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The last three decades the accumulation of quantitative research evidence has led to the 
development of systematic methods for combining information across samples of related 
studies. Although a few methods have been described for accumulating research evidence 
over time, meta-analysis is widely considered as the most appropriate statistical method for 
combining evidence across studies. This study reviews fixed and mixed effects models for 
univariate and multivariate meta-analysis. In addition, the study discusses specialized 
software that facilitates the statistical analysis of meta-analytic data. 
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The last three decades the growth of the social science research enterprise has led to a large body of 

related research studies, which poses the question of how to organize and summarize these findings in 

order to identify and exploit what is known, and focus research on promising areas. This accumulation of 

quantitative research evidence has led to the development of systematic methods for combining 

information across samples of related studies. Although a few methods have been described for 

accumulating research evidence over time, meta-analysis (e.g., Cooper, & Hedges, 1994; Hedges & Olkin, 

1985) is widely considered the most popular and most appropriate. 

Meta-analysis has recently gained ample recognition in the statistical, medical, and social science 

communities. Meta-analysis refers to quantitative methods of synthesizing empirical research evidence 

from a sample of studies that examine a certain topic and test comparable hypotheses (Hedges & Olkin, 

1985). The first step in meta-analysis involves describing the results of each study via numerical indicators 

(e.g., estimates of effect sizes such as a standardized mean difference, a correlation coefficient, or an odds 

ratio). These effect size estimates reflect the magnitude of the association of interest in each study. The 

second step involves combining the effect size estimates from each study to produce a single indicator that 

summarizes the relationship of interest across the sample of studies. Hence, meta-analytic procedures 

produce summary statistics, which are then tested to determine their statistical significance and 

importance. 

The specific analytic techniques involved will depend on the question the meta-analytic summary is 

intended to address.  Sometimes the question of interest concerns the typical or average study result.  For 

example in studies that measure the effect of some treatment or intervention, the average effect of the 

treatment is often of interest (see, e.g., Smith and Glass, 1977).  In other cases the degree of variation in 
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results across studies will be of primary interest.  For example, meta-analysis is often used to study the 

generalizability of employment test validities across situations (see, e.g., Schmidt and Hunter, 1977).  In 

other cases, the primary interest is in the factors that are related to study results.  For example, meta-

analysis is often used to identify the contexts in which a treatment or intervention is most successful or has 

the largest effect (see, e.g., Cooper, 1989). 

One advantage of employing meta-analysis is that the pooled results generated can verify or refute 

theories, and therefore can facilitate the improvement of substantive theory.  In addition, from a statistical 

point of view the results of meta-analytic procedures have higher statistical power than indicators obtained 

from individual studies, which increases the probability of detecting the associations of interest (Cohn & 

Becker, 2003). A substantial advantage, however, of meta-analysis is the generality of results across 

studies. This constitutes a unique aspect of research synthesis that is crucial for the external validation of 

the estimates (see Shadish, Cook, & Campbell, 2002). Generally, the estimates that are produced from 

meta-analyses higher external validity than estimates reported in single studies.   

The term meta-analysis is sometimes used to describe the entire process of quantitative research 

synthesis.  However, more recently, it has been used specifically for the statistical component of research 

synthesis.  In this study we deal exclusively with the narrower usage of the term to describe statistical 

methods only. Nonetheless, it is crucial to understand that in research synthesis, as in any research, 

statistical methods are only one part of the enterprise.  Statistical methods cannot remedy the problem of 

data, which are of poor quality.  Excellent treatments of the non-statistical aspects of research synthesis are 

available in Cooper (1989), Cooper and Hedges (1994), and (Lipsey and Wilson, 2001). 

Effect Size Estimates 
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Effect sizes are quantitative indexes that are used to summarize the results of a study in meta-

analysis.  That is, effect sizes reflect the magnitude of the association between variables of interest in each 

study.  There are many different effect sizes and the effect size used in a meta-analysis should be chosen so 

that it represents the results of a study in a way that is easily interpretable and is comparable across studies. 

 In a sense, effect sizes should put the results of all studies “on a common scale” so that they can be readily 

interpreted, compared, and combined.  It is important to distinguish the effect size estimate in a study from 

the effect size parameter (the true effect size) in that study.  In principle, the effect size estimate will vary 

somewhat from sample to sample that might be obtained in a particular study.  The effect size parameter is 

in principle fixed.  One might think of the effect size parameter as the estimate that would be obtained if 

the study had a very large (essentially infinite) sample, so that the sampling variation is negligible. 

The choice of an effect size index will depend on the design of the studies, the way in which the 

outcome is measured, and the statistical analysis used in each study.  Most of the effect size indexes used 

in the social sciences will fall into one of three families of effect sizes: the standardized mean difference 

family, the odds ratio family, and the correlation coefficient family.  

The standardized mean difference  

In many studies of the effects of a treatment or intervention that measure the outcome on a 

continuous scale, a natural effect size is the standardized mean difference.  The standardized mean 

difference is the difference between the mean outcome in the treatment group and the mean outcome in the 

control group divided by the within group standard deviation.  That is the standardized mean difference is 

T CY Yd
S
−

= , 
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where TY is the sample mean of the outcome in the treatment group, CY is the sample mean of the outcome 

in the control group, and S is the within-group standard deviation of the outcome.  The corresponding 

standardized mean difference parameter is 

 
T C

σ
−

=
µ µδ , 

where µT is the population mean in the treatment group, µC is the population mean outcome in the control 

group, and σ is the population within-group standard deviation of the outcome. This effect size is easy to 

interpret since it is just the treatment effect in standard deviation units.  It can also be interpreted as having 

the same meaning across studies (see Hedges and Olkin, 1985).  The sampling uncertainty of the 

standardized mean difference is characterized by its variance which is  

 
T C 2

T C T C
n n dv
n n 2(n n )
+

= +
+

, 

where nT and nC are the treatment and control group sample sizes, respectively.  Note that this variance can 

be computed from a single observation of the effect size if the sample sizes of the two groups within a 

study are known.  Because the standardized mean difference is approximately normally distributed, the 

square root of the variance (the standard error) can be used to compute confidence intervals for the true 

effect size or effect size parameter δ.  Specifically, a 95% confidence interval for the effect size is given by 

 d - 2√v ≤  δ ≤ d + 2√v . 

Several variations of the standardized mean difference are also sometimes used as effect sizes 

(see Rosenthal, 1994). 

The log odds ratio  

In many studies of the effects of a treatment or intervention that measure the outcome on a 
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dichotomous scale, a natural effect size is the log odds ratio.  The log odds ratio is just the log of the ratio 

of the odds of a particular one of the two outcomes (the target outcome) in the treatment group to the odds 

of that particular outcome in the control group.  That is, the log odds ratio is 

T T T C

C C C T
p /(1 p ) p (1 p )log(OR) log log
p /(1 p ) p (1 p )

   − −
= =      − −   

, 

where pT and pC are the proportion of the treatment and control groups, respectively that have the target 

outcome.  The corresponding odds ratio parameter is 

 
T T T C

C C C T
/(1 ) (1 )log log
/(1 ) (1 )

   − −
= =      − −   

π π π πω
π π π π

, 

where πT and πC are the population proportions in the treatment and control groups, respectively, that have 

the target outcome.  The log odds ratio is widely used in the analysis of data that have dichotomous 

outcomes and is readily interpretable by researchers who frequently encounter this kind of data. It also has 

the same meaning across studies so it is suitable for combining (see Fleiss, 1994).  

The sampling uncertainty of the log odds ratio is characterized by its variance, which is 

 T T T T C C C C
1 1 1 1v

n p n (1 p ) n p n (1 p )
= + + +

− −
, 

where nT and nC are the treatment and control group sample sizes, respectively.  As in the case of the 

standardized mean difference, the log odds ratio is approximately normally distributed, and the square root 

of the variance (the standard error) can be used to compute confidence intervals for the true effect size or 

effect size parameter ω.  Specifically, a 95% confidence interval for the effect size is given by 

 d - 2√v ≤  ω ≤ d + 2√v . 

There are several other indexes in the odds ratio family, including the risk ratio (the ratio of 
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proportion having the target outcome in the treatment group to that in the control group or pT/pC) and the 

risk difference (the difference between the proportion having a particular one of the two outcomes in the 

treatment group and that in the control group or pT - pC).  For a discussion of effect size measures for 

studies with dichotomous outcomes, including the the odds ratio family of effect sizes, see Fleiss (1994). 

The correlation coefficient 

In many studies of the relation between two continuous variables, the correlation coefficient is a 

natural measure of effect size.  Often this correlation is transformed via the Fisher z-transform  

1
2

1 rz log
1 r
+ =  − 

 

in carrying out statistical analyses.  The corresponding correlation parameter is ρ, the population 

correlation and the parameter that corresponds to the estimate z is ζ, the z-transform of ρ.  The sampling 

uncertainty of the z-transformed correlation is characterized by its variance 

 1v
n 3

=
−

, 

where n is the sample size of the study, and it is used in the same way as are the variances of the 

standardized mean difference and log odds ratio to obtain confidence intervals.  

The statistical methods for meta-analysis are quite similar, regardless of the effect size measure 

used.  Therefore, in the rest of this chapter we do not describe statistical methods that are specific to a 

particular effect size index, but describe them in terms of a generic effect size measure Ti.  We assume that 

the Ti are normally distributed about the corresponding θi with known variance vi.  That is, we assume that 

         Ti  N(θi, vi), i = 1, ..., k.     

This assumption is very nearly true for effect sizes such as the Fisher z-transformed correlation coefficient 



 

 

Fixed and Mixed effects Models in Meta-Analysis: Konstantopoulos

8

and standardized mean differences.  However for effect sizes such as the untransformed correlation 

coefficient, or the log-odds ratio, the results are not exact, but remain true as large sample approximations. 

 For a discussion of effect size measures for studies with continuous outcomes, see Rosenthal (1994) and 

for a treatment of effect size measures for studies with categorical outcomes see Fleiss (1994).  

Fixed Effects Models 

Two somewhat different statistical models have been developed for inference about effect size data 

from a collection of studies, called the fixed effects and the mixed (or random) effects models (see, e.g., 

Hedges and Vevea, 1998).  Fixed effects models treat the effect size parameters as fixed but unknown 

constants to be estimated, and usually (but not necessarily) are used in conjunction with assumptions about 

the homogeneity of effect size parameters (see e.g., Hedges, 1982, 1994; Rosenthal & Rubin, 1982).  The 

logic of fixed effects models is that inferences are not about any hypothesized population of studies, but 

about the particular collection of studies that is observed.  

 The simplest fixed effects model involves the estimation of an average effect size by combining the 

effect size estimates across all studies in the sample.  Let θi be the (unobserved) effect size parameter (the 

true effect size) in the ith study, let Ti be the corresponding observed effect size estimate from the ith  study, 

and let vi be its variance.  Thus the data from a set of k studies are the effect size estimates T1, …, Tk and 

their variances v1, …, vk.   

The effect size estimate Ti is modeled as the effect size parameter plus a sampling error εi.  That is  

 Ti = θi + εi,        εi ~ N(0, vi). 

The parameter θ is the mean effect size parameter for all of the studies.  It has the interpretation that θ is 

the mean of the distribution from which the study-specific effect size parameters (θ1, θ2, ..., θk) were 
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sampled.  Note that this is not conceptually the same as the mean of θ1, θ2, ..., θk, the effect size parameters 

of the k studies that were observed. The effect size parameters are in turn determined by a mean effect size 

β0, that is 

 θi = β0,        

which indicates that the θi’s are fixed and thus  

Ti = β0 + εi.          (1) 

Note that in meta-analysis, the variances (the vi’s) are different for each of the studies. That is, each 

study has a different sampling error variance. In addition, in meta-analysis these variances are known. 

Since, the amount of sampling uncertainty is not identical in every study, it seems reasonable that, if an 

average effect size is to be computed across studies, it would be desirable to give more weight in that 

average to studies that have more precise estimates (or smaller variances) than those with less precise 

estimates.  

The weighted least squares (and maximum likelihood) estimate of β0 under the model is   

 l

k
i i

i 1
0 k

i
i 1

w T

w
β =

=

=
∑

∑
          (2) 

where wi =1/vi = 1/vi.  Note that this estimator, corresponds to a weighted mean of the Ti, giving more 

weight to the studies whose estimates have smaller unconditional variance (are more precise) when 

pooling. This is actually a weighted regression including only the constant term (intercept).   

 The sampling variance v• of l0β  is simply the reciprocal of the sum of the weights,  
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1k

i
i 1

v w
−

•
=

 
=  
 
∑ , 

and the standard error SE( l0β ) of l0β  is just the square root of v•.   Under this model l0β  is normally 

distributed so a 100(1-α) percent confidence interval for β0 is given by 

 l l
/ 2 0 / 20 0t v t vα αβ β β• •− ≤ ≤ + , 

where tα is the 100α percent point of the t-distribution with (k - 1) degrees of freedom.  Similarly, a two-

sided test of the hypothesis that β0 = 0 at significance level α uses the test statistic Z = l0 / vβ • and rejects 

if |Z| exceeds tα/2. Note that the same test and confidence intervals can be computed for any individual 

coefficient (when multiple predictors are included in the regression model in equation 1).   

A more general fixed effects model includes predictors in the regression equation. Suppose that 

there are k studies and that in each study there are p predictors. Then the effect size parameter θi for the ith 

study depends on xi = (xi1,...,xip)' via a linear model 

θi = β1xi1 +⋅⋅⋅+ βpxip, i = 1, ..., k,       (3) 

where β1,...,βp are unknown regression coefficients. Across all studies the k x p matrix X  

11 12 1

21 22 2

1 2

...

...

. . ... .

. . ... .
...

p

p

k k kp

x x x

x x x

x x x

 
 
 
 =  
 
 
  

X  

is called the design matrix which is assumed to have no linearly dependent columns; that is, X has rank p.  

It is often convenient to define x11 = x21 = ... = xk1 = 1, so that the first regression coefficient becomes a 
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constant term (intercept), as in ordinary regression. 

The model in equation (3) can be written in matrix notation as 

θ = Xβ,  

where β = (β1,...,βp)' is the p dimensional vector of regression coefficients. 

Thus, the model for T can then be written in a typical regression form as  

T = θ + ε = Xβ + ε,         (4)   

where ε = (ε1, ..., εk)' = T - θ is a k dimensional vector of residuals. Because ε = T - θ, it follows that 

the distribution of ε is approximately a k-variate normal distribution with means zero and diagonal 

covariance matrix V given by 

V = Diag(v1, v2, ..., vk), 

which indicates that the elements of ε are independent but not identically distributed.  Therefore we can 

use the method of generalized least squares to obtain an estimate of β.   

The generalized least squares estimator lβ  under the model in 4, which is also the maximum 

likelihood estimator of β under that model, is given by 

l ( ) 1' 1 ' 1−− −= X V X X V Tβ         (5) 

which has a normal distribution with mean β and covariance matrix Σ given by 

 l ( ) 1' 1( )Cov Σ
−−= = X V Xβ .        (6)  

In cases where the effect size estimates are not exactly normally distributed or the variance vi 

is not known exactly (e. g., when it depends on the unknown effect size), the matrix V depends on 

the unknown parameter θ.  However, it is still possible to estimate β by substituting the estimated 
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variance iv�  for vi in V and 

using the estimated covariance matrix to carry out the generalized least squares estimate.  The 

resulting estimator is not the maximum likelihood estimator, but has the same asymptotic 

distribution as the maximum likelihood estimator of β as the total sample size tends to infinity at the 

same rate in all studies (see Hedges, 1983).   

Tests for Blocks of Regression Coefficients 

 In the fixed effects model, a researcher sometimes want to test whether a subset β1, ..., βm of 

the regression coefficients are simultaneously zero, that is,  

 H0: β1 = ... = βm = 0. 

This test arises, for example in stepwise analyses where it is desired to determine whether a set of m 

of the p predictor variables (m ≤  p) are related for effect size after controlling for the effects of the 

other predictor variables.  For example, suppose one is interested in testing the importance of a 

conceptual variable such as research design, which is coded as a set of predictors. Specifically, such 

a variable can be coded as multiple dummies for randomized experiment, matched samples, non-

equivalent comparison group samples, and other quasi-experimental designs, but it’s treated as one 

conceptual variable and its importance is tested simultaneously. To test this hypothesis, we compute 

the statistic  

 1
1 m 1 mQ ( , , )( ) ( , , ) '−= β β β β   

11Σ� � � �… …        (7) 

where 11Σ is the variance-covariance matrix of the m regression coefficients. The test that β1 = ... = 

βm = 0 at the 100α-percent significance level consists in rejecting the null hypothesis if Q exceeds 

the 100(1 - α) percentage point of the chi-square distribution with m degrees of freedom.  If m = p, 
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then the procedure above 

yields a test that all the βj are simultaneously zero, that is β = 0.  In this case the test statistic Q given 

in (7) becomes the weighted sum of squares due to regression  

           QR = � �' 1−β Σ β .   

The test that β = 0 is simply a test of whether the weighted sum of squares due to the regression is 

larger than would be expected if β = 0, and the test consists of rejecting the hypothesis that β = 0 

if QR exceeds the 100(1 - α) percentage point of a chi-square with p degrees of freedom.  

Example 

Gender differences in field articulation ability (sometimes called visual-analytic spatial 

ability) were studied by Hyde (1981).  She reported standardized mean differences from 14 studies 

that examined gender differences in spatial ability tasks that call for the joint application of visual 

and analytic processes (see Maccoby & Jacklin, 1974).  All estimates are positive and indicate that 

on average males performed higher than females in field articulation. The effect size estimates are 

reported in column two of Table 1. The variances of the effect size estimates are reported in column 

three. The year the study was conducted is in column four.   

 First, we compute the weighted mean of the effect size estimates. This yields an overall mean 

estimate of l0 0.547β =  with a variance of v 0.0046• = . The 95% confidence interval for β0 is given 

by 0.4005 = 0.547 - 2.160√0.0046 ≤ β0 ≤ 0.547 - 2.160√0.0046 = 0.6935. This confidence interval 

does not include zero, so the data are incompatible with the hypothesis that β0 = 0. Alternatively, the 

ratio l0 / v 8.05β • =  which indicates that the overall mean is significantly different from zero since 

the observed value is larger than the two-tailed critical t-value at the 0.05 significance level with 13 
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degrees of freedom (2.160).  

 Second we compute the effect of the year of study. This yields an estimate of l1 -0.0433β =  

with a variance of l( )1var 0.0002β = . The 95% confidence interval for β1 is given by -0.0741 = -

0.0433 - 2.179√0.0002 ≤ β1 ≤ -0.0433 + 2.179√0.0002 = -0.0125. This confidence interval does not 

include 0, so the data are incompatible with the hypothesis that β1 = 0. Alternatively, the ratio 

l l( )11 / var 2.999β β = −  which indicates that the year of the study effect is significantly different from 

zero since the absolute observed value is larger than the two-tailed critical t-value at the 0.05 

significance level with 12 degrees of freedom (2.179). This indicates that the effect size estimates 

get smaller over time. The above results are easily obtained from the second version of 

comprehensive meta-analysis developed by Hedges et al., (2005)1.  

Mixed Effects Models 

Mixed effects models treat the effect size parameters as if they were a random sample from a 

population of effect parameters and estimate hyper-parameters (usually the mean and variance) 

describing this population of effect parameters (see, e.g., Schmidt and Hunter, 1977; Hedges, 1983; 

DerSimonian and Laird, 1986).  The term mixed effects model is appropriate since the parameter 

structure of these models is identical to those of the general linear mixed model (and their important 

application in social sciences, hierarchical linear models). 

In this case, there is non-negligible variation among effect size parameters even after 

controlling for the factors that are of interest in the analysis. That is, there is greater residual 

variation than would be expected from sampling error alone after controlling for all of the study 

level covariates.  If the researcher believes that this variation should be included in computations of 
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the uncertainty of the 

regression coefficient estimates, fixed effects models are not appropriate because such excess 

residual variation has no effect on computation of estimates or their uncertainty in fixed effects 

models. The mixed effects model is a generalization of the fixed effects model that incorporates a 

component of between-study variation into the uncertainty of the effect size parameters and their 

estimates.   

As in fixed effects models the simplest mixed effects model involves the estimation of an 

average effect size by combining the effect size estimates across all studies in the sample. However, 

in this case a natural way to describe the data is via a two-level model with one model for the data at 

the study level and another model for the between-study variation in effects. The within-study level 

is as defined for fixed effects models. In the between-study level, the effect size parameters are 

determined by a mean effect size β0 plus a study-specific random effect ηi.  That is 

 θi = β0 + ηi       ηi ~ N(0, τ2). 

In this model, the ηi represent differences between the effect size parameters from study to study. 

 The parameter τ2, often called the between-study variance component, describes the amount of 

variation across studies in the random effects (the ηi’s) and therefore effect parameters (the θi’s). 

The two-level model described above can be written as a one-level model as follows 

 Ti = β0 + ηi + εi  = β0 + ξi , 

where ξi is a composite error defined by ξi =  ηi + εi . Writing this as a one-level model, we see that 

each effect size is an estimate of β0 with a variance that depends on both vi and τ2.  Hence, it is 

necessary to distinguish between the variance of Ti assuming a fixed θi and the variance of Ti 

incorporating the variance of the θi as well. The latter is the unconditional sampling variance of Ti 
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(denoted vi*).  Since the sampling error εi and the random effect ηi are assumed to be independent 

and the variance of ηi is τ^2, it follows that the unconditional sampling variance of Ti is vi* = vi + τ^2. 

The least squares (and maximum likelihood) estimate of the mean β0 under the model is   

 l

k *
i i* i 1

0 k *
i

i 1

w T

w
β =

=

=
∑

∑
          (8) 

where wi* =1/(vi + τ^2) = 1/vi * and τ^2 is the between-study variance component estimate.   Note that 

this estimator, corresponds to a weighted mean of the Ti, giving more weight to the studies whose 

estimates have smaller variance (are more precise) when pooling.   

 The sampling variance v•* of l
*
0β  is simply the reciprocal of the sum of the weights,  

 
1k* *

i
i 1

v w
−

•
=

 
=  
 
∑ , 

and the standard error SE( l
*
0β ) of l

*
0β  is just the square root of v•* .   Under this model l

*
0β  is 

normally distributed so a 100(1-α) percent confidence interval for β0 is given by 

 l l* ** *
/ 2 0 / 20 0t v t vα αβ β β• •− ≤ ≤ + , 

where tα is the 100α percent point of the t-distribution with (k - 1) degrees of freedom.  Similarly, a 

two-sided test of the hypothesis that β0 = 0 at significance level α uses the test statistic Z = 

l* *
0 / vβ • and rejects if |Z| exceeds tα/2. Note that the same test and confidence intervals can be 

computed for any individual coefficient (when multiple predictors are included in the regression). 

A more general mixed effects model includes predictors in the regression equation. Suppose 
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that there are k studies and that in each study there are p predictors. Then the effect size parameter θi 

for the ith study depends on xi = (xi1,...,xip)' via a linear model 

θi =  β1xi1 +⋅⋅⋅+ βpxip + ηi,                                                     ηi ~ N(0, τ2)    

where xi1, … , xip are the values of the predictor variables X1, … , Xp for the ith study (that is xij is 

the value of predictor variable Xj for study i), ηi is a study-specific random effect with zero 

expectation and variance τ2.   

 Then, the single equation as a model for the Ti is 

 Ti = β1xi1 +⋅⋅⋅+ βpxip + ηi + εi = β1xi1 +⋅⋅⋅+ βpxip + ξi ,   

where ξi = ηi + εi is a composite residual incorporating both study-specific random effect and 

sampling error. Because we assume that ηi and εi are independent, it follows that the variance of ξi is 

τ2 + vi. If τ2 were known, we could estimate the regression coefficients via weighted least squares 

(which would also yield the maximum likelihood estimates of the βi’s).  The description of the 

weighted least squares estimation is facilitated by describing the model in matrix notation.   

 We denote the k-dimensional vectors of population and sample effect sizes by θ = (θ1,...,θk)' 

and T = (T1,...,Tk)', respectively.  The model for the observations T as a one level model can be 

written as 

T = θ + ε  = Xβ + η + ε  = Xβ + ξ       (9) 

where β = (β0, β1..., βp)' is the p-dimensional vector of regression coefficients η = (η1, ..., ηk)' is the 

k-dimensional vector of random effects, and ξ = (ξ1, ..., ξk)'  is a k-dimensional vector of residuals of 

T about Xβ.  The covariance matrix of ξ is a diagonal matrix where the ith diagonal element is vi + τ^

2. 

If the residual variance component τ2 were known, we could use the method of generalized 
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least squares to obtain an estimate of β.  Although we do not know the residual variance component 

τ2, we can compute an estimate of τ2 and use this estimate to obtain a generalized least squares 

estimate of β.  The unconditional covariance matrix of the estimates is a k x k diagonal matrix V* be 

defined by 

V*= Diag(v1 + τ^2, v2 + τ^2, ..., vk + τ^2).                                                                              

The generalized least squares estimator l
*

β  under the model (9) using the estimated covariance 

matrix l
*

V is given by 

 ( ) ( )ˆ  
  

-1-1 -1β* = X' V * X X' V * T        (10) 

which, is normally distributed with mean β and covariance matrix Σ* given by 

 ( ) 
  

-1-1Σ* = X' V * X .        (11) 

As equation 11 indicates the estimate of the between study variance component τ^2 is incorporated as 

a constant term in the computation of the regression coefficients and their dispersion via the variance 

covariance matrix of the effect size estimates.  

Tests for Blocks of Regression Coefficients 

 As in the fixed effects model, we sometimes want to test whether a subset β1*, ..., βm* of the 

regression coefficients are simultaneously zero, that is,  

 H0: β1* = ... = βm* = 0. 

This test arises, for example in stepwise analyses where it is desired to determine whether a set of m 

of the p predictor variables (m≤p) are related for effect size after controlling for the effects of the 
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other predictor variables.  To test this hypothesis, compute � � � � � �* * * * * *
0 1 m m 1 p( , , , , , , ) '+= β β β β ββ … … and the 

statistic  

 � � � �* * * *1
1 m 1 mQ* ( , , )( ) ( , , ) '−= β β β β*   

11Σ… …       (12) 

where *   
11Σ is the variance-covariance matrix of the m regression coefficients. The test that β1* = ... 

= βm* = 0 at the 100α-percent significance level consists in rejecting the null hypothesis if Q* 

exceeds the 100(1 - α) percentage point of the chi-square distribution with m degrees of freedom. 

 If m = p, then the procedure above yields a test that all the βj* are simultaneously zero, that is 

β* = 0.  In this case the test statistic Q* given in (12) becomes the weighted sum of squares due to 

regression  

               QR* = ( ) ( ) �
'* *1* −

β� Σ β . 

The test that β* = 0 is simply a test of whether the weighted sum of squares due to the regression is 

larger than would be expected if β* = 0, and the test consists of rejecting the hypothesis that β* = 0 

if QR* exceeds the 100(1 - α) percentage point of a chi-square with p degrees of freedom.  

Testing Whether the Between-studies Variance Component τ2 = 0 

 It seems reasonable that the greater the variation in the observed effect size estimates, the 

stronger the evidence that τ2 > 0.  A simple test (the likelihood ratio test) of the hypothesis that τ2 = 0 

uses the weighted sum of squares about the weighted mean that would be obtained if τ2 = 0.  

Specifically, it uses the statistic  

 lk 2
i i0

i 1
Q (T ) / vβ

=
= −∑ ,        (13) 
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where l0β is the estimate of β0 that would be obtained from equation (1) under the hypothesis that τ2 

= 0.  The statistic Q has the chi-squared distribution with (k – 1) degrees of freedom if τ2 = 0.  

Therefore a test of the null hypothesis that τ2 = 0 at significance level α rejects the hypothesis if Q 

exceeds the 100(1 – α) percent point of the chi-square distribution with (k – 1) degrees of freedom. 

 This (or any other statistical hypothesis test) should not be interpreted too literally.  The test 

is not very powerful if the number of studies is small or if the conditional variances (the vi) are large 

(see Hedges and Pigott, 2001).  Consequently, even if the test does not reject the hypothesis that τ2 = 

0, the actual variation in effects across studies may be consistent with a substantial range on nonzero 

values of τ2, some of them rather large. That is it is unlikely that the between-study variance is 

exactly zero. This suggests that it is important to consider estimation of τ2 and use these estimates in 

constructing estimates of the mean. 

Estimating the Between-studies Variance Component τ2 

 Estimation of τ2 can be accomplished without making assumptions about the distribution of 

the random effects or under various assumptions about the distribution of the random effects using 

other methods such as maximum likelihood estimation. Maximum likelihood estimation is more 

efficient if the distributional assumptions about the study-specific random effects are correct, but 

these assumptions are often difficult to justify theoretically and difficult to verify empirically.  Thus 

distribution free estimates of the between-studies variance component are often attractive. 

 A simple, distribution free estimate of τ2 is given by 

 2
( 1) ( 1)

ˆ
0 ( 1)

− − ≥ −=


< −

Q k if Q k
τ a

if Q k
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where a  is given by 

 

2

1

1

1

k
ik j

i k
j

i
j

w
a w

w

=

=

=

= −
∑

∑
∑

,          

and wi = 1/v and Q is defined in (13).  Estimates of τ2 are set to 0 when Q - (k - 1) yields a negative 

value, since τ2, by definition, cannot be negative.   

Testing the Significance of the Residual Variance Component 

 It is sometimes useful to test the statistical significance of the residual variance 

component τ2 in addition to estimating it.  The test statistic used is 

 QE = T'[V-1 - V-1X (X’V-1X)-1X'V-1]T,        

where V = Diag(v1, … vk).  If the null hypothesis 

 H0: τ2 = 0 

is true, then the weighted residual sum of squares QE has a chi-square distribution with k - p degrees 

of freedom (where p is the total number of predictors including the intercept).  Therefore the test of 

H0 at level α is to reject if QE exceeds the 100(1 - α) percent point of the chi-square distribution with 

(k - p) degrees of freedom. 

Example 

We return to our example of the studies of gender differences in field articulation ability 

(data presented in Table 1). First we turn to the question of whether the effect sizes have more 

sampling variation than would be expected from the size of their conditional variances.  Computing 

the test statistic Q we obtain Q = 24.103, which is slightly larger than 22.36, which is the 100(1 – 
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0.05) = 95 percent point of the chi-square distribution with 14 – 1 = 13 degrees of freedom.  

Actually a Q value of 24.103 would occur only about 3% of the time if τ2 = 0.  Thus there is some 

evidence that the variation in effects across studies is not simply due to chance sampling variation.   

The next step is to investigate how much variation there might be across studies. Hence, we 

compute the estimate of τ2 (the variation of effect sizes estimates across studies) using the 

distribution free method described above. We obtain the estimate 

 2 24.103 (14 1)ˆ 0.057
195.384

τ − −
= = .  

Notice that this value of 2τ̂ is about 65% of the average sampling error variance.  This indicates that 

the between-study variation is not negligible in this sample.  

 Now, we compute the weighted mean of the effect size estimates. In this case the weights 

include the estimate of 2τ̂ . This yields an overall mean estimate of l
*
0 0.549β =  with a variance of 

*v 0.0094• = . Notice that the variance of the weighted mean is now two times as large as in the fixed 

effects case. The 95% confidence interval for *
0β  is given by 0.3396 = 0.549 - 2.160√0.0094 ≤ *

0β  ≤ 

0.549 - 2.160√0.0094 = 0.7584. This confidence interval does not include 0, so the data are 

incompatible with the hypothesis that *
0β  = 0. Alternatively, the ratio l

* *
0 / v 5.67β • =  which indicates 

that the overall mean is significantly different from zero since the observed value is larger than the 

two-tailed critical t-value with 13 degrees of freedom at the α  = 0.05 significance level (2.160).  

 Now consider the case where the year of study is entered in the regression equation. Since 

the year of study will explain between-study variation we need to compute the residual estimate of 
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2τ̂ .  

The distribution-free method of the estimation involves computing an estimate of the residual 

variance component and then computing a weighted least squares analysis conditional on this 

variance component estimate.  Whereas the estimates are “distribution-free” in the sense that they do 

not depend on the form of the distribution of the random effects, the tests and confidence statements 

associated with these methods are only strictly true if the random effects are normally distributed. 

The usual estimator is based on the statistic used to test the significance of the residual variance 

component. It is the natural generalization of the estimate of between-study variance component 

given for example by Dersimonian and Laird (1986). Specifically,  the usual estimator of the 

residual variance component is given by  

τ^2 = (QE - k + p)/c                  

where QE is the test statistic used to test whether the residual variance component is zero (the 

residual sum of squares from the weighted regression using weights wi = 1/vi for each study) 

 and c is a constant given by 

             c =  tr(V-1) - tr[(X'V-1X)-1X'V-2X],    

where V = diag(v1, ..., vk) is a k x k diagonal matrix of conditional variances and tr(A) is the trace of 

the matrix A. 

First we compute the constant c as c = 174.537 and the QE as QE = 15.11. Hence, τ^2 = (15.11 

- 12)/174.537 = 0.0178 which is three times smaller now). This value of τ^2 is now incorporated in 

the weights and the computation of the regression coefficients. The estimated regression coefficients 

are � 0β * = 3.217 for the intercept term and �1β * = -0.040 for the effect of year. The variances of the 
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regression estimates are 1.25633 for the intercept term and 0.00028 for the year of study effect. The 

95% confidence interval for β1* is given by -0.0765 = -0.040 - 2.179√0.00028 ≤ β1* ≤ -0.040 + 

2.179√0.00028 = -0.0035. This confidence interval does not include 0, so the data are incompatible 

with the hypothesis that β1* = 0. Alternatively, the ratio l l* *
1 1/ var 2.386β β  = − 

 
 which indicates that 

year effect is significantly different from zero since the absolute observed value is larger than the 

two-tailed critical t-value at the α  = 0.05 significance level with 12 degrees of freedom (2.179). 

This indicates that the effect size estimates get smaller over time (as in the fixed effects analyses). 

Again, the above results are easily obtained using the second version of comprehensive meta-

analysis by Hedges et al., (2005). 

 

Multivariate Meta-analysis 

In the previous sections, we developed methods for fitting general linear models to the effect 

sizes from a series of studies when the effect size estimates are independent.  In this section we 

sketch analogues to those methods when the sampling errors are not independent.  These methods 

are essentially multivariate generalizations of the fixed and mixed effects models given above for 

univariate meta-analys1s.  To use these methods, the joint distribution of the non-independent effect 

size estimates must be known, which typically involves knowing both the variances and the 

covariance structure of the effect size estimates. The sampling distribution of correlated effect size 

estimates is discussed by Gleser and Olkin (1994). 

Fixed Effects Models for Correlated Effect Size Estimates 

A researcher may be interested in fixed effects models for the analysis of the relation 
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between study characteristics (study-level covariates) and effect sizes.  In fixed effects models the 

effect size parameter is assumed to be fixed at a certain value.  The only source of variation in such 

models is the sampling variation due to different samples of individuals.  As in the univariate case, 

natural tests of goodness of fit are provided for the fixed effects analysis.  They test the hypothesis 

that the variability among studies is no greater than would be expected if all of the variation among 

effect size parameters is explained by the linear model.  These tests are generalizations of the test of 

homogeneity of effect size and the tests of goodness of fit for linear models given previously. 

Assume that each Ti has a q-variate normal distribution (since there may be q effect size 

estimates in each study) about the corresponding θi with known q x q covariance matrix Σi, that 

is  

Ti ~ N(θi, Σi), i = 1, ..., k.        (14)    

There is no need for all studies to have the same number of effect sizes, but we make that 

assumption here to simplify notation.  We denote the kq dimensional column vectors of population 

and sample effect sizes by θ = (θ1',...,θk')' and T = (T1',...,Tk')', respectively, where Ti = (Ti1, ..., Tiq)' 

and θi = (θi1, ..., θiq)' 

In the present model assume that the effect size parameter vector θi for the ith study depends 

on a vector of p fixed study-level covariates xi = (xi1,...,xip)'.  Specifically, assume that 

θij =  β1jxi1 +⋅⋅⋅+ βpjxip, i = 1, ..., k; j = 1, ..., q      (15) 

where β1j,...,βpj are unknown regression coefficients in the model for the jth component of θi.  In 

order to utilize the standard form of generalized least squares, it is helpful to stack the elements of 

Ti, θi, and βj so that  θ = (θ1',...,θk')'=1k⊗θi, T = (T1',...,Tk')'=1k⊗Ti, and β = (β11,...,βp1, β21,...,βpq)' 

are column vectors, 1 is a column vector of ones and ⊗ is the Kronecker product operator (and i = 1, 
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…, k).  

In the univariate case the design matrix would be 

XU = (x1, x2, ..., xk )' 

where xi = (xi1,...,xip)'. In the multivariate case however, each xi  must be repeated q times for study i 

(once for each outcome in the study), so that the multivariate design matrix is 

X = (Iq⊗x1, Iq⊗x2, ..., Iq⊗xk)'           (16) 

where Iq is a q x q identity matrix and  ⊗ is the Kronecker product operator.  The design matrix X 

has dimension kq x pq and is assumed to have no linearly dependent columns; that is, X has rank p. 

Equation (15) can be written succinctly in matrix notation as 

θ = Xβ,  

where β = (β11,...,βp1, β21,...,βpq)' is the pq-dimensional vector of regression coefficients. 

Then the model for T can be written as 

T = θ + ε = Xβ + ε,         (17)  

where ε = (ε1, ..., εkq)' = T - θ is a kq-dimensional column vector of residuals. 

Weighted Least Squares Estimator of the Regression Coefficients 

The linear model T = Xβ + ε for the effect sizes is analogous to the model that is the basis for 

ordinary least squares regression analysis.  Because ε = T - θ, it follows that the distribution of ε is 

kq-variate normal with mean zero and known kq x kq block-diagonal covariance matrix V given by 

V = Diag(Σ1, Σ2, ..., Σk) = Ik⊗Σi    i = 1, … , k           (18) 

Thus, the elements of ε are not identically or independently distributed, but the covariance matrix is 

known.  Therefore we can use the method of generalized least squares to obtain an estimate of β.  
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This is essentially the approach of Raudenbush, Becker, and Kalaian (1988), Gleser and Olkin 

(1994), and Berkey, Anderson, and Hoaglin (1996). 

The generalized least squares estimator lβ  under the model (17) with covariance matrix V 

given in (18), which is also the maximum likelihood estimator of β under that model, is given by 

lβ  = (X'V-1X)-1X'V-1T,        (19) 

which has a pq-variate normal distribution with mean β and covariance matrix Σ given by 

 Σ = (X'V-1X)-1.         (20)

 

Tests and Confidence Intervals 

Once the estimate of β and its covariance matrix Σ are calculated, tests and confidence 

intervals for individual regression coefficients and tests for blocks of regression coefficients 

correspond exactly to those in the univariate fixed effects model described in previously.  Tests of 

goodness of fit of regression models are straightforward generalizations of those used in the 

univariate general linear model using the estimate lβ  and Σ. 

Example: Studies of the Effects of Coaching on the SAT 

A collection of 19 studies of the effects of coaching on SAT verbal and SAT math scores was 

assembled by Kalaian and Raudenbush (1996).  They examined the question of whether the effects of 

coaching were greater if the length of coaching was greater. The study level covariate was the log of 

the number of hours spent in coaching classes.  The data are presented in Table 2.  We compute the 

estimate of the regression coefficients from equation (19) as lβ  = (-0.12948, 0.07900, -0.2936, 

0.1349)′.  We also compute the standard errors of the coefficients of lβ  as the square roots of the 
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diagonal elements of equation (20) as SE( lβ 1) = √σ11 = 0.2186, SE( lβ 2) = √σ22 = 0.0703, SE( lβ 3) = 

√σ33 = 0.2194, and SE( lβ 4) = √σ44 = 0.0705. Computing the individual test statistics for the four 

regression coefficients we obtain t1 = -0.592, t2 = 1.124, t3 = -1.338, t4 = 1.913. Notice that none of 

two-tailed tests is statistically significant at the 0.05 significance level. However, t4 is significant at 

the 0.5 level and if we assume a one-tailed test.  

Mixed Models for Correlated Effect Size Estimates 

When there is nonnegligible covariation among effect size parameters even after controlling 

for the factors that are of interest in the analysis, a general linear model analysis of effect size data is 

more appropriate. That is, there is greater residual covariation than would be expected from sampling 

error alone.  The mixed model incorporates a component of between-study covariation into the 

uncertainty of effect size parameters and their estimates which has the effect of increasing residual 

variation.  

Assume that each Ti has a qi-variate normal distribution about the corresponding θi with 

known qi x qi covariance matrix Σi, that is  

Ti ~ N(θi, Σi), i = 1, ..., k.   

To simplify notation, we require all of the studies have the same number of effect sizes.  We denote 

the kq dimensional column vectors of population and sample effect sizes by θ = (θ1',...,θk')' and T = 

(T1',...,Tk')', respectively. This model is identical to the fixed effects model.  

In the present model assume that the effect size parameter vector θi for the ith study depends 

on a vector of p fixed predictor variables xi = (xi1,...,xip)'.  Specifically, assume that 

θij =  β1j xi1 +⋅⋅⋅+ βpjxip + ξij i = 1, ..., k, j = 1, ..., q     (21) 



Fixed and Mixed effects Models in Meta-Analysis: Konstantopoulos 
 

 29

where β11,...,βpq are unknown regression coefficients, and ξij is a random effect. 

As in the fixed effects case, the design matrix X is assumed to have no linearly dependent 

columns; that is, X has rank p. As in the fixed effects case the dimension of the design matrix X is 

kq x pq. Equation (210 can be written succinctly in matrix notation as 

θ = Xβ + IΞ = (Iq⊗x1, Iq⊗x2, ..., Iq⊗xk)'β + IΞ      (22) 

where β = (β1,...,βpq)' is the pq dimensional vector of regression coefficients, I  is a kq dimensional 

identity matrix, Ξ is a kq dimensional vector of between-study random effects, Iq is a q x q identity 

matrix, and ⊗ is the Kronecker product operator. The vector Ξ of the between-study random effects 

follows a q-variate normal with mean zero and q x q covariance matrix Ω of the between-study 

variance components.  

The model for T can then be written as  

T = θ + ε = Xβ + IΞ + ε,        (23) 

where ε = (ε1, ..., εkq)' = T - θ is a kq dimensional column vector of residuals. 

Estimation of the Regression Coefficients and the Covariance Components 

The regression coefficient vector β and the covariance component matrix Ω can be estimated 

by weighted least squares as in the case of the univariate mixed model.  The usual procedure is to first 

estimate the covariance component matrix Ω and then reweight to estimate the regression coefficient 

vector β and its covariance matrix Σ. There are usually advantages (among them software 

availability) in considering the problem as a special case of the hierarchical linear model considered 

in the previous section in conjunction with univariate mixed model analyses.  The multivariate mixed 

model analyses can be carried out as instances of the multivariate hierarchical linear model (see 

Thum, 1997), estimating parameters by the method of by maximum likelihood.  However a simpler 
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alternative is available.   

Since the sampling error covariance matrix is known, it is possible to transform the within-

study model so that the sampling errors are independent (Kalaian and Raudenbush, 1996).  For each 

study perform the Cholesky factorization of each sampling error covariance matrix Σi so that 

Σi = FiFi', 

where Fi is a known matrix (since Σi is a known matrix) and is the lower triangular (square root) 

matrix of the Cholesky decomposition. Then transform the within-study model to be 

Fi
-1Ti = Fi

-1θi + Fi
-1εi. 

The transformed effect size vector Zi given by  

Zi ≡ Fi
-1Ti  

has a sampling error vector  

�ε i = Fi
-1εi  

which has covariance matrix I, a qi x qi identity matrix. Thus one might write the within-study model 

as  

 Zi = Fi
-1θi + �ε i,         (24)  

where the transformed effect size estimates Zi are now independent with a constant variance, but the 

effect size parameter vector θi is the same as in the original model.   

Thus the within-study model in (24) along with the between-study model is now a 

conventional two-level linear model with independent sampling errors at the first level. Therefore, 

conventional software can be used to estimate β and Ω by the method of maximum likelihood (as in 

HLM).    
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Multivariate Meta-analysis Using HLM  

HLM is a software package designed especially for fitting multi-level models, and it can be 

used to fit mixed effects models to effect size data with study level covariates (Raudenbush, Bryk, 

Cheong, and Congdon, 2004).  It can also be used to fit multivariate mixed models to effect size data 

in meta-analysis.  Table 3 describes the input file for a mixed model multivariate meta-analysis of the 

SAT coaching data reported by Kalaian and Raudenbush (1996). The data for the analysis are read 

from a separate file and consist of 19 pairs of effect sizes from 19 studies of the effects of coaching 

on the SAT verbal and SAT math tests. The first three lines set the maximum number of iterations the 

program will run (NUMIT:1000), the criterion for stopping iteration (STOPVAL:0.0000010000), and 

that a linear model will be used (NONLIN: n). Lines four to six indicate the level I model (LEVEL 1: 

MATH=VERBAL+MATH+RANDOM), and the level II models (LEVEL 2: VERBAL = INTRCPT2 

+ HOURS+RANDOM/ and LEVEL 2: MATH=INTRCPT2+HOURS+RANDOM/).  Lines seven and 

eight indicate that no weights are used in the computations (LEVELWEIGHT:NONE). Line nine 

indicates that the variance is not known (VARIANCEKNOWN:NONE), line 10 that no output file of 

residuals is requested (RESFIL:N), and line 11 that the level 1 variances are not heterogeneous 

(HETEROL1VAR: n).  Line 12 indicates that the default value of the accelerator should be used in 

estimation (ACCEL:5), line 13 that a latent variable regression is not used (LVR:N), and line 14 that 

the OL equations should be printed to 19 units (LEV1OLS:10).  Line 15 indicates that restricted 

maximum likelihood is used (MLF:N), line 16 that no optional hypothesis testing will be done 

(HYPOTH:N), and line 17 that unacceptable starting values of τ will be automatically corrected 

(FIXTAU:3).  Line 18 indicates that none of the fixed effects are constrained to be equal to one 

another (CONSTRAIN:N).  Line 19 specifies that the output file is named “COACHING.OUT”, line 
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20 that the full output will be given (FULLOUTPUT:Y), and line 21 specifies the title of the output. 

The results are reported in Table 4. The top panel of Table 4 shows the regression coefficients 

estimates.  The estimates are only slightly different than those in the fixed effects analyses. Overall, 

as in the fixed effects analyses most of the regression estimates are not significantly different from 

zero (except for hours of coaching). The predictor hours of coaching is significant in verbal, 

indicating that hours of coaching matters in verbal. The bottom panel of Table 4 shows the variance 

component estimates for the residuals about the SAT verbal and SAT math regressions, respectively, 

along with the Chi-square test of the hypothesis that the variance component is zero and the p-value 

for that test. Both variance components for SAT math and verbal are not significantly different from 

zero indicating that there is negligible between-study variation.  

Conclusion 

This study presented univariate and multivariate models for meta-analysis. The use of fixed 

and mixed effects models in univariate and multivariate settings was also demonstrated. Specialized 

statistical software packages such as comprehensive meta-analysis can be easily used to conduct 

univariate weighted least-squares analyses in meta-analysis (both for fixed and mixed effects 

analyses). Other specialized software packages such as HLM can carry out multivariate mixed 

models analyses for meta-analytic data with nested structure. Mixed effects models analyses can also 

be performed with specialized software such as MLwin and the SAS procedure proc mixed. The 

mixed effects models presented here can be extended to three or more levels of hierarchy capturing 

random variation at higher levels. For example, a three-level meta-analysis can model and compute 

variation between investigators or laboratories at the third level (Konstantopoulos, 2005).   

 Endnote 
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1 This software is especially designed to cover various methods for meta-analytic data 

(www.Meta-Analysis.com). 
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Table 1 
 
Field Articulation Data from Hyde (1981).  
 
ID    ES      Var Year 
 
 1      0.76    0.071   1955 
 2      1.15    0.033   1959 
 3      0.48    0.137   1967 
 4      0.29    0.135   1967     
 5      0.65    0.140   1967 
 6      0.84    0.095   1967 
 7      0.70    0.106   1967 
 8      0.50    0.121   1967 
 9      0.18    0.053   1967 
10      0.17    0.025   1968 
11      0.77    0.044   1970 
12      0.27    0.092   1970 
13      0.40    0.052   1971 
14      0.45    0.095   1972 
 
Note: ID = Study ID; ES = Effect Size Estimate; VAR = Variance; Year = Year 
of Study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fixed and Mixed effects Models in Meta-Analysis: Konstantopoulos 

 37

Table 2 
 
SAT Coaching Data from Kalaian and Raudenbush (1996): Selected Sample.  

 
ID   SAT(V)  SAT(M) VAR(V)   COV(V,M) VAR(M)    Log(Hours) Year 
 
 9    0.13    0.12  0.01468  0.00968  0.01467  3.044522438  73 
10    0.25    0.06  0.02180  0.01430  0.02165  3.044522438  73 
11    0.31    0.09  0.02208  0.01444  0.02186  3.044522438  73 
12    0.00    0.07  0.14835  0.09791  0.14844  2.186051277  86 
26    0.13    0.48  0.12158  0.08049  0.12481  3.178053830  88 
29   -0.23    0.33  0.25165  0.16397  0.25340  2.890371758  87 
30    0.13    0.13  0.09327  0.06151  0.09327  2.708050201  85 
31    0.13    0.34  0.04454  0.02944  0.04509  3.401197382  60 
33    0.09   -0.11  0.03850  0.02536  0.03852  2.302585093  62 
34   -0.10   -0.08  0.10657  0.07030  0.10653  1.791759469  88 
35   -0.14   -0.29  0.10073  0.06654  0.10152  1.791759469  88 
36   -0.16   -0.34  0.10917  0.07214  0.11039  1.791759469  88 
37   -0.07   -0.06  0.10889  0.07185  0.10887  1.791759469  88 
38   -0.02    0.21  0.01857  0.01225  0.01861  2.708050201  58 
39    0.06    0.17  0.00963  0.00636  0.00966  2.708050201  53 
42    0.15    0.03  0.00668  0.00440  0.00667  3.688879454  78 
43    0.17   -0.19  0.10285  0.06748  0.10294  2.639057330  76 
45   -0.04    0.60  0.03203  0.02110  0.03331  4.143134726  87 
47    0.54    0.57  0.07968  0.05206  0.07998  3.295836866  88  
 
Note: ID = Study ID; SAT = Scholastic Aptitude Test; V = Verbal; M = Math; 
VAR = Variance; COV = Covariance. 
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Table 3 

 
HLM Input for Mixed Model Multivariate Analyses of SAT Coaching 
Data from Kalaian and Raudenbush (1996) 
                                                                  
Input File 
 
NUMIT:1000 
STOPVAL:0.0000010000 
NONLIN:n 
LEVEL1:MATH=VERBAL+MATH+RANDOM 
LEVEL2:VERBAL=INTRCPT2+HOURS+RANDOM/ 
LEVEL2:MATH=INTRCPT2+HOURS+RANDOM/ 
LEVEL1WEIGHT:NONE 
LEVEL2WEIGHT:NONE 
VARIANCEKNOWN:NONE 
RESFIL2:N 
HETEROL1VAR:n 
ACCEL:5 
LVR:N 
LEV1OLS:10 
MLF:n 
HYPOTH:n 
FIXTAU:3 
CONSTRAIN:N 
OUTPUT:COACHING.OUT 
FULLOUTPUT:Y 
TITLE:MULTIVARIATE META ANALYSIS USING HLM 
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Table 4 
 

HLM Output for Mixed Model Multivariate Analyses of SAT Coaching 
Data from Kalaian and Raudenbush (1996) 
                                                                  
 
Output File 
 
 Final estimation of fixed effects: 
 ---------------------------------------------------------------------------- 
                                       Standard             Approx. 
    Fixed Effect         Coefficient   Error      T-ratio   d.f.     P-value 
 ---------------------------------------------------------------------------- 
 For         VERBAL, B1 
    INTRCPT2, G10          -0.051329   0.227003    -0.226      17    0.824 
       HOURS, G11           0.049071   0.073447     0.668      17    0.513 
 For           MATH, B2 
    INTRCPT2, G20          -0.496924   0.264238    -1.881      17    0.077 
       HOURS, G21           0.212755   0.087375     2.435      17    0.026 
 ---------------------------------------------------------------------------- 
 
 
 Final estimation of variance components: 
 ----------------------------------------------------------------------------- 
 Random Effect           Standard      Variance     df    Chi-square  P-value 
                         Deviation     Component 
 ----------------------------------------------------------------------------- 
   VERBAL,       U1        0.05144       0.00265    17       8.80514    >.500 
     MATH,       U2        0.12414       0.01541    17      18.40913    0.363 
 ----------------------------------------------------------------------------- 
  




