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Under Economies of Scope: A Nonparametric Methodology*

 
In designing a production model for firms that generate multiple outputs, we take as a starting 
point that such multi-output production refers to economies of scope, which in turn originate 
from joint input use and input externalities. We provide a nonparametric characterization of 
cost efficient behavior under these conditions, and subsequently institute necessary and 
sufficient conditions for data consistency with such efficient behavior that only include 
observed firm demand and supply data. We illustrate our methodology by examining the cost 
efficiency of research programs in Economics and Business Management faculties of Dutch 
universities. This application shows that the proposed methodology may entail robust 
conclusions regarding cost efficiency differences between universities within specific 
specialization areas, even when using shadow prices to evaluate the different inputs.  
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��� ,QWURGXFWLRQ�
 
    We present a novel approach for analyzing the cost efficiency of multi-output firms. Our 
starting point is that such multi-output production is essentially induced by the presence of 
economies of scope, which may loosely be defined as “situations where the average total cost 
of production decreases as a result of increasing the number of different goods produced” 
(see, e.g., Baumol et al., 1982). Given this, we stress that we do not want to present a 
methodology for investigating the extent to which economies of scope are actually present. 
Rather, as we explain below, we present a toolkit for analyzing cost efficient production 
behavior that exploits a number of specific features related to scope economies. This is an 
important difference between our approach and most other contributions on scope economies 
in the production literature, which indeed essentially aim at recovering whether and to what 
extent the production technology under study is characterized by economies of scope. See, 
e.g., Kim et al. (2005) and references therein. 
    A first specificity of our approach is that it is embedded in a nonparametric methodology. 
Such an approach has some well-known advantages when compared to a parametric 
approach.1 For example, it does not rely on a functional specification of a firm's production 
technology. In fact, economic theory generally does not imply a particular functional form for 
the production technology, and reliable empirical specification tests are not available in many 
cases. As a result, rejections of restrictions imposed by economic theory may be due to an ill-
specified functional form and do not necessarily reject the theory as such. Yatchew (1998, 
669-670), for instance, cites this lack of theoretically superior functional (parametric) 
specifications as a prime motivation for using nonparametric analytical tools. Generally, 
within a parametric framework it is possible to test production properties FRQGLWLRQDO�XSRQ�
VRPH�D�SULRUL�SRVWXODWHG�IXQFWLRQDO�IRUP for representing the production technology, but the 
functional form as such is usually not testable. Furthermore, the nonparametric methodology 
deals in a very natural way with the widely observed simultaneous occurrence of multiple 
inputs and outputs. Finally, it easily accounts for the possibility that input-output 
combinations do not necessarily have to lie on the production frontier: production behavior 
can be analyzed while allowing for observed inefficiencies.2 
    As for our specific methodology, rather than resorting to some parametric specification of 
the production technology, we use the mere technological postulates of nested input 
requirement sets (or free output disposability) and convexity in output space. Both technology 
properties have often been used in a nonparametric setting. For example, Varian (1984) 
suggests the assumption of nested input sets, while Petersen (1990) and Bogetoft (1996) 
suggest the use of convexity in output space. As we will discuss, these minimal assumptions 
allow for analyzing cost efficient behavior from the raw price and quantity data by exploiting 
specific features of production processes characterized by economies of scope. 
    The second specificity of our approach then pertains to this particular (scope economies) 
interpretation of our empirical cost efficiency conditions. More specifically, we take it that the 
very nature of scope economies lies in joint input use and input externalities. The cost 
rationalizing effect of joint input use for multi-output firms is evident. For instance, as for our 
own empirical application, senior researchers can serve as an input in the production of both 

                                                
1 See, e.g., Varian (1984), Färe et al. (1994) and Cooper et al. (2000) for introductory texts on nonparametric 
production and efficiency analysis. 
2 See, e.g., the “subset rationalization” concept of Banker and Maindiratta (1988) and the “goodness-of-fit” 
concept of Varian (1990), which essentially reconcile the neoclassical nonparametric production analysis 
literature (see, e.g., Afriat, 1972; Hanoch and Rothschild, 1972; and Varian, 1984) and the 'DWD�(QYHORSPHQW�
$QDO\VLV (DEA) literature. [The term DEA, which was introduced by Charnes et al. (1978), is often used for 
summarizing the literature on nonparametric efficiency analysis.] 



 3 

academic publications and doctoral dissertations that are delivered by the research production 
unit. Within the same setting, input externalities occur when the presence of a distinguished 
scholar has beneficial effects on the productivity of other members of the research unit, even 
if she or he is not directly involved in the production of the associated research output. More 
generally, input externalities refer to cost saving (or productivity enhancing) effects to be 
attributed to inputs (employed by the same production unit) that are not used in a direct 
manner for the production of the output under consideration. 
    While the illustrative application in the current paper pertains to the specific case of 
academic research production, it is worth stressing that scope economies prevail in a wide 
variety of real-life situations, in the public sector (e.g. public railway companies that 
simultaneously provide freight and passenger transport) as well as in the private sector (e.g. 
banks that also provide insurance services). More generally, given our starting position that 
scope economies (originating from jointly used inputs and input externalities) form the very 
economic motivation for multi-output production, we believe that our methodology becomes 
a useful analytical tool as soon as the production behavior is characterized by multiple 
outputs. 
    Finally, our method does not a priori impose economies of scope; it does not assume any 
structure regarding the nature of the effects resulting from joint input use and input 
externalities. In addition, it does not presume that the empirical analyst knows which (parts of 
the) observed input quantities represent joint use or are attributed to specific outputs. Indeed, 
such non-observability of the input distribution is often the case in real-life applications. That 
is, although we can observe aggregate inputs (for example, the numbers of senior and junior 
researchers), it may be quite difficult to determine which inputs are directly associated with 
what output (academic publications or doctoral dissertations). In the concluding section, we 
indicate how the presented model can be refined in the case that such additional information 
regarding the input quantity distribution is available. 
    Still, even though we impose minimal a priori structure regarding the nature of the scope 
economies or the input distribution, we can derive testable conditions for cost efficient 
behavior. Interestingly, these conditions are expressed in terms of observable (aggregate) 
price and input-output quantity information. [In fact, we also extend our tools for 
nonparametric cost efficiency analysis to apply when only input-output quantity and no price 
information is available.] That is, there is no need to disaggregate the observed firm demand 
and supply data to analyze the firm’s cost efficiency, which make our conditions easy to 
implement in practice. 
    To demonstrate its practical usefulness, we apply our methodology by assessing the cost 
efficiency of research programs in Economics and Business Management Faculties of Dutch 
universities. Our data cover the period 1996-2000 and were delivered by the universities in 
the context of the quinquennial assessment of university research conducted under the 
auspices of the Association of Dutch Universities (VSNU). As argued above, the multi-output 
research production is likely to be characterized by economies of scope, which makes this 
data set well fit to illustrate our methodology. 
    The rest of the paper is organized as follows. Section 2 presents a nonparametric 
characterization of cost efficient production behavior under economies of scope. As we will 
discuss, this provides nonparametric necessary and sufficient conditions for efficient behavior 
that are expressed in terms of unobservable price and quantity information. Section 3 
subsequently presents the corresponding necessary and sufficient cost efficiency conditions 
that solely use observable information, and which are easy to implement in practice. Section 4 
presents our empirical application to research programs in Dutch Economics and Business 
Management Faculties. Section 5 summarizes and provides some concluding remarks 
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regarding potential extensions and refinements of the presented methodology. The appendix 
contains the proofs of our results. 
 
 
��� &RVW�HIILFLHQW�SURGXFWLRQ�EHKDYLRU�XQGHU�HFRQRPLHV�RI�VFRSH��D�QRQSDUDPHWULF�

FKDUDFWHUL]DWLRQ�
 
    We consider firms (broadly defined) that use an P-valued input vector 

�
+∈ℜ[  to produce 

an V-valued output vector \ �
+∈ ℜ ; in the following, we let .= {1 , ... , V} denote the output 

index set. Next, we assume a data set with W�firm observations; we use 6 = {1, ..., W} to denote 
the corresponding index set. For each observation L 6∈ , we observe the output vector \ � , the 
corresponding input vector [ �  and the input price vector S � �

++∈ ℜ . [In a following step, we 
relax the assumption that input prices are observed.] 
    In what follows, we consider the most general production processes, which correspond to 
our interpretation of scope economies discussed in the Introduction. Specifically, we take 
account of the fact that the production process of each output may be characterized by 
production externalities and joint input use. To do so, we define GHFRPSRVHG� LQSXW� YHFWRUV 

( )’’ ’ ’
1 1ˆ ...[ [ [ [� � +=  for an (aggregate) input vector [�such that 

 

1 1...[ [ [ [� � += + + +  and � [ [�≤ ≤  for 1,..., 1O V= + . 
 
In this specification, each component [ 	 , N .∈  contains the input quantities that are directly 
allocated to the production of the output N, while the remaining component 1[ 
 +  captures the 

jointly used input. Evidently, each ( )’’ ’ ’
1 1ˆ ...[ [ [ [
 
 +=  defines a unique 

1

1
[ [� �� +

=
= ∑ ; we 

will repeatedly use this in our following discussion. 
 
([DPSOH��� To illustrate the concept, we consider a situation where three inputs (P�= 3) are 

used for the production of two outputs (V = 2). Suppose a firm with input vector 

( )’
6 5 2[ = . Given that we have two outputs, we can define the corresponding 

decomposed input vector as ( )’’ ’ ’
1 2 3[̂ [ [ [= ; the components 1[  and 2[  then capture 

the input used for the respective outputs 1 and 2, and 3[  contains the jointly used input. A 

feasible specification is ( )’
1 2 1 1[ = , ( )’

2 3 2 1[ =  and ( )’
3 1 2 0[ = . [Note that 

this specification effectively satisfies 
3

1
[ [ 

 == ∑  but, of course, many other specifications 

are equally feasible.] In words, this specification implies that respectively 2 and 3 units of 
the input 1 are used for the production of the outputs 1 and 2, while 1 unit of the input 1 is 
jointly used; a directly similar interpretation holds for the inputs 2 and 3. 
 

    At this point, we stress that we usually cannot observe�the exact allocation of the observed 
(aggregate) input vector [ to its constituent components 1[ , ..., 1[ � + ; the mere restriction is 

that, for each observation L, the components 
�
�[  must sum up to the observed input vector [ � . 

Note further that it may well be that some components of the decomposed input vector [̂  
equal zero; e.g., there may be no joint input use, which means that [� +1 is a zero vector. [Such 
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cases, which include additional information, may entail more stringent cost efficiency 
conditions. We return to this in the concluding discussion.] 

    We describe the technology in terms of input requirement sets ( ) ( ) 1��
���9 \ +

+⊆ ℜ  associated 

with the N-th output quantity �\  (i.e. the N-th entry of the output vector \); the statement 

( )[̂ ���9 \∈  then indicates that the decomposed input vector [̂  produces at least the output 

quantity �\ . This specification of the sets ( )���9 \  effectively implies that the production of 

each output N may depend not only on the input [ �  specific to the production of the N-th 
output but also, through production externalities, on the inputs *[ �  that are allocated to some 

other output *N , and on the jointly used input 1[ � + . By construction, the input requirement sets 
are QHVWHG�in the following sense:3 
 

( )( ) ( )ˆ ˆ[ � � [��� � � ���9 \ \ \ 9 \∈ ∧ ≥ ⇒ ∈� � ; 
 
this is a standard condition which reflects that less output never requires more input or, in 
other words, that outputs are freely disposable. 
    The presence of production externalities and jointly used inputs makes it impossible to 
consider each output separately in the cost efficiency analysis; e.g., the specification of the 
(unobserved) decomposed input vector ( )[̂ ���9 \∈  most clearly reveals that the input 
requirement sets associated with different outputs are mutually interdependent. To obtain a 
setting that allows for analyzing cost efficiency at the (multi-output) firm level, we define the 
set� ( )9 \ , which contains all decomposed input vectors [̂  that can produce the multi-valued 

output vector \. The formal interrelationship between the input requirement set ( )9 \  and the 

sets ( )���9 \  is as follows: 
 

for ( )’
1 ...\  \ \= : ( ) ( )ˆ ˆ:[ 9 \ [ !"!N . 9 \∈ ⇔ ∀ ∈ ∈ . 

 
Using ( )9 \ , we can next define the further production assumption of convexity in output 
space. We define this property in terms of some given budget ] that can be used for 
purchasing the inputs (under the prices S): 
 

( )( ) ( )( )
( )( )

’ ’

’

ˆ ˆ ˆ ˆ: :

ˆ ˆ[0,1] : : (1 ) .

[ S [ � �[ 9 \ [ S [ � �[ 9 \ �
[ S [ � �[ 9 \ \

# # # # $ $ $ $

% % % # $

] ]
]λ λ λ

∃ ≤ ∧ ∈ ∧ ∃ ≤ ∧ ∈

⇒ ∀ ∈ ∃ ≤ ∧ ∈ + −
 

 
In words, this definition states that, if the budget ] can afford the production of \ &  and \ '  
(through the decomposed input vectors [̂ (  and [̂ ) , respectively) then it can also produce any 
convex combination of these output vectors (through some decomposed input vector [̂ * ). The 
economic interpretation of the condition is that the marginal rates of output transformation are 

                                                
3 As discussed by Varian (1984), including this condition avoids trivial rationalizations of the data in the sense of 
the following Definition 1. 
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everywhere decreasing (or, VWULFWR� VHQVX, non-increasing) along the boundary of the output 
producible set associated with the budget ].4 
    Using this convexity property, we can characterize efficient production behavior. As a 
preliminary step, we note that each input requirement set ( )+�+9 \  corresponds to a production 

function ( )̂[,I , which gives the maximum quantity of the output N that can be produced with 
[̂ . We have: 
 

( ) ( )ˆ ˆ[ [-�- - -9 \ I \∈ ⇔ ≥ . 
 

Similarly, we may relate the set ( )9 \  to the production function ( ) ( ) ( )( )’

1ˆ ˆ ˆ...I [ [ [.I I= . 
    In our approach, cost efficient production behavior means that, for each firm observation L, 
the selected decomposed input vector [̂ /  yields an output combination \ 0  that is situated on 
the efficient boundary of the (convex) set of producible output combinations associated with 

the given budget (which corresponds to the observed outlay (( )’S [121 )); this effectively 

represents a ‘rational’ allocation of the available budget. To formally define the condition, we 
use a standard result in welfare economics, namely: under convex utility possibility sets, any 
Pareto-efficient allocation can be characterized as a stationary point of a linear social welfare 
function (see e.g. Mas-Colell et al., 1995). This result is readily translated towards the current 
setting, which is characterized by convex output producible sets (instead of utility possibility 
sets). More specifically, we obtain that efficient production behavior requires that each 
observation L maximizes a multi-output production function (linear in terms of \ 3 ) for the 
observed outlay, i.e.: 
 

 ( ) ( ) ( ) ( ) ( ){ }’ ’ ’ ’

ˆ
ˆ, : max4\ I [ [ � � S [ S [5 6 575 5 8 5 525L 6 ZLWK+ +∀ ∈ ∃ ∈ℜ = ∈ℜ ≤ . (2.1) 

 
In this cost efficiency condition, the vector 

5
 can be interpreted as SULRULW\�ZHLJKW YHFWRU, 

with the different entries representing the weights that the firm under evaluation attributes to 
the different outputs. These weights correspond to some implicit (possibly nonlinear) 
production objective function that aggregates the different individual outputs, and which 
underlies the observed output choices. Importantly, these priority weights need not be 
constant across the firm observations: they can change depending on the economic 
circumstances. For example, if the valuation of some output N increases, then the firm may 
want to increase (in relative terms) the production of the output N, which is translated in a 
higher priority weight. The analogy with the Pareto efficiency concept in welfare economics 
is immediate: cost-efficient behavior, for a given budget/outlay, implies that it is impossible to 
increase any output N without decreasing another output *N . 
    The question of data consistency with the cost efficiency condition is then whether it is 
possible to conceive a collection of input requirement sets that makes observed behavior 
consistent with the above efficiency condition. The following definition states the formal 
conditions for such a FRVW�UDWLRQDOL]DWLRQ (or &�5) of the production data: 
 

                                                
4 It can be verified that this output convexity condition is actually somewhat stronger than that forwarded by 
Petersen (1990) and Bogetoft (1996) in a similar context. The more stringent property is essential for obtaining 
the cost efficiency condition in (2.1), which will form the basis for our nonparametric characterization of multi-
output production under economies of scope. 
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'HILQLWLRQ����)RU�D�SURGXFWLRQ�SURFHVV�FKDUDFWHUL]HG�E\�SURGXFWLRQ�H[WHUQDOLWLHV�DQG�MRLQW�
LQSXW�XVH��D�IDPLO\�RI�LQSXW�UHTXLUHPHQW�VHWV� ( ){ },9�99 \ N .∈ �SURYLGHV�D�C-R RI�WKH�VHW�
{ }, ,�S [ \ �_�:;:<: L 6∈ �LI�WKHUH�H[LVWV�D�production function ( )̂I [ ��VXFK�WKDW�IRU�HDFK� L 6∈ �
WKHUH�H[LVW�D�decomposed input vector ( ) ( ) ( )( )’’ ’ ’

1 1ˆ ...[ [ [ [= = = =
> > += �DQG�D�priority 

weight vector 
? �WKDW�VDWLVI\��

1. ( )ˆI [ \@ @
= ;�

2. ( ) ( ) ( ) ( )’ ’
ˆ ˆI [ I [A A A

≥  IRU�DOO� ( ) ( )’ 1’ ’ ’
1 1ˆ ...[ [ [ [

BC
B B

+

+ += ∈ ℜ  ZLWK�( ) ( )’ ’S [ S [D D2D
≤ .�

 
    In words, this definition requires that there must exist at least one feasible decomposition of 
the observed input vectors [ E  into decomposed input vectors [̂ E  and, accordingly, priority 
weight vectors 

D
 and some production function ( )̂I [  such that each firm observation L is 

consistent with the efficiency condition (2.1). This efficiency condition cannot be used as 
such, since the production technology (and, hence, the function ( )̂I [ ) is typically unknown. 
Essentially, the nonparametric approach to analyzing production behavior focuses on 
efficiency conditions that do not necessitate a (non-verifiable) functional specification of the 
production possibilities.  
    To provide a nonparametric characterization of cost efficient behavior in the sense of 
Definition 1, we first define the additional concept of LPSOLFLW�SULFH YHFWRUV� ( )1̂ ˆ,...,S S F  for an 
(aggregate) input price vector S as 
 

:N .∀ ∈  ( )’’ ’ ’
,1 , , 1ˆ ...S G G GIH GIH

+=  such that 

� { }1,..., 1 :O V∀ ∈ + , �JKML
+∈ℜ �with � ,� SNIONQP

∈
=∑ � 

�
This concept complements the earlier concept of decomposed input vector [̂ : each 

( )’’ ’ ’
,1 , , 1ˆ ...S G G GIH GIH

+=  captures the fraction of the price for the decomposed input 

quantities ( )’’ ’ ’
1 1ˆ ...[ [ [ [R R +=  that is attributed to the output N. To see this, we first recall 

that the decomposition of the (aggregate) input vector [ into V+1 components [ S  effectively 
reveals the different channels through which the observed inputs are allocated. 
Correspondingly, each O-th component ,TVU  of the implicit price vectors Ŝ W  gives the fraction 

of the price of each input component [ X  that is attributed to the output N.5 More specifically, 
the components ,YIY  capture the fraction of the price of the input directly allocated to output N 
that is effectively borne by that output N��Next, the components *,

ZIZ  ( *N .∈ , *N  ��N) refer to 

the possibility of input externalities: *,
�[I[ ≠ �means that the inputs allocated to the output *N  

( *[ \ ) benefit the production of the output N (which is thus compensated through *,
[I[ ). 

                                                
5 In fact, the intuition of the implicit price vectors is analogous to that of Lindahl prices in the context of public 
goods. The concept of Lindahl prices is mainly used in a public economics context; see, e.g., Myles (1995) for a 
discussion. 
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Finally, as for the jointly used input 1[ ] + , the cost must be distributed over the different 

outputs (see in particular , 1� S^I_^Q` +∈
=∑ ). 

 
([DPSOH��� To further illustrate the concept, we recapture the situation with three inputs and 

two outputs in Example 1. Suppose the input price vector ( )’
2 1 3S = . Given that we 

have two outputs, we can define implicit price vectors ( )’’ ’ ’
1 1,1 1,2 1,3Ŝ =  and 

( )’’ ’ ’
2 2,1 2,2 2,3Ŝ = . A feasible specification is the following: 

 

1,1

1.5
0.5
1.5

 
 =  
  

, 1,2

0
0.5
2

 
 =  
  

, 1,3

1
0

1.5

 
 =  
  

; and 2,1

0.5
0.5
1.5

 
 =  
  

, 2,2

2
0.5
1

 
 =  
  

, 2,3

1
1

1.5

 
 =  
  

. 

 
In words, 1,1 S≠  implies that the output 1 does not fully bear the cost for the input used 

for its production ( 1[ ); this reflects that input externalities benefit the production of the 

output 2 (for which the compensation is captured by 2,1  ( ( )1,1-S= ). Similarly, the input 

used for the production of the output 2 ( 2[ ) implies production externalities towards the 
production of the output 1 (see the specification of 1,2  and 2,2 ); in this case there are no 

externalities associated with the input 1 (as the first entry of 1,2  is zero). Finally, the 

remaining components 1,3  and 2,3  distribute the cost of the jointly used input. 
As a final note, we indicate that a specification of the decomposed input vector [̂  and the 
implicit price vectors ( )1̂ ˆ,...,S S a  effectively allows for computing the cost share attributed 

to each output N (as ’ˆ ˆS [b ). As for our example, the given specification of [̂  (in Example 

1), 1̂S  and 2̂S  implies a cost level of 9 (= ’
1̂ˆS [  ’ ’ ’

1,1 1 1,2 2 1,3 3 � [ [ [+ + ) for the output 1 

and a cost level of 14 (= ’
2̂ ˆS [  ’ ’ ’

2,1 1 2,2 2 2,3 3 � [ [ [+ + ) for the output 2. Note that the sum 

of these cost shares equals the total cost of production 
cS [ . 

 
    Once more we should stress that, for a given observation L, we usually cannot observe�the 

exact specification of the implicit price vector ( ) ( ) ( )( )’’ ’ ’

,1 , , 1ˆ ...S d d d d
e e eIf eIf

+=  associated 

with each output N. The only restriction is that the components ,

g
hMi  must add up (over the 

different outputs N) to the observed (aggregate) price, i.e.� ,� Sj j
kVlknm

∈
=∑ . [We return to the 

use of additional information regarding the specification of the implicit price vectors�
( )1̂ ˆ,...,S S o  in the concluding discussion.]�
    We are now in a position to state a nonparametric necessary and sufficient condition for 
cost efficient production behavior in the sense of Definition 1:6 
 

                                                
6 In Proposition 1, positive monotonicity of a set ( )pqp9 \  means that ( )( )*ˆ ˆ ˆ[ � �[ [rsr9 \∈ ∧ ≥  ( )*[̂ tqt9 \⇒ ∈ . 

This is essentially the property of free input disposal, i.e. more input can always produce the same output. 
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3URSRVLWLRQ����)RU�D�SURGXFWLRQ�SURFHVV�FKDUDFWHUL]HG�E\�SURGXFWLRQ�H[WHUQDOLWLHV�DQG�MRLQW�
LQSXW�XVH��WKHUH�LV�D�IDPLO\�RI�FORVHG��FRQYH[��SRVLWLYH�PRQRWRQRXV�LQSXW�UHTXLUHPHQW�VHWV�
WKDW�SURYLGH�D�C-R RI�WKH�GDWD�LI�DQG�RQO\�LI�IRU�HDFK� L 6∈ �WKHUH�H[LVWV�

1. D�decomposed input vector� ( ) ( ) ( )( )’’ ’ ’

1 1ˆ ...[ [ [ [u u u u
v v +=  DQG�

2.�implicit price vectors�( )1̂ ˆ,...,S Sw w
x ��

VXFK�WKDW�IRU�HDFK� ,L M 6∈ �� N .∈ ��� ( ) ( )( )ˆ ˆˆ ˆ:
y y

S [ S [z { { z { {
| | | |\ \≥ ≥ .�

 
    Hence, consistency with the cost efficiency condition requires that observed behavior 
satisfies a number of cost minimization conditions (i.e., one for each individual output N) that 
are expressed in terms of decomposed input vectors [̂ }  and corresponding implicit price 
vectors ( )1̂ ˆ,...,S S{ {

 for each observation L: if observation M produces more of the output N than 

observation L ( ~ �
� �\ \≥ ), then cost efficiency requires that the N-th output cost (under the prices 

Ŝ �� ) for observation L� does not exceed that for observation M (or, ( ) ( )ˆ ˆˆ ˆ
� �

S [ S [� � � �
� �≥ ).7 Our 

above explanation of the vectors [̂ }  and ( )1̂ ˆ,...,S S{ {
 makes clear that this nonparametric 

characterization has a natural intuition in terms of the underlying model of joint input use and 
production externalities. 
 
 
��� (PSLULFDO�WHVWV�RI�FRVW�HIILFLHQW�EHKDYLRU�XQGHU�HFRQRPLHV�RI�VFRSH�
�
    The &�5�condition in Proposition 1 is expressed in terms of decomposed input vectors [̂ }  
and implicit price vectors ( )1̂ ˆ,...,S S{ {

. Empirical testing of the condition would be easy if 

these vectors were observed. However, this quantity and price information is usually not 
available, which makes direct empirical implementation of the &�5�conditions generally hard 
in computational terms. Specifically, one cannot conclude whether a &�5�of a given data set is 
possible by using an algorithm that tries to find decomposed input vectors and implicit price 
vectors that are consistent with the conditions in Proposition 1: in general, no algorithm can 
exhaust all feasible values and combinations of these unobservables. Therefore, in this section 
we formulate necessity and sufficiency conditions that solely include the (aggregate) observed 
input quantity and price information. 
    We first present the necessity condition. Before formulating that condition, we define an 
RXWSXW�GRPLQDWLQJ�UHIHUHQFH�VHW �5  for observation L as 
 

{ }, : _
�� � ��� �
� �5 M 6 N . M \ \∈ ∀ ∈ ∃ ≥ . 

 
In words, each set 

�5  is constructed such that, for each output N, it contains at least one 

observation 
� �M 5∈  that dominates observation L� in that output N (

�� �
� �\ \≥ ). For each 

observation L, 
                                                
7 Interestingly, these cost minimization conditions are formally analogous to the condition derived by Varian 
(1984; Theorem 1) in the single output case. Given our multi-output orientation, we identify a separate condition 
for each entry N .∈  of the evaluated output vector \ � . In fact, if there is only a single output (V = 1) then the 
nonparametric cost rationalization condition in Proposition 1 effectively reduces to Varian’s condition. 
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5 �  is the FROOHFWLRQ�RI�RXWSXW�GRPLQDWLQJ�UHIHUHQFH�VHWV �5 . 

 
([DPSOH��� We illustrate by means of three observations ( { }1,2,36 = ) that are taken from 

our own empirical application (see Section 4), which considers a situation with three 
outputs (V = 3). We have: 

 

1

1
27
4

\
 
 =  
  

, 2

1
27
2

\
 
 =  
  

 and 3

0
13
5

\
 
 =  
  

. 

 
Let us construct the output dominating reference sets for observation 1. Trivially, one such 
set is the singleton {}1 . Evidently, this implies that the sets { }1,2 ,{ }1,3 � and { }1, 2,3  
equally satisfy the definition of output dominating reference set for observation 1. [More 
generally, we have that, if 1

�5 6⊆  is an output dominating reference set for observation L, 
then by construction any larger subset 2

�5 6⊆  (with 1 2

� �5 5⊆ ) is an output dominating 
reference set for the same observation.] In addition, given the output vectors of 
observations 2 and 3 a final output dominating reference set is the pair { }2,3 � (because 

2 1
1 1\ \≥ , 2 1

2 2\ \≥  and 3 1
3 3\ \≥ ). Hence, we obtain the collection of output dominating 

reference sets 
 

{} { } { } { } { }{ }1 1 , 1,2 , 1,3 , 1,2,3 , 2,35 = . 

 
We can now define the nonparametric necessary condition for cost efficient production that 
solely includes aggregate price and quantity information: 
 
3URSRVLWLRQ����)RU�D�SURGXFWLRQ�SURFHVV�FKDUDFWHUL]HG�E\�SURGXFWLRQ�H[WHUQDOLWLHV�DQG�MRLQW�

LQSXW�XVH��WKHUH�LV�D�IDPLO\�RI�FORVHG��FRQYH[��SRVLWLYH�PRQRWRQRXV�LQSXW�UHTXLUHPHQW�VHWV�
WKDW�SURYLGH�D�C-R RI�WKH�GDWD�RQO\�LI�IRU�HDFK� L 6∈ : ( )’ ’( ) min ( )�S [ S [����

��� � �
�Q�� ∈∈

≤ ∑ .�
 
    This condition compares the cost level ’( )S [ �   for the evaluated firm observation L to the 

cost level for each combination of observations 
¡M 6∈  with 

¢£ ¤
¥ ¥\ \≥  for each output N .∈ ; 

see the construction of the output dominating reference sets 
¦5 . More specifically, the 

condition states that the cost level of L should not exceed, under the prices that apply to L, the 
cost level for the (sum) input vector [§ ¨¨Q©∈∑  associated with any set 5ª ª5 ∈ . Intuitively, if 

this condition were not met, then observation L could have produced (at least) the same output 
vector \ «  at a lower cost level by using the (sum) input vector [§ ¨¨Q©∈∑  instead of the chosen 

vector [ « . 
    If an observation L does not meet the corresponding necessary condition for cost efficient 
behavior, then it is useful to quantify the corresponding deviation from the (necessary) 
efficiency condition. To do so, we use a FRVW�HIILFLHQF\�PHDVXUH defined as the ratio of the 
minimum cost level needed to obtain consistency with the necessity requirement over the 
actual cost level: 
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( )’

’

min ( )

( )

¬ S [
S [

­­®­
¯ °

°n±¯ ±
¯²¯ϕ ∈∈=
∑

. 

 
The corresponding necessary condition for a &�5�of the data to be possible is that 1

³
ϕ =  for 

each L 6∈ . The value 1
³

ϕ <  captures the extent to which costs should (minimally) be reduced 
in order to obtain consistency of the observation L with the cost rationalization conditions. 
From that perspective, the measure 

´
ϕ  reveals for each individual firm observation the degree 

of consistency with the necessary &�5� requirement in Proposition 2, and may thus be 
interpreted as a JRRGQHVV�RI�ILW�measure for the cost efficiency condition under investigation. 
See Varian (1990) and Färe and Grosskopf (1995) for a detailed discussion of this goodness-
of-fit idea in a similar context of nonparametric production analysis. 
 
([DPSOH��� To further illustrate, we recapture the situation in Example 3. Specifically, we 

evaluate observation 1 and use the additional information (again taken from our empirical 
application; see Section 4) that the three observations produce the three outputs by means 
of two inputs (P = 2) with quantities and prices 
 

1 28.2
23

[  
=  

 
, 2 7.2

9.2
[  

=  
 

, 3 10.2
8

[  
=  

 
; and 1 1798.660

3129.605
S  

=  
 

. 

 
On the one hand, we find that 1 ’ 1( ) 122933.115S [ = . On the other hand, it can be verified 

that ( ) ( )11 1

1 ’ 1 ’ 2 3min ( ) ( ) 85289µ S [ S [ [¶
¶n·· ∈∈

= + =∑ . Hence, ( )11 1

1 ’ 1 1 ’( ) min ( )¸S [ S [ ¹¹nºº ∈∈
> ∑  

and, thus, observation 1 does not meet the necessary cost minimization condition in 
Proposition 1. The corresponding cost efficiency measure 1 0.694ϕ =  suggests that, for 
the given output, observation 1 can reduce its cost level by (at least) 30.6%. Obviously, 

1 1ϕ <  D�IRUWLRUL�implies that a &�5�of this data set is impossible.�
 

    Proposition 2 institutes a condition on the observable price and quantity information that 
should always be met by production processes consistent with the &�5�Definition 1. Still, 
meeting this condition does not mean that there effectively exists a &�5�of the production data 
under consideration; i.e. the condition is necessary but not sufficient for a &�5�to be possible. 
A complementary sufficiency condition is: 
 
3URSRVLWLRQ����)RU�D�SURGXFWLRQ�SURFHVV�FKDUDFWHUL]HG�E\�SURGXFWLRQ�H[WHUQDOLWLHV�DQG�MRLQW�

LQSXW�XVH��WKHUH�LV�D�IDPLO\�RI�FORVHG��FRQYH[��SRVLWLYH�PRQRWRQRXV�LQSXW�UHTXLUHPHQW�VHWV�
WKDW�SURYLGH�D�C-R RI�WKH�GDWD�LI�LW�LV�SRVVLEOH�WR�FRQVWUXFW�D�SDUWLWLRQLQJ�6 » �( N .∈ )�ZLWK�

¼¼n½ 6 6
∈

=*  DQG� *
¾ ¾6 6∩ = ∅ � ( )* *, , �N N . N N∈ ≠ � VXFK� WKDW� IRU� ¿L 6∈ :�

( ) ( )’ ’
: S [ S [À Á ÁÂÁ Á2À
ÃÂÃ ÃM 6 \ \ ∀ ∈ ≥ ⇒ ≤  

�DQG� *

* * *
* *, :

Ä Å
Æ Æ ÆM 6 N N \ \ ∀ ∈ ≠ >  ��

 
    Intuitively, this condition considers the extreme scenario where each firm observation 
¿L 6∈  allocates the total input exclusively to the production of a single output N. The first part 

of the closing cost minimization condition then states that it should not be possible to produce 
(at least) the associated output quantity 

Ç
È\  at a lower cost when compared to any (similarly 
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specialized) production plan M with
É Ê
Ë Ë\ \≥ . The second part of the closing condition imposes 

that, under such exclusive allocation (or specialization), the observation L should not dominate 
some other observation *M  in output *N  if the latter observation effectively specializes in 
producing *N .8 
    Clearly, testing data consistency with the empirical requirements in Propositions 2 and 3 is 
a finite process because, essentially, for each observation L the cardinality of the set of 
observations M that dominate observation L� in at least one output N� (i.e. the set 

{ }:
Ì Í
Î ÎM 6 N . \ \∈ ∃ ∈ ≥ ) is finite in nature. Given this, the necessity and sufficiency tests 

may be implemented by means of simple enumeration algorithms, which consecutively 
consider all feasible specifications of the sets 5 Ï  for each observation L (for the necessity 
requirement) and the sets 6 Ð  for each output N� (for the sufficiency requirement). The next 
section provides an illustrative application with V�= 3. 
    Our empirical necessity and sufficiency requirements will in general not coincide; this 
discrepancy essentially reflects the unobservability of the decomposed input vectors and 
implicit price vectors in Proposition 1. The only instance in which both conditions are 
equivalent occurs when there is a single output (V = 1). The intuition is straightforward: in that 
case, the decomposed input vectors and implicit price vectors are the observed input and price 
vectors, and thus the necessity and sufficiency conditions for a &�5� of the data always 
coincide; or, from a different perspective, the empirical implications of joint input use and 
production externalities become irrelevant if there is only a single output. 
    In the general case (for� 2V ≥ ), violation of the necessary condition in Proposition 2 means 
that a &�5 of the data is impossible, while consistency with the sufficient condition in 
Proposition 3 entails the opposite conclusion. As for data that meet the necessity but not the 
sufficiency condition, we cannot directly tell from the observable price and quantity 
information whether a &�5 of the data is effectively possible. In such cases, one may, for 
example, impose some additional prior structure on the decomposed input vectors and implicit 
price vectors. 
    Still, even though the necessary condition should not generally coincide with the sufficient 
condition, we may expect the two conditions to become equally powerful (or ‘converge’) 
when the sample size increases. Specifically, for large W the probability increases that for L 6∈  

there exists N .∈  such that for all *N .∈ , *N N≠  we have that ( ){ }* *

’
min S [ÑÂÒÓÒ Ñ
ÒÕÔ Ö Ö\ \∈ ≥  

gets close to zero. In such a situation, the difference between ’min ( )× S [Ø�Ø Ø
Ù²Ú

Û Ú Û∈ ∈∑  and 

( )’

:
min S [Ü�ÝÞÞ

ß2à
àÕáãâ®â∈ ≥

 diminishes. As a result, the empirical requirement 

’ ’( ) min ( )äS [ S [å�å å
æ�æ æ�ç

è ç è∈ ∈
≤ ∑  in Proposition 2 will approach the condition ( ) ( )’ ’S [ S [é2é é2ê

≤  

for :
ë ì
í íM 6 \ \∈ ≥  in Proposition 3. 9 

                                                
8 To avoid a conflict with the usual “ no free lunch”  assumption, one may also interpret the sufficiency condition 
in terms of quasi-exclusive input allocation (i.e. the production of a single output consumes almost all input 
while a minimal amount of input is allocated to each other output). [The proof in the appendix is easily 
accommodated.] More generally, it is worth stressing that, for data that are consistent with the sufficiency 
condition, this may not be the only data rationalizing interpretation. The sole implication of the sufficiency result 
is that (quasi-)exclusive input allocation always constitutes a possible interpretation. 
9 As for this last formulation of the sufficiency condition in Proposition 3, we note that the requirement 

( ) ( )’ ’S [ S [îïî îñð
≤  for :

ò ó
ôõô ôM 6 \ \∈ ≥  is equivalent to ( ) ( )’ ’S [ S [îïî îñð

≤  for :
ö ÷
ø øM 6 \ \∈ ≥  when 
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    The associated ‘convergence rate’ will then of course depend (positively) upon the input 
price-quantity variation in the data and, hence, we may expect it to increase with the number 
of inputs. For a given number of inputs, the speed of convergence will vary with the specific 
data generating process that underlies the aggregate production data, which in turn depends on 
the specific characteristics of the production process (see the production function ( )̂I [  and 

the priority weight vector 
ù
 in (2.1)). But, in general, we can safely argue that, for larger 

samples, the empirical implications of the fairly rudimentary allocation process underlying the 
sufficient condition will get closer to those of any more refined allocation process captured by 
the necessary condition. 
    So far, we have assumed that prices S ú  for each firm observation L are known. In many 
cases, such reliable price information is not available.10 Starting from Proposition 2, we may 
then formulate a necessary condition for a &�5�of the data, as follows: 
 
&RUROODU\� ���)RU� D� SURGXFWLRQ�SURFHVV� FKDUDFWHUL]HG�E\� SURGXFWLRQ� H[WHUQDOLWLHV� DQG� MRLQW�

LQSXW�XVH��WKHUH�LV�D�IDPLO\�RI�FORVHG��FRQYH[��SRVLWLYH�PRQRWRQRXV�LQSXW�UHTXLUHPHQW�VHWV�
WKDW� SURYLGH� D� C-R RI� WKH� GDWD� RQO\� LI� WKHUH� H[LVWV� D� FROOHFWLRQ� RI� SULFH� YHFWRUV�
{ }\S �û ü L 6+∈ℜ ∈ �VXFK�WKDW�IRU�HDFK� L 6∈ : ( )’ ’( ) min( )ýS [ S [þþ�þ

ÿ�ÿ ÿ �
���� ∈∈

≤ ∑ .�
 
    The interpretation of the condition is as follows: in the absence of fully reliable price 
information, a necessary condition for data consistency with the &�5�conditions is that there 
exists, for each observation L, at least one (non-zero) input price vector that implies 
consistency with the condition in Proposition 2. From the perspective of the evaluated 
production plan, such a price vector may be conceived as ‘most favorable’ in that it 
effectively minimizes the cost inefficiency. In a certain sense, such a most favorable price 
vector may be interpreted as a VKDGRZ SULFH�YHFWRU�that supports cost efficient behavior of the 
evaluated production vector. 
    Checking consistency with the necessary condition in Corollary 1 boils down to solving the 
following linear programming problem (for each observation L): 

 

( )
( ) ( )

( )’

’

max min
. . . .

1

1

,,

3ULPDO 'XDO

S [ [ [
S [

S

�
� �

�
� �

�

� �

��� � � �
� ���

� � � �
��� �

� �� 	

X
V W V W

X 5
5X

θ θ φ

φ λ

λ

φ λ+

∈

∈

+

= =

= ≥

≤ ∀ =

∈ℜ ∈ℜ ∀∈ℜ ∈ℜ

∑ ∑
∑ ∑

 (3.1) 

 

                                                                                                                                                   

( ){ }* *

’
min 0S [
��
� 

��� � �\ \∈ ≥ =  for all *N .∈ , *N N≠ . This follows from �L 6∀ ∈ :�

( )*

* * *
* *,

� �
� � �M 6 N N \ \∈ ≠ ⇒ > ; see also our proof of Proposition 3. 

10 See, e.g., Kuosmanen et al. (2006) for a discussion of instances where reliable price information is not readily 
available. Our application in Section 4 contains a further example. 
 



 14 

    In the primal formulation of the problem, the price normalization ( )’
1S [��� =  effectively 

implements the condition \S �� �
+∈ℜ  in Corollary 1. Recalling our above interpretation of the 

corollary, the model checks whether, subject to the price normalization, there exists a set of 
shadow prices that make the firm observation L consistent with the empirical cost 
minimization condition. Just like the measure 

�
ϕ  that we defined before, the measure 

�
θ  

captures the degree of (shadow) cost efficiency of the observation L, and it can be interpreted 
as goodness-of-fit measure. Clearly, we have 

� �
θ ϕ≥  and a necessary condition for cost 

efficient production behavior is that 1
�

θ =  for each observation L. 
    The dual problem in (3.1) computes (radial) Farrell (1957) efficiency with respect to a 
monotone production technology with convexified input sets; convexification is taken over 
the sets 5 � . In fact, this primal-dual formulation shows the close connection with the 
nonparametric efficiency measurement literature known as 'DWD�(QYHORSPHQW�$QDO\VLV (DEA; 
after Charnes et al., 1978). Specifically, the dual problem in (3.1) is formally similar to 
Bogetoft’s (1996) DEA model that computes Farrell efficiency with respect to a similar 
production technology; the main difference is that we convexify over the summed input 
vectors [� ����∈∑ , which results from our specific scope economies perspective.11 Our above 

discussion establishes the model as a tool for testing data consistency with (shadow) cost 
efficiency. 
 
([DPSOH� �� To illustrate, we recapture Example 4, but now we do not use the input price 

information. Again, we evaluate observation 1. For the given collection of output 
dominating reference sets 15  (reported in Example 3), the problems in (3.1) take the form 

 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

1 1

’ 1 1 1 2 1 2 3 1 31 1

4 1 2 3 5 2 3
’1 1

1 2 3 4 5
’1 1 2

’1 1 3

’1 1 2 3

’1 2 3

1

max min
. . . .

1

1

, 1,...,5

,

3ULPDO 'XDO

[ [ [ [ [ [S [
[ [ [ [ [S [

S [ [
S [ [
S [ [ [
S [ [

S  

X
V W V W

X
X
X
X
X
X

ι

θ θ φ

φ λ λ λ
λ λ

λ λ λ λ λ

φ λ ι

+

+

= =

≥ + + + +=
+ + + + +

≤
+ + + + =

≤ +
∈ℜ ∈ℜ =

≤ +

≤ + +

≤ +

∈ℜ ∈ℜ

 

 
The outcome is 1 0.748θ = . This means that, even when using the most favorable prices 

(LQ� FDVX the computed shadow price vector ( ) ( )’1 0.000 0.043S = ), we can identify a 

                                                
11 Hanoch and Rothschild (1972; Section 2) introduced a similar production technology representation as 
Bogetoft (1996) in a setting involving multiple inputs and a single output. 
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potential cost reduction of (at least) 25.2% for the observation 1.12 The corresponding 
minimum cost level is associated with the (sum) input vector ( )2 3[ [+  (or, for the dual 

problem we obtain 5 1λ = ). 
To conclude this illustration, we note that the specification of the set 5i may be fine-tuned 
to enhance the efficiency of the empirical testing of the condition. For example, we may 
exclude from consideration an output dominating reference set 2 5! !5 ∈ � if there exist 

another set 1 5" "5 ∈  such that 1 2

# #5 5⊆  as, evidently, ( ) ( )
2 1

’ ’S [ S [$ $
% %

%�& %�&∈ ∈
≥∑ ∑  for any 

input price vector S. For the specific data structure under investigation, this means that we 
can effectively restrict attention to {} { }{ } 11 , 2,3 5⊂  when evaluating observation 1. As a 

matter of fact, we have used this insight for the computations of our own application 
presented in the next section. 

 
    As a final note, we indicate that the computed shadow price vector S '  in (3.1) (and, 

correspondingly, the 
()

λ  in the dual problem) should in general not be unique: there may be 
multiple input price vectors that support the same cost efficiency level. Therefore, we choose 
not to focus on these shadow price estimates in our following empirical application. 
 
 
��� ,OOXVWUDWLYH�DSSOLFDWLRQ�
 
    We apply the presented methodology for examining the behavior of research programs in 
Economics and Business Management faculties of Dutch universities. Specifically, we 
evaluate the efficiency of 77 research programs organized at 8 universities. The same data set 
was studied by Cherchye and Vanden Abeele (2005), who motivate efficiency assessment 
within this setting by the argument that efficient research production is not guaranteed by the 
usual market correction mechanisms. These authors further claim that a cost efficiency 
evaluation model is particularly appropriate within this application context. But they focus on 
a different cost efficiency criterion, which does not explicitly incorporate the empirical 
implications of joint input use and production externalities. Still, as we argued in the 
Introduction, the production process of university research seems well-suited to illustrate our 
method for assessing cost efficiency under scope economies. [In fact, this method implies a 
strengthened efficiency test as compared to that used by Cherchye and Vanden Abeele; we 
return to this below.] 
    Generally, a research program can be defined as “ a group of researchers who join forces to 
investigate a particular theme, and in the process to educate researchers and to publish 
research results” . Cherchye and Vanden Abeele argue that this definition institutes research 
programs as the natural production units for studying academic research efficiency. Building 
on that definition, they suggest the following input-output selection for characterizing the 
production of each program: 
 

                                                
12 The zero shadow price for the first input in this example is commonly referred to as a ‘slack problem’ in the 
DEA literature (e.g., Cooper et al., 2000). In this respect, we indicate that the problems in (3.1) may be enriched 
by adding additional restrictions on the relative price that incorporate D� SULRUL� information regarding 
feasible/realistic ranges for the endogenously defined prices (which can LQWHU�DOLD�exclude zero shadow prices). 
In fact, such price restrictions have received considerable attention in the DEA literature. For compactness, we 
will not consider such restrictions in the following illustrative application. 
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• ,QSXWV� (1) junior research staff (= PhD candidates), (2) senior research staff (= other 
research personnel). Following Cherchye and Vanden Abeele, we relate the output of each 
year to the sum of the inputs used in that same year and the inputs used in the two 
preceding years; this corrects for the fact that output in a particular year may actually 
result (at least partly) from inputs that have been used in preceding years. 

• 2XWSXWV� (1) total number of doctoral dissertations, (2) total number of refereed articles in 
top international journals, and (3) total number of refereed articles in international 
journals. 

 
    The input and output data are taken from the ‘Quality Assessment Reports on Research 
1996-2000’, delivered by each Dutch university in the context of the quinquennial assessment 
by the VSNU (i.e., the Dutch association of universities). For each research program we have 
complete data for the years 1998, 1999 and 2000. Pooling the three cross-sections in the same 
sample, we have 229 observations in total.13  
    Cherchye and Vanden Abeele (2005) provide a detailed discussion about the data and the 
input-output selection. At this point, two special features of the input-output data deserve 
some additional explanation. First, the input data account for differences in the allocation of 
faculty time across different research programs. Specifically, they correct for differences in 
time spent on teaching in different universities and/or professional ranks (see in particular the 
discussion on p. 501 in Cherchye and Vanden Abeele). Second, outputs 2 and 3 count 
publications at the level of the research programs, which effectively avoids double counting 
publications that are co-authored by researchers of one and the same research program. The 
particular specification of these outputs (which includes top-journal publications in the output 
2 as well as the output 3), entails an implicit extra premium for the top-journal publications. 
In other terms, it imposes the natural assumption that these publications get a higher weight 
than other refereed publications in international journals. More specifically, it implies that one 
input-output combination is a possible comparison partner for another input-output 
combination only if it produces at least the same amount of articles in international ‘top’ 
journals (see the output 2) and, LQ�DGGLWLRQ, at least the same amount of articles in refereed 
journals in general (including top journals; see the output 3). This effectively imposes that a 
top publication can substitute for another (non-top) publication, but not YLFH�YHUVD.14 
    As a final note, we remark that the testing tools employed below require VWULFWR�VHQVX�that 
the efficiency estimates are independently distributed. This assumption may be criticized as 
the input values for the years 1998, 1999 and 2000, which are used for computing the 
efficiency values, are interdependent by construction for each research program. In addition, 
and probably more importantly, efficiency values are obtained from comparison with a 
production possibility set that is constructed by means of a common set of reference units; i.e. 
the observed set of research programs. From that perspective, our (illustrative) test results 

                                                
13 Recall that the output in a given year is related to the sum of the inputs of that year and those of the two 
preceding years. Given this, Cherchye and Vanden Abeele use information on 79 research programs. Because of 
our specific focus on efficiency differences between research programs within specific specialization areas, we 
restrict attention to the 77 research programs for which the specialization type is known; this leaves 231 
observations (= 77 programs x 3 years). From that sample, we further exclude two cases with important missing 
information, which eventually obtains 229 observations. 
14 Cherchye and Vanden Abeele (2005, p. 501-502) illustrate by means of a simple numerical example. In fact, 
while our data set implies a two-tiered classification of international journal publications, the same procedure 
can be used for introducing a three-tiered classification (e.g. ‘top journals’ , ‘very good journals’  and ‘other 
journals’ ) or any other multi-tiered classification if that would seem recommendable. For the sake of 
compactness, we abstract from exploring this in our (illustrative) application. Still, we believe that our main 
qualitative results are fairly robust with respect to such additional journal classifications, which basically imply a 
more refined output structure. 
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below should be considered as ‘indicative’  rather than ‘conclusive’ . Still, as for our test 
results based on the full sample of 229 observations (see Table 1), we may refer to the 
consistency results that have been established for nonparametric efficiency analysis models 
similar to the one applied here, which suggest that this interdependency problem diminishes 
for sufficiently large samples (see e.g. Banker, 1993, and Simar and Wilson, 2000). [In this 
context, it is also worth referring to our discussion in the concluding section, on possible 
solutions for the sampling problem of DEA analyses.] 
 
 
����2YHUDOO�GLIIHUHQFHV�EHWZHHQ�XQLYHUVLWLHV�DQG�VSHFLDOL]DWLRQ�W\SHV��REVHUYHG�SULFHV�
 
    We focus on the necessity condition for cost efficient behavior under economies of scope 
(see Proposition 2). This necessity condition seems a natural starting point, since 
inconsistency with this condition implies D�IRUWLRUL� that a &�5 of the data set is impossible, 
and thus that the sufficiency condition can never be met. In this respect, we note that the 
following results in Tables 1-2 imply that, for each of our exercises, the necessity condition in 
Proposition 2 is nowhere met at the sample level, which implies redundancy of testing the 
sufficiency condition in Proposition 3. [Still, while we will not illustrate this in this paper, 
testing the sufficiency condition is just as simple as testing the necessity condition; recall our 
discussion in Section 2 on the possibility of using enumeration algorithms.] 
    For an observation that does not meet the necessary condition for cost efficient behavior, 
we quantify the degree of cost inefficiency by means of the measure ϕ  that was introduced 
before. Apart from the observed research output and input quantities, this cost efficiency 
measure also needs input prices. For the different years that we consider, we take the 
price/wage information from the salary tables that were applicable to the Dutch universities at 
that time.15 One problem in this respect is that salaries depend on the different types of staff 
(e.g., assistant professor, associate professor, etc.) and seniority. The VSNU-data do not allow 
us to determine the shares of the different types of research staff that are engaged in a certain 
university or a research program. Therefore, we assume that all junior researchers have the 
salary of a third year teaching assistant, while senior researchers are assumed to be of the 
associate professor level. Note that all price information included in the analysis is in real 
terms; we constructed real wages on the basis of the Eurostat harmonized consumer price 
index for the Netherlands. Consistent with our construction of the input quantities (i.e., the 
output of each year is related to the sum of the input in that same year and the input in the two 
preceding years) we evaluate the inputs by averaging real wages over the three input years 
associated with each output year. This yields the following relative input prices (i.e., the ratio 
of senior staff wage over junior staff wage): 1.745516 for the year 1998, 1.745468 for the year 
1999, and 1.745524 for the year 2000. At this point, we note that our above ‘simplifications of 
a complex reality’  may lead critics to question the reliability of the prices that we use. 
Therefore, referring to our earlier discussion of Corollary 1 (and the corresponding linear 
programming problems in (3.1)), we will use shadow prices in a further exercise, which 
effectively corrects for potential ‘unreliability’  of the actual price information. 
    To begin, we focus on test results for (1) universities (i.e., the corresponding faculties of 
Economics and Business Management) as a whole and (2) specialization areas as a whole. 
Both exercises start from efficiency results based upon comparison of each individual 
research program (in the years 1998, 1999 and 2000) to the full set of 229 research program 
                                                
15 Dutch universities are subject to a collective agreement that settles working conditions of university personnel. 
Since 2005, the same collective agreement applies to both public universities and the so-called special 
universities. Before 2005, there were differences in the agreement for both types of universities. However, the 
salary settlements were always the same. 
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observations.16 The first exercise then checks (significant) differences in mean efficiency 
between research programs associated with different universities (while not correcting for 
different compositions in terms of specialization areas across universities). The second 
exercise similarly considers (significant) differences in mean efficiency between research 
programs that are active in different specialization domains (while not correcting for the 
identity of the organizing university). 
    Table 1 reports the efficiency results for the newly proposed methodology (in the column 
‘scope economies’  cost efficiency). The table shows mean efficiency values for the different 
universities and specialization areas in the VSNU-data, respectively; for each (row) category 
of research programs, the table additionally reports (in the column ‘p-value’ ) the probability 
that the mean efficiency of research programs in that category equals the mean efficiency over 
all other categories. Focusing on the upper panel of the table, it is clear that there are rather 
important efficiency differences between the 8 universities. For example, there is a difference 
of more than 30 percentage points between the two extremes in the sample: Tilburg 
University obtains a mean efficiency value of about 67.2%, while the University of Nijmegen 
obtains a mean efficiency of only 35.6% in the period 1998-2000. [Remark, though, that the 
efficiency value of the latter university is based upon a rather small sample size.] Overall, the 
average efficiency level equals 52.1%. The top three universities in terms of mean efficiency 
values are respectively Tilburg University (67.2%), Wageningen University (63.3%) and the 
Free University of Amsterdam (54.5%). Note, however, that only three universities perform 
significantly differently from the average at the 10% significance level (see the column ‘p-
value’ ): Tilburg University and Wageningen University perform significantly better than (the 
average of) the other universities, while the opposite conclusion applies to the University of 
Maastricht. 
    The bottom panel of Table 1 gives the mean efficiency values for the different 
specialization areas in the sample. Like before, there is considerable efficiency variation over 
the different specialization areas. In the period 1998-2000, the highest mean efficiency value 
(of 68.6%) is obtained in the field of Spatial and Environmental Economics, which is closely 
followed by Econometrics (mean efficiency of 66.1%) and Theoretical and Applied 
Microeconomics (64.8%). The least efficient areas are Applied Labor Economics and 
Economics of Public Policy (both areas have a mean efficiency value of 35.3%). Five 
specialization areas performed significantly differently from the mean at the 10% significance 
level: Econometrics, Theoretical and Applied Microeconomics, and Spatial and 
Environmental Economics do significantly better than the rest, while research programs in 
Applied Labor Economics and Economics of Public Policy do significantly worse. 
    Based on these results, we may conclude that the average performance of universities may 
largely be driven by different configurations in terms of specialization domains. Indeed, one 
interpretation of systematic efficiency differences between research programs that are active 
in different specialization fields is that alternative specializations entail other research 
production technologies. To correct for this potential bias in our inter-university comparisons, 
our following exercises focus on systematic differences between universities per 

                                                
16 An alternative exercise could have considered a production setting with 30 outputs per university observation, 
i.e. 3 outputs for each of the 10 specialization areas. However, such a large number of outputs would make the 
efficiency assessment exercise particularly vulnerable to the so-called ‘curse of dimensionality’  of nonparametric 
models, which in this instance would mean a severe upward bias of the efficiency estimates (because we would 
retain a setting with only 8 university observations for as much as 30 outputs). Therefore, in this study we choose 
to focus on research programs as production units, and to compute university efficiencies by averaging over the 
corresponding research programs. 
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specialization type.17 In addition, accounting for possible flaws in our construction of the 
input prices/wages, we will analyze these differences by using shadow prices. 
    Before doing so, we briefly compare our results to those obtained on the basis of a standard 
cost efficiency measure such as that used by Cherchye and Vanden Abeele (2005; see in 
particular p. 497-499), which does not incorporate the implications of joint input use and 
input externalities. For each observation L, this measure is defined as 
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Referring to our discussion in Section 3, we have that 52 2' ⊆  and 

3 3
ω ϕ≥ . Thus, our newly 

proposed method entails a strengthened efficiency analysis.18 To interpret this last result in 
terms of our underlying model of multi-output production, recall from the definition in 
Section 3 that every output dominating reference set 

45  in 5 5 � contains a combination of 
observations M 6  that each dominate the evaluated observation L�in DW�OHDVW�one output N.�The use 
of the sets 

55  reflects that combinations of the input vectors M 6  (in 
55 ), each producing more 

of the (individual) outputs N than the evaluated input vector L, can also produce the (multi-
output) combination \ 7 . As such, our necessity condition for cost efficient behavior under 
economies of scope naturally complies with the common intuition that such scope economies 
imply that the cost of the multi-output production should not exceed the sum of the costs 
associated with the separate production of the individual outputs. It is essentially this feature, 
which clearly exploits the multiple output production following from scope economies, that 
entails the strengthened analysis. For example, the standard cost efficiency measure does not 
consider combined input vectors: the set 

8'  (only) contains observations M� that dominate 
observation L in DOO�outputs VLPXOWDQHRXVO\. 
    Table 1 reports the results for the measure� 9ω � in the column ‘standard’  cost efficiency. 
Generally, we find that the pattern of the efficiency distribution in that column is similar to 
that in the column ‘scope economies’  cost efficiency. For example, we again find that Tilburg 
University and Wageningen University performed better than the average of the other 
universities in the period 1998-2000; and we equally obtain that Dutch universities have a 
comparative advantage in the areas of Spatial and Environmental Economics, Econometrics 
and Theoretical and Applied Microeconomics. Still, an important observation is that the mean 
efficiency values obtained by using the newly proposed (scope economies) method are 
generally lower than those obtained by the standard method. This confirms that an explicit 
consideration of the features that are specific to multi-output production effectively obtains a 
more stringent efficiency analysis. In fact, putting an additional D� SULRUL structure on the 
decomposed input vectors or implicit price vectors, which includes specific information 
regarding the nature of the scope economies (in terms of production externalities and/or 

                                                
17 Cook et al. (1998) provide a general discussion of issues related to DEA efficiency evaluation when the 
sample can be subdivided into groups. We note that the procedures they present for dealing with grouped 
samples in the DEA evaluation could also be used in combination with the methodological tools presented in this 
paper. 
18 For completeness, we add that Cherchye and Vanden Abeele use shadow prices in their empirical cost 
efficiency assessment, while the results in Table 1 are based on actual price information. We choose to include 
the cost efficiency results based on actual price information, as this enhances the comparison with the results in 
the column ‘scope economies’  cost efficiency. Still, the main qualitative conclusions of the shadow price 
assessment are similar to those obtained on the basis of actual prices. The difference is that the cost efficiencies 
are generally higher (and, thus, the inefficiencies are lower) when using shadow prices rather than actual prices. 
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jointly used inputs), may entail an even stronger analysis. We briefly return to this in the 
concluding section. 
 

>7DEOH���DERXW�KHUH@�
 
 
����'LIIHUHQFHV�EHWZHHQ�XQLYHUVLWLHV�SHU�VSHFLDOL]DWLRQ�W\SH��VKDGRZ�SULFHV�
 
    We next decompose the aggregate performance of each specialization area. More 
specifically, we evaluate each research program by comparing it to all other research 
programs that are active in the same specialization domain (while -to recall- the results in 
Table 1 follow from comparison to the set of all research programs independent of their 
specialization type). Per specialization area, we subsequently calculate the mean efficiency 
value of each university. This allows us to identify the research domains in which a given 
university has a comparative advantage as compared to the other universities. This section 
reports the results of such an exercise when using shadow prices for evaluating the different 
inputs.19 That is, for each observation L�we concentrate on the cost efficiency measure 

:
θ  

introduced in Section 3. 
    We allow different shadow prices for different research programs. In doing so, we 
effectively account for possible salary differences over universities and specialization areas.20 
Of course, this use of program-specific shadow prices does not account for possible 
differences in salaries among researchers within one and the same research program; such 
differences may e.g. follow from different levels of experience, qualifications or productivity. 
For the current application, it is impossible to account for such differences because we lack 
the necessary information regarding the composition of the input (= research staff) categories. 
From that perspective, differences in program-specific shadow prices capture differences in 
‘average’  salaries between research programs (thus reflecting e.g. differences in average 
experience, qualifications and productivity). At this point, it is also worth recalling the non-
uniqueness of the shadow prices computed by means of the linear program in (3.1), whence 
our following discussion does not focus on the computed shadow prices. 
    Table 2 tabulates the mean efficiency values of Dutch universities per specialization area. 
The best performing universities per type of specialization are the following: University of 
Groningen (Accounting and Finance), Tilburg University (Applied Mathematics; Marketing 
and Business Economics; Theoretical and Applied Microeconomics), Wageningen University 
(Development, Growth and Transition), Erasmus University (Econometrics and Applied 
Labor Economics), University of Maastricht (Econometrics, Applied Labor Economics), Free 
University of Amsterdam (Applied Labor Economics; Spatial and Environmental 
Economics), University of Amsterdam (Econometrics; Macroeconomics, Money and 
International Issues; Economics of Public Policy). In fact, despite the relatively small sample 
for each specialization domain (ranging from 9 observations to 66 observations), we do find 
significant efficiency differences for almost all specialization areas (when using the 10% 
significance level; see the column ‘p-value’ ). More specifically, we can identify (at the 10% 
significance level) universities that do significantly better than the rest (in the fields 
Marketing and Business Economics; Spatial and Environmental Economics) and, even more 

                                                
19 We have also conducted similar exercises on the basis of the same (potentially unreliable) price information as 
before. Generally, this yielded the same qualitative conclusions as for the results in Table 2. Detailed results are 
available from the authors upon simple request. 
20 Uniform shadow prices across (subgroups of) research programs may be imposed by using the methodological 
tools that Kuosmanen et al. (2006) proposed in a DEA context; these tools are readily adapted to the current set-
up. 
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importantly, universities that perform systematically worse than other institutes (in the fields 
Accounting and Finance; Applied Mathematics; Development, Growth and Transition; 
Marketing and Business Economics; Theoretical and Applied Microeconomics; Spatial and 
Environmental Economics). This indicates that the presented method may obtain robust 
conclusions even in the case of small samples, when putting minimalistic a priori structure on 
the multi-output production process and using ‘most favorable’  shadow prices for evaluating 
the different research programs. In this specific application setting, such information may be 
particularly instrumental for robustly benchmarking the bad performing universities: these 
institutes may learn from other universities which, within the given specialization area, 
significantly outperform them. 
    Next, the above list seems to indicate that most universities have a comparative advantage 
in at least one specialization area. To some extent, these results are in ‘contrast’  with the 
information provided by Table 1. Universities that perform well overall (see Table 1) may 
perform relatively badly in some specialization domains, and universities that perform 
relatively badly overall may perform well in some specialization areas. For example, Tilburg 
University, which had the highest mean efficiency value in Table 1, only performs best in the 
areas of Applied Mathematics, Marketing and Business Economics and Theoretical and 
Applied Microeconomics. And Wageningen University, which obtained the second highest 
overall performance value, only excels in the area of Development, Growth and Transition.  
This indicates that top universities have some ‘core’  businesses, in which they reach a 
generally high performance level. Finally, and not surprisingly, universities that generally 
perform well do not do (significantly) badly in any of the specialization areas that we 
consider. 
    In addition, these results seem to confirm our earlier conjecture that one should take into 
account technology differences between specialization areas in efficiency analyses, which is 
in contrast with the more naive (but, apparently, rather widespread) view that one may 
directly compare the performance of research programs that are active in very different 
specialization areas within the general Economics profession. In fact, disaggregating over 
specialization domains seems a necessity when assessing the research efficiency of 
universities: examining aggregate faculty figures, which is conventional practice, does not 
always provide useful insights in terms of the aim of increasing a university’ s performance. 
Quite the contrary: disaggregated figures allow us to situate the comparative advantage of 
different institutes, which, in turn, can lead to further performance improvements through 
specialization-specific research policies. As such, this conclusion provides further support for 
Cherchye and Vanden Abeele’ s (2005) motivation to focus on micro-units of research 
production, such as research programs, rather than on macro-units, such as university 
faculties. From that perspective, the results in Table 2 provide useful complementary 
information to the results of Cherchye and Vanden Abeele (discussed in the previous section), 
by specifically considering efficiency differences between universities within one and the 
same specialization domain. As we indicated above, such results may be useful, for example, 
from a benchmarking perspective. 
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    We have presented a nonparametric methodology for analyzing the cost efficiency of firms 
that produce multiple outputs. Our starting point is that such multi-output production basically 
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refers to economies of scope in the production process, which in turn refers to joint input use 
and input externalities. Given this, we have instituted a nonparametric characterization of 
efficient behavior under these general conditions, and subsequently derived necessary and 
sufficient empirical conditions for data consistency with the cost efficiency requirement. 
Importantly, these conditions only include observed firm demand and supply data; this means 
that inputs must not be disaggregated in terms of the specific channels through which they can 
be allocated (i.e., to a specific output or to joint use for the production of different outputs). 
Essentially, we have designed cost efficiency conditions that exploit the implications of scope 
economies (through joint input use and input externalities) at the level of the observable 
aggregate prices and quantities. In addition, we have relaxed the assumption that input prices 
are observed, to come up with (linear programming) efficiency tests that utilize shadow 
prices. ,QWHU� DOLD, this provides a direct link with the nonparametric efficiency assessment 
literature known as Data Envelopment Analysis (DEA). 
    We have illustrated our methodology by examining the cost efficient behavior of research 
programs in Economics and Business Management faculties of Dutch universities. This 
application shows that the proposed methodology is easy to implement in practice, even for 
fairly large data sets (e.g., our application involved 229 observations). In fact, we recall from 
our discussion in Section 4.1 that exploiting scope economies entails a strengthened cost 
efficiency analysis as compared to more conventionally used alternatives, such as in Cherchye 
and Vanden Abeele (2005). [As we explain below, the efficiency evaluation can be 
strengthened further by putting additional structure on the decomposed input vectors and 
implicit price vectors.] In addition, our application demonstrates the practical usefulness of 
the method for obtaining robust conclusions regarding cost efficiency differences between 
universities within specific specialization areas, also when using shadow prices to evaluate the 
different inputs. As we have indicated, in our specific application set-up such insights may be 
particularly useful for benchmarking purposes. 
    A general qualitative conclusion of our results is that they seem to support the necessity of 
accounting for technological differences between specialization domains (within the general 
Economics profession) when analyzing research performance. Given this, we have analyzed 
performance differences between universities at the level of individual specialization areas. 
We found that universities indeed seem to specialize in only a few research domains: while 
universities that perform best overall generally perform well in all the domains in which they 
are active, universities that are generally less efficient can also perform very well in certain 
areas of specialization. The fact that many of these findings turned out to be statistically 
significant illustrates that our method can obtain robust conclusions while imposing a 
minimalistic a priori structure on the actual (but unknown) production process (even in the 
cases where we could only use small (specialization-specific) data sets). 
    At this point, it is worth stressing the limitations of our empirical analysis, which mainly 
served to illustrate the proposed methodology. Most importantly, we did not explicitly 
account for errors-in-variables and small sample bias. Still, we want to indicate that (i) we 
have used an input-output configuration that largely coincides with that considered by the 
VSNU in their quinquennial assessment based on the same data, and (ii) the data, which were 
reported by the universities themselves in extensive self-assessments, are relatively well 
standardized and have been subject to some scrutiny for correctness and consistency, which 
gives us reasonable confidence in their quality. But in order to draw absolute conclusions 
from our exercises, it seems recommendable to utilize methodological tools that satisfactorily 
deal with errors-in-variables. See, for example, Grosskopf (1996) for a survey of tools that are 
currently available in the nonparametric literature, and Cazals et al. (2002) for a more recent 
proposal; these tools (that were originally proposed in a DEA context) may easily be 
accommodated to the newly proposed cost efficiency assessment methodology. Next, the 
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sampling problem may apply in particular to our specialization-specific exercises, which are 
often based on a fairly limited number of observations. To obtain more robust results in such 
cases, one may use the bootstrap procedure proposed (again, in a DEA context) by Simar and 
Wilson (1998), which is also readily adapted to the presented efficiency evaluation tools. 
    Three concluding remarks are in order. First, to keep the discussion focused, we have 
concentrated on consistency testing and the associated efficiency measurement. Still, Varian 
(1984) emphasized alternative uses of the nonparametric approach in addition to testing for 
optimizing firm behavior, namely recovering the production set and forecasting firm behavior 
under new price conditions. We emphasize that such recoverability and forecasting questions 
may also be addressed when starting from the specific (scope economies-based) condition for 
cost efficiency that has been forwarded in this study; the methodological extensions develop 
along directly analogous lines as in Varian (1984). The goodness-of-fit and subset 
rationalization concepts of, respectively, Varian (1990) and Banker and Maindiratta (1988) 
allow for addressing such questions while accounting for observed inefficiencies. 
    Another remark pertains to the shadow price efficiency measurement problem in (3.1), 
which is applicable when reliable price information is not available. Such a shadow price 
analysis can be strengthened by imposing price information in the form of additional 
constraints that define a feasible range for the relative prices, which may rule out the extreme 
cases where the relative price of a commodity approaches zero or infinity. The technical 
questions related to incorporating such price restrictions have been discussed extensively in a 
DEA context, most commonly under the label ‘weight restrictions’  or ‘assurance regions’  
(see, e.g., Allen et al., 1997; Pedraja-Chaparro et al., 1997, for surveys; and Kuosmanen et al., 
2006, for more recent developments). These tools are readily adapted to the current set-up. 
    Finally, from a related perspective, putting an additional D� SULRUL� structure on the 
decomposed input vectors and the implicit price vectors will obviously strengthen the cost 
efficiency analysis of the multi-output production process at hand. Extra structure on the 
decomposed input vectors may, for example, reflect additional information (or assumptions) 
regarding the presence of jointly used inputs, or regarding (shares of) inputs that are 
specifically used for the production of particular outputs; similarly, additional structure on the 
implicit price vectors may reflect some a priori position regarding the presence of externalities 
in the production of certain outputs. Generally, such extra price-quantity conditions will entail 
refinements of the general model presented in Section 2, which in turn will lead to more 
stringent necessary and sufficient cost efficiency conditions in terms of observables (see 
Section 3). [These conditions may be obtained along similar lines as in the proofs of 
Propositions 2 and 3.].  
    In this respect, it is also interesting to compare our approach with Activity Based Costing 
(ABC) (e.g., Cooper and Kaplan, 1988; Christensen and Demski, 1995, elaborate on the 
relationship between ABC and the classical theory of cost). Essentially, ABC uses 
information regarding the input costs (= prices x quantities) that are (through so-called ‘cost 
drivers’ ) allocated to individual outputs. By contrast, our approach does not require such 
information, but starts from a separate allocation of input quantities (resulting in decomposed 
input vectors) and input prices (resulting in implicit price vectors) to different outputs. From 
this perspective, ABC can be considered complementary to our approach: the input cost 
information used in ABC can be useful for putting D� SULRUL restrictions on the feasible 
combinations of decomposed input vectors and implicit price vectors. 
    In summary, the approach to modeling multi-output production presented here provides a 
general framework that encompasses a wide spectrum of production models that incorporate 
input externalities and joint input use. 
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21 To be exact, we have that I �  is quasi-concave rather than concave. For compactness, however, we consider I�  
concave in the following proof. Indeed, under mild regularity conditions, for any quasi-concave function there 
exists a positive monotone transformation that obtains a concave representative. Such a monotone transformation 
is harmless in view of the equivalence between (A.3) and (A.4), which applies to any monotonous 
transformation of I � . 



 25 

�LL;�VXIILFLHQF\��Recalling the equivalence between (A.3) and (A.4), we first define (for N = 1, 
..., V) 
 

( ) ( ) ( )’

1 1 ,
1,..., 1

,..., min[ [ [ [� � � �
� � � � �`� � ���� �{�
I \ λ+ ∈ = +

 
= + − 

 
∑ .   (A.5) 

 
    Varian (1984, Theorem 2) proves that ( )1 1,...,[ [ �

� � �I \+ = . Next, given 
� �

+∈ℜ , we have 

for all [̂  such that ( ) ( ) ( )’ ’1

1
S [ S [�� ���

��
+

=
≤∑  

 

( ) ( ) ( )’

1 1 ,
1,..., 1

,...,[ [ [ [
� � � � � �
� � � � �j� � ���� ���� � �r�
I \µ µ λ+∈ ∈

= +

 
≤ + − 

 
∑ ∑ ∑ . 

 
    Without losing generality, we concentrate on ( )1 /

� ���
� �µ λ λ= , which obtains 

 

( ) ( ) ( )’

1 1 1
1,..., 1

,...,[ [ S [ [
� � � � � �
� � � � ���� ���� � �r�
I \µ µ λ+∈ ∈

= +

 
≤ + − 

 
∑ ∑ ∑ . 

 

    Since ( ) ( ) ( )’ ’1

1
S [ S [�� ���

  
+

=
≤∑ , we thus have 

 

( ) ( )1 1 1 1,..., ,...,[ [ [ [
¡ ¡ ¡¡ ¡ ¡
¢ £ ¢ ¢ £¢�¤ ¢�¤ ¢�¤¢ ¢ ¢I \ Iµ µ µ+ +∈ ∈ ∈

≤ =∑ ∑ ∑ , 

 

which proves that [̂ ¥  maximizes ( )1 1,...,[ [
¦
§ ¨§�© § Iµ +∈∑  subject to ( ) ( ) ( )’ ’1

1
S [ S [�� ���

  
+

=
≤∑ . 

We conclude that the functions ( )1 1,...,[ [ª «I +  ( N .∈ ) in (A.5) provide a &�5�of the data. 
These functions are concave, monotonously increasing and continuous (see Varian, 1984, 
Theorem 2). The corresponding input requirement sets are closed, convex and positive 
monotonous. 
 
�
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    For any set 
¬5  with : :

­® ¯±° ¯
® ®N . M 5 \ \∀ ∈ ∃ ∈ ≥  consistency with the &�5� conditions in 

Proposition 1 requires ( ) ( )’ ’

, ,
1,..., 1 1,..., 1

: [ [
² ²³ ´ ´ ³ ´ ´
µ µ µ`¶·¶ µj¶�¶

¶{¸ ¶r¸
N \ \

= + = +

∀ ≥ ⇒ ≥∑ ∑  and thus 

( )’

,
1,..., 1

[
¹º »

¼`½·½¼�¾
½r¿∈
= +

 
≥ 

 
∑ ∑  ( )’

,
1,..., 1

[À À
ÁjÂ�ÂÁ�Ã

ÂrÄ∈
= +

 
 
 

∑ ∑ . The result consequently follows from the 

definitional fact that ( ) ( )’ ’

,
1,..., 1

S [ [
Å Å

ÅÇÆ

ÈÊÉ È É
ËjÌ�ÌË�Í

Ì{ÎÉÐÏ ∈
= +∈

 
≥  

 
∑ ∑ ∑  and 

( ) ( )’ ’

,
1,..., 1

[ S [Ñ Ñ Ñ Ñ
ÒjÓÔÓÒ�Õ

ÓrÖ∈
= +

 
= 

 
∑ ∑ . 
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    Suppose that a construction 6 × � ( N .∈ )� consistent with the sufficiency condition in 
Proposition 3 exists. Given this, we can construct a configuration of decomposed input 
vectors and implicit price vectors that meet the &�5�conditions in Proposition 1. Specifically, 
we use  
 
 for L 6∈ : 

1 2, SØ Ø
ÙÚÙ =  for 1 2N N= , 

1 2, �Û
ÜÚÜ =  for 1 2N N≠ ; and 

 for ÝL 6∈ : [ [Þ Þ
ß = . 

 
    We obtain the sufficiency result in two steps. First, for ßL 6∈  we have for any M 6∈ : if 
à á
â â\ \≥ , then ãM 6∈ . (Indeed, *äM 6∈ , *N � N would require 

å æ
ç ç\ \< , which is not the case.) 

Given this, we can distinguish two cases for each ,L M 6∈  with 
å æ
ç ç\ \≥ . If äL 6∈  then èM 6∈  

(see before) and consequently ( ) ( )’ ’

,
1,..., 1

S [ [éêé é é
ëjìÔì

ìrí
= +

= ≤∑  ( ) ( )’ ’

,
1,..., 1

[ S [î ï î ï
ð`ñòñ

ñ{ó
= +

=∑  by 

construction. Alternatively, if ôL 6∉  we have ( )’

,
1,..., 1

0[õ õ
ö`÷·÷

÷{ø
= +

=∑  and the condition 

( )’

,
1,..., 1

0 [ù ù
ú`û·û

ûrü
= +

= ≤∑  ( )’

,
1,..., 1

[ý þ
ÿ����

���
= +
∑  is always satisfied. 
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7DEOH����'LIIHUHQFHV�EHWZHHQ�XQLYHUVLWLHV�DQG�VSHFLDOL]DWLRQ�W\SHV 
    µVFRSH�HFRQRPLHV¶�FRVW�HIILFLHQF\� µVWDQGDUG¶�FRVW�HIILFLHQF\�

�� QXPEHU� PHDQ�HIILFLHQF\� VW��GHY�� S�YDOXH� PHDQ�
HIILFLHQF\�

VW��GHY��
8QLYHUVLW\� �� �� � �� ��   
Erasmus University of Rotterdam 59 0.528 0.303 0.831 0.562 0.320 
Tilburg University 27 0.672 0.273 0.004 0.741 0.282 
University of Nijmegen 6 0.356 0.173 0.156 0.423 0.252 
University of Groningen 18 0.437 0.213 0.197 0.537 0.275 
University of Maastricht 27 0.417 0.214 0.046 0.469 0.283 
University of Amsterdam 35 0.454 0.284 0.136 0.466 0.294 
Free University of Amsterdam 36 0.545 0.324 0.597 0.566 0.331 
Wageningen University 21 0.633 0.282 0.063 0.662 0.300 
2YHUDOO� ���� ������ ������   ������ ������
6SHFLDOL]DWLRQ�DUHD� �� �� �� �� ��   
accounting and finance 36 0.467 0.280 0.224 0.513 0.309 
applied mathematics 18 0.514 0.284 0.917 0.529 0.299 
development, growth and transition 15 0.485 0.279 0.611 0.548 0.317 
econometrics 15 0.661 0.214 0.053 0.733 0.229 
applied labor economics 13 0.353 0.155 0.030 0.384 0.205 
marketing and business economics 66 0.493 0.291 0.345 0.539 0.315 
macroeconomics, money and international issues 18 0.547 0.279 0.693 0.591 0.299 
theoretical and applied microeconomics 21 0.648 0.286 0.034 0.692 0.310 
economics of public policy 9 0.353 0.219 0.075 0.354 0.218 
spatial and environmental economics 18 0.686 0.352 0.011 0.696 0.358 
2YHUDOO� ���� ������ ������   ������ ������
1RWH� The column p-value reports the (two-sided) probability value for the hypothesis that the mean efficiency of the row 
categories equals the mean efficiency over all other categories.  
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7DEOH����'LIIHUHQFHV�EHWZHHQ�XQLYHUVLWLHV�SHU�VSHFLDOL]DWLRQ�W\SH��HIILFLHQF\�GLIIHUHQFHV�
EDVHG�RQ�VKDGRZ�SULFHV�

�� QXPEHU� PHDQ�HIILFLHQF\� VW��GHY�� S�YDOXH�
$FFRXQWLQJ�DQG�ILQDQFH�         
Erasmus University of Rotterdam 6 0.826 0.357 0.481 
Tilburg University 6 0.831 0.171 0.457 
University of Groningen 3 1.000 0.000 0.146 
University of Maastricht 6 0.722 0.309 0.886 
University of Amsterdam 9 0.576 0.365 0.078 
Free University of Amsterdam 6 0.696 0.385 0.720 
2YHUDOO� ��� ������ ������   
$SSOLHG�PDWKHPDWLFV�         
Erasmus University of Rotterdam 9 0.787 0.300 0.080 
Tilburg University 3 1.000 0.000 0.344 
University of Amsterdam 3 0.970 0.052 0.482 
Free University of Amsterdam 3 0.959 0.071 0.541 
2YHUDOO� ��� ������ ������   
'HYHORSPHQW��JURZWK�DQG�WUDQVLWLRQ�         
University of Groningen 3 0.999 0.001 0.293 
University of Maastricht 3 0.348 0.070 0.000 
Free University of Amsterdam 6 0.950 0.088 0.249 
Wageningen University 3 1.000 0.000 0.291 
2YHUDOO� ��� ������ ������   
(FRQRPHWULFV�         
Erasmus University of Rotterdam 3 1.000 0.000 0.460 
Tilburg University 3 0.958 0.073 0.117 
University of Maastricht 3 1.000 0.000 0.460 
University of Amsterdam 3 1.000 0.000 0.460 
Free University of Amsterdam 3 0.973 0.028 0.481 
2YHUDOO� ��� ������ ������   
$SSOLHG�ODERU�HFRQRPLFV�         
Erasmus University of Rotterdam 2 1.000 0.000 0.689 
University of Maastricht 3 1.000 0.000 0.606 
University of Amsterdam 5 0.982 0.040 0.220 
Free University of Amsterdam 3 1.000 0.000 0.606 
2YHUDOO� ��� ������ ������   
0DUNHWLQJ�DQG�EXVLQHVV�HFRQRPLFV�         
Erasmus University of Rotterdam 18 0.766 0.238 0.483 
Tilburg University 9 0.905 0.158 0.033 
University of Nijmegen 3 0.544 0.228 0.228 
University of Groningen 12 0.589 0.271 0.047 
University of Maastricht 9 0.713 0.268 0.857 
University of Amsterdam 3 0.474 0.124 0.095 
Free University of Amsterdam 6 0.715 0.390 0.904 
Wageningen University 6 0.881 0.243 0.145 
2YHUDOO� ��� ������ ������   
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0DFURHFRQRPLFV��PRQH\�DQG�LQWHUQDWLRQDO�LVVXHV�         
Erasmus University of Rotterdam 6 0.942 0.102 0.188 
Tilburg University 3 0.998 0.004 0.442 
University of Nijmegen 3 0.995 0.009 0.498 
University of Maastricht 3 0.948 0.051 0.521 
University of Amsterdam 3 1.000 0.000 0.405 
2YHUDOO� ��� ������ ������   
7KHRUHWLFDO�DQG�DSSOLHG�PLFURHFRQRPLFV�         
Erasmus University of Rotterdam 6 0.808 0.298 0.612 
Tilburg University 3 1.000 0.000 0.199 
University of Amsterdam 3 0.607 0.198 0.036 
Free University of Amsterdam 3 0.966 0.059 0.324 
Wageningen University 6 0.872 0.159 0.755 
2YHUDOO� ��� ������ ������   
(FRQRPLFV�RI�SXEOLF�SROLF\�         
Erasmus University of Rotterdam 6 0.948 0.124 0.506 
University of Amsterdam 3 1.000 0.000 0.506 
2YHUDOO� �� ������ ������   
6SDWLDO�DQG�HQYLURQPHQWDO�HFRQRPLFV�       
Erasmus University of Rotterdam 3 0.401 0.213 0.000 
University of Amsterdam 3 0.928 0.125 0.609 
Free University of Amsterdam 6 1.000 0.000 0.087 
Wageningen University 6 0.907 0.185 0.566 
2YHUDOO� ��� ������ ������   
1RWH� The column p-value reports, for each specialization type, the (two-sided) probability value for 
the hypothesis that the mean efficiency of the row categories equals the mean efficiency over all other 
categories. 
 




