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ABSTRACT 
 

Contraction Consistent Stochastic Choice Correspondence* 
 
We model a general choice environment via probabilistic choice correspondences, with 
(possibly) incomplete domain and infinite universal set of alternatives. We offer a consistency 
restriction regarding choice when the feasible set contracts. This condition, ‘contraction 
consistency’, subsumes earlier notions such as Chernoff’s Condition, Sen’s α and β, and 
regularity. We identify a restriction on the domain of the stochastic choice correspondence, 
under which contraction consistency is equivalent to the weak axiom of revealed preference 
in its most general form. When the universal set of alternatives is finite, this restriction is also 
necessary for such equivalence. Analogous domain restrictions are also identified for the 
special case where choice is deterministic but possibly multi-valued. Results due to Sen (Rev 
Econ Stud 38: 307-317, 1971) and Dasgupta and Pattanaik (Econ Theory 31: 35-50, 2007) 
fall out as corollaries. Thus, conditions are established, under which our notion of 
consistency, articulated only in reference to contractions of the feasible set, suffices as the 
axiomatic foundation for a general revealed preference theory of choice behaviour. 
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1.  Introduction 

The revealed preference approach to the general theory of choice seeks to: (i) offer intuitively 

plausible a priori consistency postulates as axiomatic foundations for choice behaviour, and (ii) 

deduce the logical implications of such consistency postulates in specific analytical contexts.  The 

natural starting point for developing a notion of consistent choice would appear to be the context of 

‘set contraction’.  Suppose, starting from some initial choice situation, i.e., some collection of 

alternatives that are available to the decision-maker, the feasible set contracts, in that some 

alternatives become unavailable.  What kind of choice behaviour in the new situation should be 

deemed ‘reasonable’, in the sense of being intuitively consistent with choice in the initial situation?   

The basic answer offered appears to be: alternatives initially chosen should not be rejected 

because other alternatives have been eliminated.  The exact form this intuitive answer takes however 

varies.  Under the assumption that a single, unique, alternative is picked from each feasible set, so that 

choice behaviour is represented via deterministic choice functions (DCFs), Chernoff (1954) required 

the alternative initially chosen to continue to be chosen in the new situation, unless eliminated by the 

contraction of the feasible set.  The condition of ‘regularity’ generalizes this formulation to the 

context of stochastic choice functions (SCFs); i.e., to contexts where a single alternative is picked 

from a given feasible set, but exactly which alternative is chosen is determined according to some 

probabilistic rule.  Regularity requires the probability, of the chosen alternative lying in some 

collection , not to fall when the feasible set contracts from ABC ⊆⊆ A  to B .  Sen (1969) 

considered the parallel generalization of DCFs to deterministic choice correspondences (DCCs), 

which permit multiple alternatives to be chosen from a feasible set, but only in a non-probabilistic 

fashion.1  His α  and β  conditions together require the following.  Suppose some subset of 

alternatives, say C , is chosen from the initial feasible set A .  Then, assuming not every member of 

 is eliminated by the contraction of the feasible set to C B , the choice set from B  should consist of 

all surviving members of C .2  Nandeibam (2003) has offered a probabilistic version of this condition, 

which he terms regularity, in the context of a finite universal set of alternatives. 

                                                           
1  What we term a ‘choice function’ is often also referred to in the literature as an ‘element-valued 

choice function’, to demarcate it from our ‘choice correspondence’, which is termed a ‘set-valued choice 
function’. 

2  Assuming  is non-empty, BC I α  requires the choice set of B  to be some superset of .  
For all 

BC I
yx,  chosen under the feasible set B , β   requires the following: if Cx∈ , then .  Thus, Cy∈ β  

can be equivalently stated as: the choice set of B  must be some subset of C , unless the intersection of the 
choice set of 

BI
B with C  is empty.  Consequently, , the two conditions together require the choice set of B  to be 

exactly  when  is non-empty.  While BC I BC I β  is often termed ‘expansion consistency’, and the name 
‘contraction consistency’ reserved for α  , it is evident from the above formulation that β  can also be 
equivalently interpreted as a consistency restriction on choice from a contracted feasible set, distinct from α .  
We shall accordingly interpret both α  and β  as separate consistency restrictions on choice from a contracted 
feasible set. 
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 Probabilistic choice and choice of multiple alternatives have both featured extensively, but 

usually independently, in the literature.3  In the context of individual decision-making, it is widely 

recognized that random preferences and preferences that generate multiple best alternatives appear 

independently plausible on intuitive, as well as empirical, grounds.  Furthermore, in many theoretical 

contexts, it is helpful to represent an aggregation of individual, deterministic, choice correspondences 

by means of a probability distribution.4  Thus, a unified framework that simultaneously permits the 

choice counterparts of both these properties, by means of stochastic choice correspondences (SCCs), 

is of considerable interest.  Within this unified framework, how should one interpret the notion of 

choosing consistently when the feasible set contracts?  Since most choice problems in economic 

contexts involve universal sets that are infinite, the condition of regularity in Nandeibam (2003) needs 

to be suitably expanded.  The first purpose of this paper is to offer such an expansion. 

Our second, more substantive, purpose is to advance this notion of ‘contraction consistent’ 

choice as the axiomatic foundation for a general revealed preference theory.  This necessitates an 

additional step.  Our interpretation should suffice to generate choice restrictions across two feasible 

sets, neither of which includes the other.  Versions of the weak axiom of revealed preference 

(WARP), designed for DCFs, DCCs and SCFs, have been developed explicitly to cover such cases.  

Predictive implications of the standard theory in alternative analytical contexts are typically deduced 

from corresponding versions of the weak axiom, whether singly or in conjunction with other 

conditions.  Our notion of contraction consistent choice in the general context of SCCs should 

therefore imply a correspondingly expanded version of WARP, which subsumes all earlier, restrictive, 

versions.  Accordingly, we offer a version of the weak axiom, expanded to cover SCCs, which is 

shown to follow from our notion of contraction consistency, under reasonable domain restrictions. 

Analogous exercises were performed by Dasgupta and Pattanaik (2007) in the context of 

SCFs, and by Sen (1971) in the context of DCCs.  The analysis in the present paper, carried out in the 

completely general context of SCCs, thus subsumes, integrates and supersedes these earlier findings. 

Section 2 formalizes the idea of representing choice behaviour via SCCs.  We introduce our 

two consistency postulates for SCCs, viz. contraction consistency (NC) and the weak axiom of 

stochastic revealed preference (WASRP), in section 3.  Our NC expands Nandeibam’s (2003) notion 

of regularity to permit universal sets which are not-necessarily finite, whereas our WASRP expands 
                                                           

3  Recent examples of the literature on probabilistic choice include Bandyopadhyay, Dasgupta and 
Pattanaik (2004, 2002, 1999), Barbera and Pattanaik (1986), Dasgupta and Pattanaik (2008, 2007), McCausland 
(2009), McFadden (2005) and Nandeibam (2009).  Dasgupta (2009) develops a stochastic theory of competitive 
firm behaviour.  Contributions in the DCC framework include Arrow (1959) and Sen (1971) in the general 
choice context, and Richter (1966), Afriat (1967) and Varian (1982) in the specific context of consumers’ 
demand. 

4  For example, Bandyopadhyay, Dasgupta and Pattanaik (2002) discuss how, in the context of 
consumers’ choice, the analytical construct of a stochastic demand function may usefully be deployed to provide 
the aggregate representation of a collection of individual, deterministic, demand functions.  Dasgupta (2009) 
provides a supply theoretic analogue.  The literature on collective choice has analyzed at length the implications 
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the version in Dasgupta and Pattanaik (2007) to permit multi-valued choice.  In section 3, we also 

clarify how our two consistency postulates subsume and unify various analogous notions available in 

the literature.  The relationship between the two postulates is discussed in section 4.  While WASRP 

necessarily implies NC, if the SCC is not defined for some subsets of the universal set of 

alternatives,5 it can violate WASRP while satisfying NC.  We identify a restriction on the domain of 

the SCC under which the two conditions are equivalent.  This restriction permits the domain to be 

‘incomplete’, i.e., not defined for some subsets of the universal set.  Our domain restriction also 

happens to be necessary for NC to imply WASRP, when the universal set is finite6.  We then provide 

a domain restriction which suffices for NC to imply WASRP, for the special case of DDCs, i.e., of 

degenerate SCCs.  As before, this restriction also turns out to be necessary when the universal set is 

finite.  Lastly, we clarify how Sen’s (1971) result regarding the equivalence between the co bination 

of his 

m

α  and β  conditions and WARP for DCCs, and the key findings of Dasgupta and Pattanaik 

(2007), all follow as special cases of our general analysis.  Section 5 concludes.  Proofs are relegated 

 the appendix. to

 

2.  Stochastic choice correspondence 

Let X denote the (non-empty) universal set of alterna   Given any set tives. T , ( )Tr  will denote the 

le non-em ty subsets of T and class of all possib p ( )TR  wil the power set of T (i.e., 

( ) ( ) {R T r T≡ U

l denote 

φ }, where φ  denotes the empty set).  Thus, ( )XrZ ⊆  will d ote a on  

class of non-empty subsets of the un ersal set of alternativ .  G

en

s, T and 

 n -empty

iv es iven two set T ′ , [ ]TT ′\  

will denote the set of all elements of T that do not belong to T ′ .   
 

Definition 2.1.  Let ( )Xr⊆Z≠φ .  A stochastic choice correspondence (SCC) over Z is a rule S  

rywhich, for eve  ZA∈

( )A  being th

, specifies exactly one fi additive probability measure  onitely  

 ( e set of outcomes and 

AQ n

( ) ( )( )ArRAr ,( ) r ( )( )ArR  being the relevant algebra in ( )Ar ). 

 

Consider a given non-empty collection of non-empty subsets of the universal set of alternatives ( X ), 

say Z .  Z  represents the colle ion of all the different feasible sets of alternatives that the decision-

maker may ace.  Notice that 

ct

f Z  may p ssibly be incomplete, in that so e subsets of o m X  may not 

belong to Z .  Suppose an SCC, say S , is defined over the domain Z .  Then S  is a complete 

specification of choice behaviour when faced with different permissible feasible sets, i.e., different 

                                                                                                                                                                                     
of following various probabilistic social decision rules, especially random dictatorship (e.g. Nandeibam, 2008, 
2003, 1996; Pattanaik and Peleg, 1986). 

5  This is the case in many theoretical contexts, including the standard theory of consumers’ behaviour. 
6  This is the case commonly considered, for example, in social choice contexts. 
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members of he collection t Z .  Let ZA∈  denote some permissible feasible set.  Faced with the 

feasible set A , any non-empty subset from A  (i.e., any member of ( )Ar ) may be picked as 

the choice set (i.e., the collection of chosen alternatives).  Given 

the class 

( )Ara ⊆ , the SC  sp  

probability, ( )aQA , that the choice set actually picked will belong to the collection a .  ( )
C ecifies the

( )BSAS ,  

etc. will be denoted, respectively, by BA QQ ,  etc.  Thus, an SCC captures the idea that, given a 

feasible set: (i) one may pick a subset with multiple elements, an

alternati

i

CCs and Fs are all sp ss of SCCs.  Formally   

d (ii) one m

, we define the follow

a

ing.

y choose among the 

tively, SCFs, 

ve subsets available in a probabilistic fashion.   

An SCC is the most flexible tool available for modelling choice behaviour.  Intu

D DC ecial cla es 

 

Definition 2.2.  Let ( )XrZ ⊆≠φ , and let S  be some SCC over Z . 

(i)  is singular, iff, for all S ZA∈ d for every , an ( )Ar⊆a , ( ) { }( )1|=A aaQ =∈ i . 

i) 

iaQ a

( )Ara∈  such that { }( )aQ 1.  is degenerate, iff, for all ZA∈S =(i , there exists 

 

An SCC is singular when the probability of choosing a non-singleton set is zero.  It is degenerate 

when choice is, in effect, deterministic.  An SCC is singular and degenerate when exactly one 

alternative is picked, that too in a deterministic fashion.  We shall identify a singular SCC with an 

CF, a deg CC andS enerate S with a DCC, and a singular  degenerate SCC with a DCF.      

 

Remark 2.3.  An SCC over Z  may be constructed as an regate sentation of n  (possibly 

different) DCCs over 

agg  repre

Z .  Given any ZA∈ , and any ( )Ara ⊆ , let ( )apA  denote the proportion of 

such DCCs which specify a choice set belonging to the collection

ntifying 

 .a  Then one can construct an SCC 

as an aggre e representati  iden  DCCs by ( )a  with 

postulates for choice behaviour. 

( )apAQA . gat on of these 

 

3.  Contraction consistency and the weak axiom of stochastic revealed preference 

We now in duce our two rationality , tro , or consistency

 

Definition 3.1.  Let ( )XrZ ⊆≠φ .  An SCC over Z  cosatisfies e  (NC) iff, for 

all  

ntraction consist ncy

ZBA ∈, such that A ,B ⊆  and for all non-empty ( )BrC ⊂ , 

( ) ( ){ }( )CBsAsQCQ AB ∈⊆≥ I| .                                                                                  (3.1) 

et

 

Consider some initial feasible s  ZA∈ , and some AB ⊆ , ZB∈ .  Let C  be an arbitrary (non-

pty) collection of subsets of em B .  Consider the probability of choosing a subset whose overlap with 
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B  happens to be a member of C .  Intuitively, it seems reasonable to argue that this probability 

should not fall when the feasible set is reduced from A  to B , since such a move only eliminates 

alternatives outside B .  This is the requirement imposed by our contraction consistency.7 

 In the special case of a finite universal set of alternatives, our NC is equivalent to the version 

of regularity provided by Nandeibam (2003).  We proceed to clarify how our NC relates to earlier, 

logous, re h finitions 2. ply the following. ana strictions in t e literature.  De 2 and 3.1 im

 

Observation 3.2.  Let ( )XrZ ⊆≠φ .   

(i) A ll ZBA ∈, such that AB ⊆ , and for all non-singular SCC over Z  NC iff, for asatisfies

empty BC ⊆ , { }{ }( ) { }{ }( )CxxQCxxQ AB ∈≥∈ || .                                                     

(ii) A degenerate

                       

 SCC over 

      

Z  s ZA Batisfies NC iff, for all ∈, such that , and for all AB ⊆

non-empty BC ⊆ , [ { }( ) 1=CQB  if ( ){ }( ) 1| ==⊆ CBssQA I ]. 

(iii) A s ar a te S

A

 Z ,A B Z∈ingul  degenera CC overnd  satisfies NC ff, for all  i  such that 

 for all , [

AB ⊆ , 

 Bx∈ { }{ }( ) 1=x { }{ }( ) 1=xQA ]QB  if and . 

ta a

 

When choice is confined to singleton subsets of alternatives, Observation 3.2(i) implies NC is 

equivalent to the condition of regularity specified in the literature with regard to SCFs (e.g. 

Nandeibam, 2008, 1996; Pat naik nd Peleg, 1986).  This requires the probability, of the chosen 

ernative lying in a subset C  of alt B , not to decrease when we contract the feasible set from A  to 

B .8  When choice is restricted to be deterministic (but possibly non ingleto ), Observation 3.2(ii) 

implies the equivalence of NC with the combination of Sen’s (1969) 

-s n

α  and β  conditions, specified 

tion to DCCs.  This requires the following.  If some alternative xin rela B∈  is chosen under A , then 

By∈  will be rejected under B  if, and only if, y  is also rejected under A .9  If choice is constrained 

to be deterministic ingleton, Observation 3.2(iii) implie the equivalence of NC with Chernoff’sand s  

r

s 

(19 estriction: Bx∈  must continue to be chosen under B  if x  is chosen under BA ⊇ .   54) 

Our next step is to introduce a generalized vers WARP - one that is applicable to SCCs. 

                                                          

ion of 

 

 
7  The LHS in (3.1) is 1 if ( )BrC = .  Hence NC implies (3.1) must hold for all non-empty 

.     ( )BrC ⊆
8  Dasgupta and Pattanaik (2007) specify the quantifier erroneously in their definition (Def. 2.6(i)) of 

regularity. 
By∈ B α9  Condition  is the req ent that uirem  w  under ill be rejected  only if  is also rejected 

under . Condition
 y

A  β  requires th llowing ativ  is chos der bot  and e fo en un h A B altern e x: if some , then 
 will be reject nde[ y∈ B ed u r B  if y  is also re r ].  Recall footno   jected unde A te 2.
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Definition 3.3.  Let ( )XrZ ⊆≠φ .  An SCC over Z satisfies the weak axiom of 

reference (W , and for all non-empty

stochastic revealed 

ASRP) iff, for all BA, Z∈  ( )BArC I⊂ , p

 ( )( ) ( ){ }( ) ( ){ }( )CBsAsQCAsQBArQ ABA ′Bs ⊆′ | ∈ ∈⊆−≥ II |\ .                      (3.2) 

 

Cons o feasible ts ZBA ∈, .  Let C  be some arbitrary collection of subsets wh  

available under both A  and 

ider tw se ich are

B .  Consider the probability of choosing a subset whose overlap 

with BAI  belongs to C .  Suppose this probability rises when the feasible set changes from A  to B  

(so that the RHS of the inequality in (3.2) is positive).  It seems reasonable to argue that this rise 

occurs only because th inates some alternatives.  But, in that case, the magnitude fe 

cee

move elim

the initial pr

o

 10

 

cr uld not ex  obability of choosing a subset comprised exclusively of

alte  our WASRP.  

at Definitions 2 and 3.3 together imply the following. 

Observation 3.4.  Let 

the 

 such in ease sho

rnati

d

ves, which is ( )( )BArQA \ ).  This is the restriction imposed on SCCs by

 

We now note th  2.

 

( )XrZ ⊆≠φ . 

(i) A singular SCC over Z satisfies WASRP iff, for all A ZB∈, , and for every non-empty 

,  { }{(( BAC I⊆ ) )})( { }{( }) { }{( })CCxxQA A xxQxxQ BB B ∈≥∈ | ∈− ||                           \ .                                    

(ii) A degenerate SCC over Z satisfies WASRP iff, for all ZBA ∈, , and for every non-empty 

(A )BC I⊆ , if ( ){ }( ) 1| = ( )( )\ ABr=⊆ CBsAsQA I , then: 1=QB  when 

( 0| s .       ) =′ AI{ }( ) =C                         ⊆′ BsQB

satisfies WASRP iff, for all , and for every ZBA ∈,Z(iii) A singular and degenerate SCC over 

[ ]BAx I∈ , if { }{ }( ) 1=xQA , then:  { } ( ){ }( ) 1\| =∈′′ ABxxQB  when  { }{ }( ) 0=xQB .                        

 

Observation 3.4 clarifies how our WASRP integrates and subsumes earlier versions of the weak 

axiom.  Our WASRP, when confined to singular SCCs, becomes equivalent to WASRP for SCFs, 

introduced by Bandyopadhyay et al. (1999) in the cont y 

Dasgupta and Pattanaik (2007) for the general choice context.  This requires the probability, under A , 

of the chosen alternative belonging to some subset of BAI , not to exceed the probability, under 

      

ext of consumers’ demand and reformulated b

B , 

of the c ti

, . 

hosen alterna ve either lying in that subset or being unavailable under A .  When confined to 

degenerate SCCs, our WASRP is equivalent to WARP for DCCs (Arrow, 1959; Sen  1971)  This 
                                                           

10  When ( )BArC I=
)

, (3.2) must hold trivially.  Hence WASRP implies (3.2) for all non-empty 

.  Dasgupta and Pattanaik (2008) have presented a version of WASRP in the specific context of ( BArC I⊆
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requires: if an alternative is rejected in one situation, it cannot be chosen in another, so long as some 

alternative chosen in the first is also available in the second.  Lastly, in the case of a degenerate and 

singular SCC, our WASRP is equivalent to WARP for DCFs, introduced by Samuelson (1938) in the 

context of consumers’ choice, and reformulated by Houthakker (1950) for the general choice context.  

This requires, when the alternative chosen under  is also available under A B , that the alternative 

chosen under B  be either identical to that chosen under A , or else unavailable under A .  

 

ZRemark 3.5.  Consider a collection of  DCCs defined over some domain n .  As discussed earlier 

(Remark 2.3), one can construct an SCC over Z  as an aggregate representation of these  DCCs.  It 

can be checked that, if all such DCCs individually satisfy Sen’s (1969) 

n

α  and β  conditions, then the 

SCC so constructed must satisfy NC.  Analogously, if the constituent DCCs all satisfy WARP, then 

their aggregate SCC representation must satisfy our WASRP. 

 

4.  Results 

We are now ready to characterize the relationship between our two consistency restrictions on SCCs, 

viz. contraction consistency and the weak axiom of stochastic revealed preference.  We first introduce 

some notation, before proceeding to present and discuss our central results. 

 

( )XNotation 4.1.  Let be the set of all non-empty ℑ rZ ⊆  such that, for all , at least one of 

the following two conditions holds: 

,A B Z∈

1≤AI B ;                                   (4.1)     

 and ( ) ZA ∈
~

           there exist  such that: ZBA ∈~,~ AA ⊆
~

, BB ⊆~
, [ ]BAB II =]~A~[ B~U .  (4.2)                           

 

Proposition 4.2.  Let ( )XrZ ⊆≠φ .   

(i) An SCC over Z satisfies NC if it satisfies WASRP. 

(ii) An SCC over Z satisfying NC also satisfies WASRP when ℑ∈Z . 

Proof:  See the Appendix. 

 

Corollary 4.3.  An SCC over  satisfies NC if and only if it satisfies WASRP. ℑ∈Z

 

By Proposition 4.2(i), WASRP implies NC, irrespective of the domain of the SCC.  By Proposition 

4.2(ii), NC implies WASRP when the domain of the SCC is restricted to the class .  Thus, by 

Proposition 4.2, NC and WASRP are equivalent when the domain of the SCC belongs to the class 

ℑ

ℑ .  

                                                                                                                                                                                     
consumers’ choice, modelled via stochastic demand correspondences.  The version introduced in this paper 
implies their version, when translated to our general choice context. 
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Since , this in turn implies the equivalence of the two consistency restrictions for SCCs 

with complete domain, i.e., SCCs defined over all possible non-empty subsets of the universal set of 

alternatives.  Since the class  may also contain members other than 

( ) ℑ∈Xr

ℑ ( )Xr , Corollary 4.3 implies 

that NC and WASRP may be equivalent even if the domain of the SCC is incomplete, i.e., even if the 

SCC is not defined for some possible non-empty subsets of the universal set of alternatives. 

 Recall now that, when the SCC is constrained to be singular, the restrictions imposed by our 

NC and WASRP turn out to be equivalent, respectively, to those imposed on an SCF by the condition 

of regularity and the version of WASRP advanced by Dasgupta and Pattanaik (2007).  Dasgupta and 

Pattanaik (2007) show that, for SCFs, their version of WASRP implies regularity, while the converse 

also holds when the domain of the SCF is restricted to the class ℑ .11  Thus, our Proposition 4.2 and 

Corollary 4.3 extend these findings beyond their SCF-based context, so that these central results in 

Dasgupta and Pattanaik (2007) fall out as a special case of our more general, SCC-based, analysis. 

 Proposition 4.2(ii) provides a sufficient domain restriction for NC to imply WASRP.  Is this 

also necessary?  With a particular infinite universal set of alternatives, Dasgupta and Pattanaik (2007) 

provide an example of an SCF with domain ℑ∉Z  which satisfies regularity, yet violates their 

WASRP.  It follows that, when X  is infinite and the domain of a (singular) SCC falls outside the 

class , satisfaction of NC need not imply the satisfaction of our WASRP for SCCs.  Dasgupta and 

Pattanaik (2007) also show that, when the universal set of alternatives is finite, given any arbitrary 

domain , one can always construct an SCF which satisfies regularity, yet violates WASRP for 

SCFs.  Thus, given a finite universal set of alternatives, whenever the domain falls outside the class 

, there necessarily exists a (singular) SCC that satisfies NC, yet violates our WASRP.  It follows 

that, in a general setting which makes no prior assumption regarding the cardinality of the universal 

set of alternatives, NC implies WASRP only if the domain of the SCC belongs to the class .  In this 

sense, our domain restriction turns out to be not only sufficient, but also necessary, for NC to imply 

WASRP.  We note these findings formally below for the sake of completeness. 

ℑ

ℑ∉Z

ℑ

ℑ

 

Proposition 4.4 (Dasgupta and Pattanaik, 2007).  Let ( )XrZ ⊆≠φ . 

(i) If X  is infinite, there may exist an SCC over some ℑ∉Z  which satisfies NC but violates 

WASRP. 

(ii) If X is finite, for every ℑ∉Z , there must exist an SCC over Z  which satisfies NC but 

violates WASRP. 

 

                                                           
11  Notice that [  implies (4.2).  The corresponding domain restriction in Dasgupta and 

Pattanaik (2007) (their Notation 4.1) thus contains a redundancy, which is eliminated in Notation 4.1 here. 
] ZBA ∈I
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Lastly, consider the special case where SCCs are constrained to be degenerate.  This is the 

environment typically considered in traditional investigations.  We now specify a restriction on the 

domain that turns out to be both necessary and sufficient for NC to imply WASRP in this case.   

 

Notation 4.5.  Let ( )XrZ ⊆≠φ .  Let ℑ  be the set of all Z  such that, for all , we have 

(4.1) or (4.3) or (4.4) below: 

,A B Z∈

 ;                                                                                                                          (4.3) ZBA ∈U

for all distinct , ,x y A B∈ I  [for some : ZBA ∈~,~ AA ⊆
~

, BB ⊆~
, { }  and ]~~[, BAyx I⊆

( ) ( )BUABAU ⊂~~
].                                                                                                         (4.4) 

 

Remark 4.6.  While ℑ⊆ℑ , it is not true that ℑ⊆ℑ : Dasgupta and Pattanaik (2007) provide a 

domain that belongs to ℑ , but falls outside ℑ .  Thus, ℑ  is, in general, a larger class than .   ℑ

 

Notation 4.7.  Let ( )XrZ ⊆≠φ .  Let  be the set of all ℑ̂ Z such that, for all , we have 

(4.1) or (4.3) or (4.5) below:                          

,A B Z∈

for all distinct , ,x y A B∈ I  [for some ZBA ∈~,~
: AA ⊆

~
, BB ⊆~

, { } ]~~[, BAyx I⊆ , 

( ) ( )BABA UU ⊂~~
 and ( ) ]~~ ZB ∈AU .                                                                               (4.5)  

 

Two examples:  Let { } { } { }{ }xzzyyxZ ,,,,,1 = .  Then, given any ZBA ∈, , (4.1) must hold (and 

(4.2), (4.3), (4.4), (4.5) all violated) if A,B are distinct, while both (4.2) and (4.3) must vacuously hold 

(and (4.1), (4.4), (4.5) all violated) otherwise.  Thus, ℑ∈1Z , ℑ∈1Z  and . Now consider 

.  Notice that, for 

ℑ∈ ˆ
1Z

{ } yzyxZ ,,,2 = { }{ }wz,, { } { }wzy ,,Bzy ,,x,A == , (4.1), (4.2), (4.3), (4.4) and 

(4.5) are all violated.  Hence, , ℑ∉2Z ℑ∉2Z  and . ℑ∉ ˆ
2Z

 

Lemma 4.8.  (i)   ℑ⊆ℑ̂  and (ii) if X  is finite, ℑ=ℑ̂ . 

Proof:  See the Appendix.                                                                                                       

 

Remark 4.9.  Regardless of the cardinality of   (but it is not true that 12,X ℑ⊆ℑ ˆ ℑ⊆ℑ̂ ).  Thus, 

Lemma 4.8(i) implies ℑ⊆ℑ⊆ℑ ˆ .  When X is infinite, there exist domains that belong to  ℑ  but 

                                                           
12  In light of Lemma 4.8(ii), the example with finite X  in Dasgupta and Pattanaik (2007) (their 

Example 5.1), which shows that Z  may belong to ℑ , yet fall outside ℑ , also suffices to establish this claim. 
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not to .  To see this, consider the following example. Let ℑ̂ [ ] { } [ 2,15.0,01,2 UU ]−−=X , and let 

[ ] { }{ } [ ] { }{ 1|5.0,01,21|5.0,0 }2,1 ≤<−−≤<= bbaZ UUUa .  Then, for every ZA∈ ,  either (i)  

 for some  or (ii) [ ], a { }5.0,01 UA = ( ]2,1∈a [ ] { }5.0,0U1,−−= bA

Z∉5.0,

 for some .  Notice 

that, (i){ } , and (ii) for all 

( ]2,1∈b

0 ( ]2,1, ∈ba , [ ] { } [ ]( ) Zb ∉a −− 1,5.0,0 U,1 U .  It can then be 

checked that ℑ∈Z  but .   ℑ̂

( )Xr⊆

∉Z

Z≠

 

Proposition 4.10.  Let φ .  Then: 

Z ℑ∈ ˆ(i)  for every , if a degenerate SCC over S Z  satisfies NC, then  must also satisfy WASRP; 

(ii)  if 

S

X is finite,  for every , there must exist a degenerate  SCC over ℑ∉ ˆZ Z  which satisfies NC 

but violates WASRP. 

Proof: See the Appendix. 

 

X ℑ, the class Dasgupta and Pattanaik (2007) show that, given a finite  provides a domain 

restriction that is both necessary and sufficient for Chernoff’s Condition to imply WARP for DCFs.   

In light of Lemma 4.8(ii), Proposition 4.10, in effect, generalizes this result beyond their context of 

DCFs to that of DCCs.  In light of Lemma 4.8(i) and Remark 4.9, part (i) of Proposition 4.10 also 

goes beyond the analysis in Dasgupta and Pattanaik (2007) by providing a sufficient domain 

restriction for Chernoff’s condition to imply WARP, regardless of the cardinality of the domain.     

Furthermore, Proposition 4.10(i) offers a sufficient domain restriction under which the 

combination of Sen’s α  and β  conditions turns out to be equivalent to WARP for DCCs.  Recall 

that, when the SCC is degenerate, the restrictions imposed by NC and WASRP are equivalent, 

respectively, to those imposed on a DCC by the combination of Sen’s βα  and  conditions and 

WARP.  Sen (1971) establishes the equivalence, between WARP and the combination of his  α  and 

Zβ  conditions, for DCCs whose domain  includes every two-element subset of the universal set of 

alternatives (i.e., when, for all distinct { } Zyx ∈,

ˆ

Xyx ∈, , ).13  Evidently, any such domain 

(including, obviously, the complete domain) must belong to our class ℑ ; additionally, there may exist 

domains which belong to  but fall outside the class identified by Sen.ℑ̂

                  

14  Thus, our Proposition 

                                         
13  Sen (1971) formally states his equivalence result under the assumption that the domain is complete, 

i.e. it contains all non-empty subsets of the universal set of alternatives, but his proof only requires the domain 
to contain all two-element subsets of the universal set.  Evidently, the complete domain restriction implies, but 

is not implied by, the latter; which in turn is stronger than our domain restriction ℑ̂ .  See footnote 14 below. 
14  Suppose { } { } { } { }XBAZedcbBdcbaAedcbaX ,,,,,,,,,,,,,,, ==== .  Then , 

even though 
ℑ∈ ˆZ

Z violates Sen’s restriction, since the domain does not contain any two-element subset of 
alternatives (and thus, obviously, the domain is not complete either). 
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4.10(i) subsumes Sen’s result, by showing that the class of domains over which his α  and β  

conditions imply WARP for DCCs is, in general, larger than the one he identifies.  Furthermore, Sen 

does not address the issue of necessity, which is covered by Proposition 4.10(ii) (for the general case 

where the universal set is not constrained to be infinite). 

By Proposition 4.2(ii), an SCC over ℑ∈Z  must satisfy WASRP if it satisfies NC, regardless 

of whether it is degenerate or non-degenerate.  Recall however that there exist domains which belong 

to  but not  (Remark 4.9).  Thus, Propositions 4.4(ii) and 4.10(i) together imply that there are 

domains over which: (i) every degenerate SCC satisfying NC also satisfies WASRP, but (ii) there 

exist non-degenerate SCCs satisfying NC which violate WASRP.   

ℑ̂ ℑ

By Proposition 4.10(ii), given any arbitrary finite X  and any arbitrary domain Z  outside the 

class , there exists at least one degenerate SCC over ℑ̂ Z  which satisfies NC but not WASRP.  A 

weaker version of this necessity claim (with regard to the domain restriction ) can be extended to 

the case of infinite

ℑ̂

X .  Even when X  is infinite, there may exist SCCs with domain  which 

satisfy NC but violate WASRP.  Consider for example the domain specified in Remark 4.9 above.  

Define a singular and degenerate SCC over 

ℑ∉ ˆZ

Z  as follows: (i) for every ZA∈  such that 

 for some , [ ],1 a { 5.0,0UA = } ( ,1∈ ]2a { }{ }0 1=AQ ; and (ii) for every ZA∈  such that 

 for some [ ] ,01, U−=A { 5.0 }− b ( ]2,1∈b , { }{ }5 1.0 =AQ

ℑZ

.  This SCC satisfies NC, but violates 

WASRP.  Thus, NC does not imply WASRP if  - even when the universal set of alternatives is 

infinite.  However, we do not know whether, given any arbitrary infinite 

∉ ˆ

X , there necessarily exists 

a degenerate SCC satisfying NC but violating WASRP, for every possible Z  outside the class .  

We suspect this is so, but, since we have been unable so far to construct a general example for the 

infinite case, this remains an open question.  The issue is analogously unresolved for infinite 

ℑ̂

X with 

regard to non-degenerate SDCs defined over domains outside the class ℑ  (recall Proposition 4.4). 

 

5.  Conclusion 

In this paper, we have considered a general choice context, where decision-makers may choose 

probabilistically among (possibly multi-element) subsets of a given feasible set of alternatives.  We 

have modelled such choice behaviour in terms of an SCC with possibly incomplete domain, i.e., one 

which need not be defined over all possible non-empty subsets of the universal set of alternatives.  We 

have introduced a minimal consistency postulate, viz. contraction consistency, which restricts choice 

behaviour when the feasible set is contracted, as well as a generalized version of WARP.  The first 

condition generalizes the condition of regularity in Nandeibam (2003), while the second subsumes the 

version introduced in Dasgupta and Pattanaik (2007).  Our substantive results identify the relationship 

between the two conditions.  While the latter necessarily implies the former regardless of the domain 
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of the SCC, the reverse relationship does not hold.  We have identified a restriction on the domain of 

the SCC, under which the two consistency postulates turn out to be equivalent.  This restriction 

includes a complete domain, while also permitting the domain to be incomplete.  When the universal 

set of alternatives is finite, we have shown that this domain restriction constitutes a necessary, as well 

as sufficient, condition for contraction consistency to imply our generalized version of the weak 

axiom.  We have also identified another domain restriction as both necessary and sufficient for the 

two conditions to be equivalent when one constrains SCCs to be degenerate, in addition to assuming 

the universal set to be finite.  This condition suffices even when the universal set is infinite.  Our 

results subsume the SCF-based analysis in Dasgupta and Pattanaik (2007) within the more general 

environment of probabilistic multi-valued choice.  Key results for the deterministic non-singleton 

choice environment, due to Sen (1971), also turn out to be implied as special cases of our analysis. 

The major thrust of our analysis lies in advancing our notion of contraction consistency as the 

foundational axiom for a general revealed preference approach to the theory of choice.  

Considerations of plausibility, transparency and weak requirements would all appear to support its 

claim.  This condition permits the immediate generalization of all earlier, restrictive analyses based on 

Chernoff’s Condition, the combination of Sen’s α  and β  conditions, or regularity, to an expanded 

environment of probabilistic multi-element choice from possibly infinite feasible sets.   Our analysis 

shows that one may utilize NC to achieve such a generalization even when some version of the weak 

axiom of revealed preference is necessary to generate significant empirical or predictive 

consequences.  This is when the context of the theory makes it reasonable to assume that the SCC is 

defined over a domain sufficient for NC to imply WASRP.  Our results characterize the general 

conditions under which this can be achieved; conditions which may be applied to specific theoretical 

contexts in future investigations. 15  Future work may also seek to identify domain restrictions under 

which NC suffices to imply rationalizability of the SCC in terms of probabilistic preference orderings. 

 
Appendix 
 
Proof of part (i) of Proposition 4.2.  Let ( )XrZ ⊆≠φ , and let  be some SCC over S Z  satisfying 

WASRP.  Consider any such that , and any non-empty .  To show that  ZBA ∈, AB ⊆ ( )BrC ⊂ S

                                                           
15  For example, consumers routinely face governments who tax/subsidize and ration goods.  Since the 

intersection of two ‘budget triangles’ in a two-good world can be generated as the consumer’s feasible set under 
an appropriate tax-subsidy regime (where purchases above and below some threshold are taxed/subsidized at 
differential rates), it appears natural to include the intersection of two budget triangles in the domain of the SCC.  
NC can then replace WASRP as the foundational rationality axiom for demand analysis in the two-good case.  
Analogously, in many collective choice contexts, given any two feasible sets in the domain, it may be intuitively 
reasonable to include their union in the domain as well.  Dasgupta (2009, 2005) has introduced a consistency 
restriction on competitive firm behaviour which implies neither profit maximization nor cost minimization, but 
nevertheless suffices to generate the standard predictions regarding supply behaviour.  It would be useful to 
investigate whether his consistency condition in turn can be derived from restrictions akin to NC. 
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satisfies NC, we need to show that (3.1) holds.  Let ( )[ ]CBrD \≡ .  By WASRP, noting , and AB ⊆

)(BrD ⊂≠φ , we get: 

( )( ) ( ){( }) ( )DQB≥ArQA DBsAsQB A ∈⊆+ I|\ .                                                        (N1) 

Notice now that: 

( )( ) ( ){ }( ) ( ){ }( ) 1| ( )DQB + ( )CQB|\ ∈⊆+∈⊆ CQDBsAsQ AA I+BArQA BsAs I = =  (N2) 

Together, (N1) and (N2) imply (3.1).                                                                                                         ◊  

 

We shall establish part (ii) of Proposition 4.2 via the following three Lemmas. 

 

Lemma X1.  Let ( )XrZ ⊆≠φ , and let  be some SCC with domain S Z .  For all , if  ,A B∈Z

, then the SSC, , must satisfy (3.2) for all non-empty S ( )BAr⊂1≤BAI C I . 

 

Proof of Lemma X1.  If 1≤BAI , then either [ ] φ=BAI  or  is a singleton.  Thus, there 

does not exist any non-empty  if 

A BI

( )BArC I⊂ A 1≤BI .  Hence, (3.2) must hold trivially.         ◊  

 

Lemma X2.  Let  ( )XrZ ⊆≠φ , and let  be some SCC with domain S Z  that satisfies NC.  Let 

 be such that (  and ,A B Z∈ )A B ∈U Z 2≥BAI .  Then, for all non-empty , the 

SSC,  must satisfy (3.2). 

( )BAIrC ⊂

,S

 

[ BAIProof of Lemma X2.  Consider any ZBA ∈, such that ( ) ZBAE ∈≡ U , ] φ≠≡C , 

2≥C ; and any non-empty ( )CrC ⊂ .  Let ( )( )CCr \D ≡ .  Note that ( )Cr⊂D≠φ .  Suppose 

(3.2) is violated, so that: 

( ){ }( ) ( )( ) ( ){ }( )CBsAsQBArQCAsBsQ AAB ∈⊆+>∈′⊆′ II |\| .                      (N3) 

We shall show that (N3) yields a contradiction, given NC.  First notice that, by NC, 

( )( ) ( ) ( ){ }( ) ( )( )ABrQABrBsEsQABrQ EEB \\~|~\ ≥∈⊆≥ I .                                  (N4) 

Now let ( ){ }DCsBs ∈′⊆′≡ I|θ , ( ){ }DCsAs ∈⊆≡ I|γ  and ( ){ }CCsAs ∈⊆≡ I|ϖ .  

Consider any  Es ⊆~  such that ( ) γ∈As I~ .  Then ( ) DCs ∈I~ , so that ( ) θ∈Bs I~ .  Hence, 

( ){ } ({ }) θγ ∈⊆⊆⊆ EssEs I ~~|~ ∈A Bs I~| .  Thus, by NC,  

( ) ( ){ }( ) ( ){ }( )γθθ ∈⊆≥∈⊆≥ AsEsQBsEsQQ EEB II ~|~~|~ ,                                  (N5) 

        ( )( ) ( ) ( ) ( ){ }( ) ( ){ }( )ϖϖ ∈⊆+∈⊆≥+ AsEsQBArAsEsQQBArQ EEAA II ~|~\~|~\ . (N6) 

By (N3) and (N6),  
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( ){ }( ) ( ) ( ){ }( ) ( ){ }( )ϖ∈⊆+∈⊆>∈′⊆′ AsEsQBArAsEsQCAsBsQ EEB III ~|~\~|~|   (

From (N4), (N5) and (N7),  

N7) 

         ( )( ) ( )( ){ } ( ){ }( ) >∈′⊆′+∈′⊆′ CAsBsQDAsBs B II ||  +QABrQ BB \

( ) ( ){ }( ) ( ){ }( ) ({ }( )) γϖ ∈⊆+∈⊆+∈⊆ AsEsQAsEsQBArAsEsQ EEE III ~|~~|~\~|~

  ( )( )ABrQE \+ .                                                                                                       (N8) 

Since C and D partition ( )Cr , clearly, ( ) ϖ,\ BAr  and γ  partition ( )Ar .  Hence, (N8) implies: 

 ( )( ) ( ) 11 =>= ErBrQ . ( )QEB

This contradiction implies (3.2) must hold for all non-empty  when .           BAC I⊂ [ ] ZBA ∈U ◊  

 

Lemma X3.  Let  ( )XrZ ⊆≠φ , and let  be some SCC with domain S Z  that satisfies NC.  Let  

, ,A B ZBA ∈~,~
 be A⊆ such that A~ , BB ⊆~

, and [ ] [ ]BABA ~~
II = . en, for all non-empty 

e SSC, S , must satisfy: 

) ({(

Th

[ ]BAI , thC ⊂

( )( ) }) ( )( ) ( ){ }( )CBsAsQBArQCBrQ AAAA ∈⊆+≥∈ I~|~~\~sAsQBA ⊆+ I|\ , (N9)            ~~

( ){ }( ) ( ){ }( )CAsBsQCAsBsQ BB ∈′⊆′≤∈⊆′ II ~|~~| ~  (N10) .                                            

 

roof of Lemma X3.  Consider any non-empty , let ( )[ ]CBArD \I≡[ ]BAC I⊂P  and let 

( ){ }DBsAs ∈⊆≡ I|~~~γ , ( ){ }C .  Since ABsAs ∈⊆≡ I|~~~ϖ A⊆
~

, by NC, 

( ) ( ){ }( )γγ ~~|~
~ ∈⊆≥ AssQQ AA IA                                 .                                                   (N11) 

rom (N11), noting that ( ) γ~,\~ BAr  partition ( )Ar ~
, we get:  and ϖ~F

 ( )( )\~ ( )ϖ~~AA  ~ QBArQ +

( )( ) ( ) ( ){ }( ) ( ){ }( )ϖ~~|\~~|~\ ∈⊆+∈⊆+≤ AsAsQBArAsAsQAArQ AAA II .              (N12) 

otice now that:  N

{( ( ) }) ( ){ }( )CBsAsQAsA A ∈⊆=∈ II |~~| ϖsQA ⊆ ;                                                      (N13) 

( )( ) ( ) ( ){ }( ) (rQBArAsAsQAArQ AAA \~~|~\ =∈⊆+ I ( ))BA \ .                                        (N14) 

BB ⊆~
, (N10) follows directly from NC.                        ◊  Together, (N12)-(N14) yield (N9).  Noting 

 

, and let  be some SCC with domain S Zℑ∈ZProof of part (ii) of Proposition 4.2.  Let  which 

satisfies NC.  Consider any ZBA ∈, , and a -empty ny non ( )BAC I⊂ .  To establish that the SSC, 

S , satisfies WASRP, we ne w that S  satisfies (3ed to sho .2).  If 1≤B , then (3.2) holds by AI
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Lemma X1.  Suppose 2≥BAI .  Then, since ℑ∈Z , there exist ZBA ∈~,~
 such that: AA ⊆

~
, 

BB ⊆~
, [ ]BABA II =]~~[  and ( ) ZBA ∈~~

U .  Since ( ) ZB ∈A ~~
U , by Lemma X2,  

( )( ) ( ){( }) ( ){ }( )CA ∈sB ′⊆sQB
′≥CBsA ∈IsQBArQ AA + ⊆ I~|~~|~~\~

~~~ . 

◊In light of Lemma X3, we immediately get (3.2).                                                                                   

 

( )Xr⊆Z≠Proof of Lemma 4.8.  Let φ .  Part (i) follows directly from Notations 4.5 and 4.7.   

(ii) Let X  be finite, and let ℑ∈Z .  Suppose .  Then there exist  which satisfy 

(4.4) but violate (4.5).  Thus, there must exist distinct 

ℑ∉ ˆZ BA,

BAyx I∈,

Z∈

 and , such that: 

[{ } , , 

ZBo ∈
~A ,~

0

AA ⊆0
~ { }yx ⊆,yx ⊆, B⊆B0

~ ( ) ( ) ZB ∉00
~

U( )BAU⊂BA U 00
~~

 and A~ ].  But then, since 

, there must exist ZB ∈1A1
~,~

, such that: [{ZBA o ∈
~,~

0 ℑ∈ }, yx 01
~ AA ⊆⊆ , , { }, yx 01

~ BB ⊆⊆

( ) ( )0B0A11
~~ BA U U⊂  and ( ) ZB ∉1A1

~~
U ].  Proceeding in this fashion, we have an infinite sequence 

of ordered pairs, ( ) ( )2211
~,~,~,~ B

iB~1 ⊆+

ABA

iByx ~, ⊆

 … , such that, for every positive integer i , 

[{ } ,{ } ,  and 

{1,2,...}∈

ii 1 ⊆+ AA ~~yx, ⊆ ZBA ii ∈~,~ ( ) ( )ii BA ~~
U⊂ii BA ~~

1 U ++ 1 ].  This, however, 

contradicts the assumption that X  is finite.  Hence, ℑ̂ℑ∈Z  implies  , so that ℑ∈ ˆZ ⊆ℑ .  Since  

ℑ⊆ℑ̂  by part (i) of Lemma 4.8, part (ii) of Lemma 4.8 follows.                                                       ◊  

 

Proof of Proposition 4.10. 

(i) Let ℑ∈ .  Let be a degenerate SCC with domain ˆZ S Z , which satisfies NC.  Suppose  

violates WASRP.  Then:  

S

{( })| ∈ sxAthere exist  and distinct ,A B Z∈ ,x y A B∈ I 1=⊆sQA, such that:   and 

{( ,| ′ }) 1=′∈∉⊆′ ssQB ysxB .                                                                                       (N15) 

Noting Lemma X2, (N15) implies ( ) ZBA ∉U .  Then, since , ℑ∈ ˆZ

( )there exist A  such that: [ZB ∈~,~
, { }y ⊆ , AA ⊆

~ A~x, { } By ⊆ ~ ( )BU  andAB ⊂~x, B⊆ , U  

( ) ZB ∈A ~~
U ) ].                           

Now, since the SCC satisfies NC, (N15)-(N16) im

                                  

ply: 

                                                        (N16

 { }( ) 1~|~~
~ =∈⊆ sxAsQA  and {( }) 1~|~~

~ ∉⊆′ xBsQB ,~ =′∈ sy′s .                                   

N17) and Lemma X2 together i

    (N17) 

( )BA ∉~~
U Z ( mply , which contradicts       (N16).                                             
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(ii) In light of Lemma 4.8(ii), part (ii) of Proposition 4.10 follows directly from part (ii) of 

Proposition 5.4 in Dasgupta and Pattanaik (2007).                                                                                ◊  
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