6, and conditions on hn ensure that we can apply Lemma 8.10 of Newey &
McFadden (1994), yielding supu∈S′ |f̂(u, λ0) − f0(u)| = oP (1) and similarly for r̂(., λ0).
This establishes (8.3).

Now, let us turn to (8.4). We use the same decomposition as (8.5). First, let us establish
that

sup
u∈S′

∣∣∣∣∂q̂∂λ(u, λ0)− ∂q

∂λ
(u, λ0)

∣∣∣∣ = oP (1) (8.8)

We have
∂q̂

∂λ
(u, λ0) =

1

f̂(u, λ0)

[
∂r̂

∂λ
(u, λ0)− q̂(u, λ0)

∂f̂

∂λ
(u, λ0)

]
.

and similarly for ∂q/∂λ(u, λ0). Thus,

∂q̂

∂λ
(u, λ0)− ∂q

∂λ
(u, λ0)

=
1

f̂(u, λ0)

{[
∂r̂

∂λ
(u, λ0)− ∂r

∂λ
(u, λ0)

]
− ∂r

∂λ
(u, λ0)

[
f̂(u, λ0)− f0(u)

f0(u)

]}

− q̂(u, λ0)

f̂(u, λ0)

[(
∂f̂

∂λ
(u, λ0)− ∂f

∂λ
(u, λ0)

)
− ∂f/∂λ(u, λ0)

f0(u)

(
f̂(u, λ0)− f0(u)

)]

−∂f/∂λ(u, λ0)

f0(u)
(q̂(u, λ0)− q0(u)) .
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By what precedes, infu∈S′ f̂(u, λ0) tends in probability to infu∈S′ f0(u) > 0, while
supu∈S′ |f̂(u, λ0)− f0(u)| = oP (1). Besides, q̂(., λ0) is bounded by 1 and by Lemma 8.1,
∂f/∂λ(., λ0) is continuous on the compact set S and thus is bounded on this set. Thus, it
suffices to prove that

sup
u∈S′

∣∣∣∣∣∂f̂∂λ(u, λ0)− ∂f

∂λ
(u, λ0)

∣∣∣∣∣ = oP (1) (8.9)

and similarly for r0. By Lemma 8.1, u 7→ ∂f/∂λ(u, λ0) is the derivative of −E(X|T =

u)f0(u). As a consequence, we can apply Newey & McFadden (1994)’s Lemma 8.10, using
as before Assumptions 3.2, 3.6, and conditions on hn. This yields (8.9). The same reasoning
applies to r0, yielding (8.8).

Now, let us establish that

sup
u∈S′

∥∥∥∥∂q̂∂λ(u, λu,n)− ∂q̂

∂λ
(u, λ0)

∥∥∥∥ = oP (1)

Using a similar decomposition as previously and the preceding results, it suffices to prove
that

sup
u∈S′

∥∥∥∥∥∂f̂∂λ(u, λu,n)− ∂f̂

∂λ
(u, λ0)

∥∥∥∥∥ = oP (1) (8.10)

and similarly for r̂. By Assumption 3.6, there exists C5 > 0 such that |K ′(u) −K ′(v)| ≤
C5|u− v|. Thus,∥∥∥∥∥∂f̂∂λ(u, λu,n)− ∂f̂

∂λ
(u, λ0)

∥∥∥∥∥ ≤ 1

nh2
n

n∑
i=1

‖Xi‖
∣∣∣∣K ′(u−X ′iλu,nhn

)
−K ′

(
u−X ′iλ0

hn

)∣∣∣∣
≤ C5C

2
0 ‖λu,n − λ0‖

h3
n

= Op

(
1√
nh3

n

)
.

This proves (8.10) since nh6
n →∞. The same reasoning applies to r̂. The result follows.
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9 Appendix C: supplementary tables and figures

Variables ζ β0 β1

Local average income
Higher education graduates 1.483*** (0.1) 0 0.016*** (0.003)
High school graduates -1 (0) 0.019*** (0.004) 0

Secondary schooling track
L 8.757*** (0.476) -0.066** (0.033) -0.024 (0.019)
ES 8.95*** (0.468) -0.036 (0.034) -0.019 (0.019)
S 8.895*** (0.452) -0.047 (0.033) -0.029 (0.019)
Vocational -28.502*** (0.493) 0.234** (0.097) -0.055 (0.071)
Technical Ref. Ref. Ref.

Born abroad 2.105*** (0.487) -0.01 (0.016) -0.004 (0.008)
Father born abroad 1.151** (0.486) -0.012 (0.01) 0.008 (0.006)
Mother born abroad 2.083*** (0.504) -0.021* (0.012) 0.008 (0.006)

Entering the labor market in 1998 (relative to 1992) 6.48*** (0.416) 0.113*** (0.024) 0.144*** (0.015)

Male 1.613*** (0.42) 0.031*** (0.009) 0.01** (0.004)

Father’s profession
Farmer 1.238*** (0.467) -0.004 (0.011) 0.007 (0.007)
Tradesman 1.477*** (0.455) -0.009 (0.009) -0.005 (0.005)
Executive 5.236*** (0.452) -0.034* (0.018) 0.009 (0.011)
Intermediate occupation 2.35*** (0.462) -0.004 (0.011) 0.004 (0.006)
Blue collar -1.152*** (0.434) 0.012* (0.007) -0.009** (0.005)
Other 0.965** (0.462) -0.012 (0.009) -0.012** (0.006)
White collar Ref. Ref. Ref.

Mother’s profession
Farmer -6.134*** (0.507) 0.038* (0.023) -0.027* (0.014)
Tradesman -0.919* (0.5) 0.012 (0.01) -0.005 (0.006)
Executive 0.973** (0.454) -0.007 (0.011) -0.008* (0.005)
Intermediate occupation 0.624 (0.465) 0.002 (0.01) -0.003 (0.005)
Blue collar -0.14 (0.461) -0.001 (0.006) 0.008* (0.004)
Other 0.298 (0.464) -0.007 (0.007) -0.015*** (0.004)
White collar Ref. Ref. Ref.

Age in 6th grade
≤ 10 4.091*** (0.452) -0.03* (0.017) 0.005 (0.009)
11 Ref. Ref. Ref.
≥ 12 -5.336*** (0.465) 0.034* (0.019) -0.013 (0.012)

Paris region 1.886*** (0.467) -0.001 (0.013) 0.001 (0.005)

Vocational × ...
Entering the labor market in 1998 -0.018 (0.467) -0.035*** (0.013) -0.006 (0.012)
Male 1.782*** (0.482) -0.02* (0.01) 0.015* (0.009)
Paris region -4.175*** (0.498) 0.022 (0.019) -0.008 (0.014)

Standard errors, presented in parentheses, were computed by bootstrap with 1,000 bootstrap
sample replicates. Significativity levels: *** (1%), ** (5%) and * (10%).

Table 6: First step estimates



Variable Panel 1 Panel 2 Panel 3

Constant (δ0) -0.031 (0.134) 0.089 (0.151) 0.004 (0.119)

Local average income
Higher education graduates -0.012 (0.008) -0.011 (0.008) -0.012* (0.007)

Higher education graduation rate -0.113* (0.064)

Secondary schooling track
L -0.122** (0.044) -0.1** (0.041) -0.123** (0.043)
ES -0.155** (0.05) -0.141** (0.049) -0.151** (0.045)
S -0.143** (0.044) -0.124** (0.052) -0.149** (0.043)
Vocational 0.223 (0.144) 0.251 (0.163) 0.246* (0.139)
Technical Ref. Ref. Ref.

Born abroad -0.021 (0.016) -0.023 (0.017) -0.033* (0.018)
Father born abroad -0.007 (0.015) -0.013 (0.016) -0.001 (0.01)
Mother born abroad -0.01 (0.014) -0.011 (0.014) -0.01 (0.015)

Entering the labor market in 1998 (relative to 1992) -0.08** (0.027) -0.087** (0.031) -0.09** (0.035)

Male -0.057** (0.013) -0.066** (0.016) -0.051** (0.01)

Father’s profession
Farmer -0.014 (0.013) -0.014 (0.015) -0.013 (0.014)
Tradesman -0.03** (0.014) -0.016* (0.01) -0.024** (0.011)
Executive -0.051** (0.022) -0.049* (0.025) -0.056** (0.023)
Intermediate occupation -0.036** (0.014) -0.04** (0.019) -0.036** (0.013)
Blue collar -0.002 (0.007) 0 (0.008) 0.001 (0.008)
Other -0.017 (0.011) -0.018 (0.012) -0.018 (0.011)
White collar Ref. Ref. Ref.

Mother’s profession
Farmer 0.039 (0.025) 0.038 (0.027) 0.05 (0.031)
Tradesman -0.004 (0.011) 0 (0.012) 0.001 (0.011)
Executive -0.026* (0.015) -0.025 (0.018) -0.019* (0.01)
Intermediate occupation -0.012 (0.009) -0.014 (0.011) -0.017 (0.012)
Blue collar 0.014* (0.008) 0.011 (0.009) 0.012 (0.008)
Other -0.016** (0.007) -0.017** (0.008) -0.014** (0.007)
White collar Ref. Ref. Ref.

Age in 6th grade
≤ 10 -0.04* (0.023) -0.043 (0.032) -0.042** (0.021)
11 Ref. Ref. Ref.
≥ 12 0.055* (0.028) 0.055* (0.03) 0.053** (0.026)

Paris region -0.022* (0.012) -0.015 (0.013) -0.033** (0.014)

Vocational × ...
Entering the labor market in 1998 0.013 (0.021) -0.002 (0.022) 0.03 (0.019)
Male 0.004 (0.014) 0.019 (0.014) 0.002 (0.013)
Paris region 0.039* (0.022) 0.025 (0.027) 0.049* (0.026)

In Panel 1, the higher education graduation rates are included in the estimation. In Panel 2
and 3, the streams of income were computed using (τ = 0.97, B = 25) and (τ = 0.95, B = 30)

respectively. Standard errors, presented in parentheses, were computed by bootstrap with
1, 000 sample replicates. Significativity levels: ∗∗∗ (1%), ∗∗ (5%) and ∗ (10%).

Table 7: Estimates of γ: robustness checks
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