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ABSTRACT 
  

Holdup in Oligopsonistic Labour Markets:  
A New Role for the Minimum Wage 

 
We consider a labour market model of oligopsonistic wage competition and show that there is 
a holdup problem although workers do not have any bargaining power. When a firm invests 
more, it pays a higher wage in order to attract workers from competitors. Because workers 
participate in the returns on investment while only firms bear the costs, investment is 
inefficiently low. A binding minimum wage can achieve the first–best level of investment, both 
in the short run for a given number of firms and in the long run when the number of firms is 
endogenous. 
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1 Introduction

The holdup problem of the labour market says that firms invest too little since

workers can capture some of the return on investment after the costs of investment

are sunk. Crucial for the result is that workers have some bargaining power and that

workers and firms cannot sign binding wage contracts before investment decisions

are made (see Grout (1984) and Malcomson (1999)). Moreover, more bargaining

power of workers makes the problem worse by reducing firms’ incentives to invest.

On the other hand, when bargaining power of workers goes to zero, the holdup

problem disappears.

In this paper, we show that a holdup problem also emerges when workers have no

bargaining power at all, but when firms enter oligopsonistic wage competition after

deciding about investment. The reason is that imperfect wage competition gives rise

to rent sharing between workers and firms. When a firm invests more, it voluntarily

wants to pay a higher wage in order to attract more workers from its competitors.

Consequently, part of the returns of higher investment accrue to workers and not to

the firms who bear all the investment costs. As a result, investment is inefficiently

low.

Perhaps surprisingly, the holdup problem can be removed by the imposition of a

binding minimum wage which alleviates the adverse effects of oligopsonistic wage

competition. Whenever the minimum wage binds, firms optimally wish to pay a

lower wage. By investing slightly more, a firm is thus not inclined to pay a higher

wage but it keeps paying the minimum. Hence, additional investment does not

translate into higher wages, so that all marginal gains from higher investment accrue

to the firm who bears the investment cost. We show in fact that even the social

optimum can be implemented by an appropriate choice of the minimum wage. This

is true both in the short run when the number of firms is given, and in the long run

when firms enter or exit the labour market.

Our model of an oligopsonistic labour market is a variation of the model of Bhaskar

and To (1999). They use a Salop model of horizontal job differentiation to show

positive welfare consequences of a binding minimum wage. In their paper, however,
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the beneficial effect of the minimum wage is based on the textbook monopsony

argument: since employment is “too low” when firms enjoy labour market power,

a minimum wage raises employment and thereby social welfare. In our paper, in

contrast, there is no such employment effect: all workers are employed for any level

of the minimum wage. Instead a minimum wage is helpful because of its positive

impact on investment.1

Several contributions by Daron Acemoglu also find that binding minimum wages

can be conducive for investment. Acemoglu (2001) shows how a wage floor changes

the composition of jobs towards more capital–intensive, high–wage jobs. The result,

however, works through the improved outside option of workers which makes it less

attractive for firms to create low–wage jobs. Acemoglu (2003) shows how a minimum

wage reduces ex–post rent sharing and leads to faster technology adoption for jobs

with unskilled workers, thus providing an explanation of why the skill premium

increased much less in Continental Europe than in the U.S. or in the UK over the

past decades. Although his mechanism is very similar to ours, the ex–post rent

sharing in Acemoglu’s model is based on bargaining power on the side of workers.

Cahuc and Michel (1996) and Acemoglu and Pischke (1999) argue that a minimum

wage can induce workers or firms to invest more in education. In our model, in

contrast, firms invest in better technology under the minimum wage.

The paper is organized as follows. After describing the model in Section 2, Section 3

derives the holdup problem under laissez faire. The beneficial effects of a minimum

wage are discussed in Section 4 for an exogenous number of firms and in Section 5

with endogenous entry. Section 6 concludes. All proofs not contained in the text

are in the Appendix.

1When the number of firms is endogenous, the minimum wage reduces entry which is also

socially beneficial because entry is excessive under laissez faire. This effect is also present in the

model of Bhaskar and To (1999).
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2 The model

The labour market is modeled by a Salop circle of unit circumference which is

populated by a unit mass of uniformly distributed workers and n ≥ 2 firms that

are located symmetrically around the circle. For now the number n is exogenously

given, but in Section 5 we allow for free entry of firms. Workers pay quadratic

transportation costs tx2 to work for a firm located distance x apart. These costs

can be interpreted as geographical travel cost or as worker preferences over non–wage

job characteristics.2

Firms operate linear technologies that produce output yi from yi/Ai units of labour

which is the only input. Labour productivity Ai depends on the amount of invest-

ment undertaken by firm i. Each firm has costless access to a basic technology with

productivity B which can be upgraded to a higher level Ai ≥ B at cost3 c ·(Ai−B)2.

We model the strategic interaction by a two–stage game between profit–maximizing

firms. At stage I, firms invest, deciding simultaneously about the level of technology

Ai, i = 1, . . . , n. At stage II, firms offer wages wi, i = 1, . . . , n, to workers. After

wages have been announced, workers decide at what firm to work and production

takes place. Note that we do not allow firms to wage discriminate between workers

according to their locations. We also do not allow workers to renegotiate on the wage

at offer. Thus there is no market power on the side of workers. This framework

extends the model of Bhaskar and To (1999, 2003) by allowing firms to decide

endogenously about technology. We simplify their model though by assuming that

all workers are employed by some firm.

An equilibrium is a symmetric subgame perfect Nash equilibrium of this game. We

restrict the model parameters in such a way that symmetric subgame perfect equi-

libria exist and have full employment of all workers:

B > t
2 and ct

n > 1
4 . (1)

2If transportation costs were linear instead of quadratic, payoff discontinuities may lead to

non–existence of Nash equilibria in some of the subgames with asymmetric technology choices.
3Quadratic investment and transportation costs are convenient assumptions guaranteeing ana-

lytical solutions. As long as the relevant payoff functions are strictly concave, any other form of

these cost functions would lead to similar results.

3



As we show below, the first inequality implies that workers always prefer to work for

some firm at equilibrium wages, regardless of technology. The second assumption

guarantees that payoff functions are concave in technology choices. It also makes

sure that all n firms are active, invest the same amount and employ the same

number of workers in the symmetric equilibrium.4 When we allow for free entry in

Section 5, setup costs must be high enough so that the second condition holds for

the endogenous number of entrants.

It is straightforward to obtain expressions for firms’ profits depending on their strate-

gies (Ai, wi), i = 1, . . . , n. A worker located distance x from firm i and distance

1/n− x from firm i + 1 decides to work for i iff wi − tx2 ≥ wi+1 − t(1/n− x)2 which

is x ≤ 1/(2n) + (wi −wi+1) ·n/(2t). When the wage differences between firms i− 1,

i and i + 1 are not too big, firm i competes with its immediate neighbors so that i’s

employment is

Li(wi, wi+1, wi−1) = 1
n + n

2t(2wi − wi+1 − wi−1) , (2)

and profit is

πi = (Ai − wi)Li(wi, wi+1, wi−1) − c(Ai − B)2 .

Consequently, the stage II best response problem of firm i can be solved for the

reaction function

wi =
Ai − t/n2

2 +
wi−1 + wi+1

4 . (3)

3 The holdup problem

To characterize symmetric subgame perfect equilibria, it suffices to solve those stage

II–subgames where firm 1 deviates with its investment decision A1 from the one

chosen by all other firms, Ai = A, i = 2, . . . , n. The following proposition shows

the Nash equilibrium strategies of firm 1 and its two neighbors in these stage II

subgames. The proof is in the Appendix.

4If the second condition in (1) is not satisfied, there may be equilibria where only a fraction

of firms invest and all firms who do not invest are driven out of the market. There may also

be multiple equilibria. A complete characterization of the equilibrium set for the case n = 2 is

available from the authors upon request.
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Proposition 1: Suppose that A2 = A3 = . . . = An = A and that

− t
n2(1 − ζ)

< A1 − A < t
n2(2ζ − 1)

, (4)

where ζ ∈ (1/
√

3, 2/3] is a constant which depends on n only. Then the subgame

Nash equilibrium strategies of firms 1, 2 and n are

w1 = A − t
n2 + ζ(A1 − A) ,

w2 = wn = A − t
n2 + (2ζ − 1)(A1 − A) ,

and employment at these firms is

L1 = 1
n + n

t (1 − ζ)(A1 − A) ,

L2 = Ln = 1
n + n

t (1 − 2ζ)(A1 − A).

Note that employment at firms 1,2 and n is positive since A1−A lies in the range (4).

Furthermore, Ai ≥ B implies that wi ≥ B − t/n2 in any of these subgames. Thus

there will be full employment of all workers: even those workers who are located

diametrically opposed of some firm i are willing to work for i since wi − t(1/2)2 ≥ 0

because of (1) and n ≥ 2.

The proposition shows that workers at firm 1 and at its neighbors benefit from

higher investment by firm 1: when A1 > A, wages at firm 1 and at its neighbors are

increasing.5 This is precisely the reason why firms underinvest under oligopsonistic

competition. When firm 1 invests more, it also raises its wage in order to attract

more workers. Its neighbors follow suit because their reaction function (3) is in-

creasing in neighboring wages, and this further drives firm 1’s wage up. As a result,

part of the gains from investment accrue to workers, but investment costs are only

borne by firms.

To show this formally, let us derive the equilibrium investment level. In a symmetric

equilibrium A1 = . . . = An = A we must make sure that firm 1 does not want to

deviate from A. Since Proposition 1 characterizes stage II subgames for nearby devi-

ations from symmetric strategies, it is straightforward to characterize the condition

5In fact, wages at all n firms are increasing in A1, as shown in the proof of Proposition 1.
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for a local best response. Deviations below A − t/(n2(1 − ζ)) lead to L1 = 0 and

are clearly not profitable for firm 1. Deviations above A + t/(n2(2ζ − 1)) lead to

L2 = Ln = 0 so that firm 1 starts competing with firms 3 and n − 2. In the proof

of Theorem 1 we show that such deviations are never profitable for firm 1.

When A1 is in the range (4), firm 1’s profit is

π1(A1, A) = (A1 − w1)L1 − c(A1 − B)2

= n
t

(

t
n2 + (1 − ζ)(A1 − A)

)2
− c(A1 − B)2 . (5)

Assumption (1) implies that π1 is strictly concave in A1. It is maximized at

A1 = R(A) ≡
t
n(1 − ζ) + ctB − (1 − ζ)2An

ct − (1 − ζ)2n
.

The best response function R is downward–sloping (with slope > −1, again under

(1)). Thus, there exists a (stable) Nash equilibrium

A∗ = B + 1 − ζ
cn . (6)

It is now straightforward to show that there is too little investment in the decen-

tralized equilibrium. When all n firms choose technology A, social welfare (i.e. total

output minus costs of transportation and investment) is

Sn(A) = n
(

2
∫ 1/(2n)

0
A − tx2 dx − c(A − B)2

)

= A − t
12n2 − cn(A − B)2 ,

which is maximal at

AS = B + 1
2cn .

Because of ζ > 1/
√

3 > 1/2, investment in the decentralized equilibrium is below the

socially optimal level. This is the holdup problem in this model: although workers

do not have any bargaining power, some of the rents of investment accrue to workers

because of oligopsonistic wage competition between firms.

Theorem 1: Suppose that assumption (1) holds. Then there exists a unique sym-

metric subgame perfect Nash equilibrium in which all firms invest A∗, pay the wage

w∗ = A∗ − t/n2, and make profits π∗ = t
n3 − c

(1 − ζ
cn

)2
. Investment is below the

socially optimal level AS.
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4 The beneficial effect of a minimum wage

Consider now the impact of a minimum wage w which is announced before firms

make investment decisions. That is, prior to stage I, firms respect that stage II wage

strategies are bounded below by wi ≥ w. Paralleling Proposition 1, Proposition 2

characterizes the subgame equilibrium at stage II when one firm deviates locally

from a symmetric configuration at stage I.

Proposition 2: Suppose that A2 = A3 = . . . = An = A and that A1 in the range

(4). Then, the stage II subgame Nash equilibrium is as follows.

(a) Suppose that w ≤ A − t/n2. If A1 > Â ≡
(

w + t/n2 − (1 − ζ)A
)

/ζ (≤ A),

the stage II equilibrium is as the laissez–faire equilibrium of Proposition 1. If

A1 ≤ Â, the minimum wage binds for firm 1, and the stage II equilibrium

is as in Proposition 1 with Â replacing A1 in the expressions for wi and Li,

i = 1, 2, n. In this case, the minimum wage does not bind for all firms i > 1

when w < A − t/n2 and it binds for all firms when w = A − t/n2.

(b) Suppose that w > A− t/n2. If A1 ≤ w + t/n2, the minimum wage binds for all

firms at stage II, so that employment levels are Li = 1/n for all i = 1, . . . , n.

If A1 > w + t/n2, firm 1 pays a wage above the minimum wage and, for A1

big enough, so do its neighbors.

Proof: Appendix.

Part (b) of the Proposition shows that a marginal investment increase by firm 1

does not translate into higher wages when the minimum wage is binding. Hence,

all marginal returns on investment accrue to firm 1, in contrast to the laissez–faire

framework of the previous section. This is the reason why a minimum wage induces

firms to invest more.

To analyze how the minimum wage affects investment, consider the laissez–faire

equilibrium A∗, w∗ = A∗−t/n2 from Theorem 1, and suppose first that the minimum

wage is below the laissez–faire wage, w ≤ w∗. Then no firm wants to deviate with

its technology choice from A∗: any deviation in the range A1 ≥ Â (see Proposition

7



2(a)) cannot be profitable since wages at stage II are as under laissez faire and so the

proof of Theorem 1 applies analogously. Firm 1 also does not want to deviate below

Â: Proposition 2 shows that then w1 = w and L1 = L̂1 ≡ 1/n + n(1− ζ)(Â−A∗)/t

are independent of A1 so that firm 1’s profit is

π̂1(A1) ≡ (A1 − w)L̂1 − c(A1 − B)2 ,

a concave function of A1 with π̂′

1(Â) = L̂1 − 2c(Â − B). On the other hand, firm

1’s profit function for A1 ≥ Â is π1(A1, A
∗) as defined in (5) whose slope at A1 = Â

is dπ1/(dA1)(Â, A∗) = 2(1− ζ)L̂1 − 2c(Â−B) which is smaller than π̂′

1(Â) because

ζ > 1/2. This shows that firm 1’s profit is concave in A1 ≤ A∗ which proves that

downward deviations do not pay off either. Hence, the laissez–faire equilibrium

remains an equilibrium for any minimum wage w ≤ w∗.

When w > w∗, however, the laissez–faire equilibrium is replaced by an equilibrium

with higher investment and firms paying the minimum wage. Provided that w is

not too big, firms invest exactly A = w + t/n2, so that stage II wage competition

leads all firms to set the minimum wage (Proposition 2(a)). Indeed, suppose that

firms i ≥ 2 invest A = w + t/n2. Then, when A1 ≥ A, Proposition 2(a) says that

firm 1 gets laissez–faire profit π1(A1, A) as shown in equation (5), and since w > w∗,

we have

dπ1
dA1

(A,A) = 2
n(1 − ζ) − 2c

(

w + t
n2 − B

)

< 2
n(1 − ζ) − 2c

(

1
cn(1 − ζ)

)

= 0 . (7)

Hence, upward technology deviations are not profitable for firm 1. When firm 1

chooses A1 < A, all firms continue to pay w (Proposition 2(a) again), firm 1’s

employment is L1 = 1/n, and its profit is

π1(A1) ≡ (A1 − w) 1
n − c(A1 − B)2 . (8)

Thus, downward deviations from A = w + t/n2 are not profitable provided that

π′(A) = 1
n − 2c

(

w + t
n2 − B

)

≥ 0 ,

which is the case whenever

w ≤ B + 1
2cn − t

n2 = wS ≡ AS − t
n2 .
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Therefore, for any minimum wage w ∈ [w∗, wS], the technology choice A = w + t/n2

is the symmetric equilibrium of this game. In particular, the social optimum is

implemented as a decentralized equilibrium for the minimum wage w = wS.

When w > wS, the social optimum Ai = AS continues to be the unique equilibrium,

as long as profits are non–negative. In this case, firm 1’s profit for small deviations

from A = AS is given by (8) since the minimum wage binds on all firms. Because

the local maximum is attained at A1 = AS, AS is a local best response to Ai = AS,

i ≥ 2. Only when firm 1 raises A1 far above AS the minimum wage would not

bind on firm 1 (and possibly not on other firms for large enough A1). But such

deviations are not profitable as well.6 Profits at the socially optimal technology

level are non–negative if, and only if,

w ≤ ŵ ≡ B + 1
4cn .

Note that assumption (1) implies that ŵ > wS. When w > ŵ there is no equilibrium

in which all n firms operate with non–negative profits so that some firms must leave

the market. Such issues are discussed in the following section. Hence, we have

established

Theorem 2: Suppose that a minimum wage w is imposed prior to firms’ investment

decisions at stage I. Then the unique symmetric equilibrium is as follows.

(a) If w ≤ w∗, the equilibrium is the laissez–faire equilibrium of Theorem 1.

(b) If w∗ < w < wS, the equilibrium is Ai = w+t/n2 > A∗ and wi = w, i = 1, . . . , n,

with higher social welfare than under laissez faire.

(c) If wS ≤ w ≤ ŵ, the social optimum Ai = AS, wi = w, i = 1, . . . , n is an

equilibrium.

(d) If ŵ < w, there is no equilibrium with n active firms.

6Formally, when A1 > w + t/n2 > AS , the minimum wage does not bind for 1 but binds for its

neighbors (when A1 is not too big). Firm 1 pays then w1 = (A1+w−t/n2)/2 > w and makes profit

π1(A1) = (A1−w+t/n2)2·n/(4t)−c(A1−B)2. Then π′
1
(A1) = (A1−w+t/n2)·n/(2t)−2c(A1−B) <

(AS − w − t/n2) · n/(2t) < 0. Thus such deviations are not profitable.
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5 Endogenous entry

Suppose that firms incur fixed costs F > 0 representing all expenses that are in-

dependent of the scale of production, such as rent, insurance etc. The strategic

interaction between firms is augmented by a decision whether to enter the market

or not, prior to the technology decisions. Thus, at stage 0, a large number of firms

decide simultaneously about entry. Entrant firms are assumed to locate symmetri-

cally around the circle. It is well known that free entry in the Salop model leads

to an excessive number of firms due to the so–called business–stealing effect (see

Mankiw and Whinston (1986)): an individual firm ignores the negative impact of

its own entry on the output of competitors. To show that this is also the case in our

model with endogenous technology choice, compare the number of firms under free

entry with the socially optimal number of firms. The proof of Proposition 1 shows

that the constant ζ is a declining function of the number of firms, so we denote it

by ζ(n). The equilibrium number of firms under laissez–faire solves

π∗(n) = t
n3 − c

(1 − ζ(n)
cn

)2
= F .

π∗ is a declining function whenever it is positive. Let n∗ denote the equilibrium

number of firms, assuming that F is big enough so that (1) holds for n∗.

The socially optimal number of firms, denoted nS, is found from maximizing Sn(A)−
nF with respect to n and A which amounts to solving the first–order condition

G(n) ≡ t
6n3 − 1

4cn2 = F .

Because π∗(n) > G(n) for all n, and since both functions are downward sloping

(whenever they are positive), n∗ > nS. Hence, the business–stealing effect is also

present in our model with endogenous technology choice.

Under free entry, a minimum wage has beneficial effects for two reasons. The first

effect is the investment effect of the previous section: as wage competition is al-

leviated, the firms’ returns on investment are higher which stimulates investment.

Secondly, there is a beneficial entry effect: profits are falling and fewer firms en-

ter the market. Note that the second effect also indirectly spurs investment: when
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fewer firms enter the market, each firm serves a larger market share and invests more

(formally, Theorem 2 shows that the equilibrium A is declining in n).

One can also show that the first–best level of n and A can be implemented by an

appropriate choice of the minimum wage. Let A∗(n) denote the equilibrium invest-

ment level of Theorem 1 under laissez–faire, and let A∗ ≡ A∗(n∗) denote investment

under free entry. Similarly, denote by AS(n) the socially–optimal investment level

for n given firms, and let AS(nS) be the optimal investment level when the number

of firms is socially optimal. We have shown before that A∗(n) < AS(n) for all n, and

that both functions are declining in n. Thus, A∗ = A∗(n∗) < A∗(nS) < AS(nS) = AS

(see Figure 1). When a binding minimum wage is increased, firms invest more but

profits are declining and so fewer firms enter the market. In the (n,A)–diagram of

Figure 1, the decentralized equilibrium moves away from the laissez–faire (n∗, A∗)

towards the north–west. At some point, the minimum wage becomes larger than

wS(n) = AS(n)− t/n2 in which case the n active firms invest the amount AS(n) (see

Theorem 2(c)). Further increases of the minimum wage reduce the number of firms

further and raise investment according to AS(n). Figure 1 shows that firms start

investing AS(n) when n̂ firms enter the market, and that n̂ is bigger than the socially

optimal number of firms nS. A proof of this result is in the Appendix. Therefore,

there exists a level of the minimum wage above wS(n̂) which implements the social

optimum (nS, AS). Further increases of the minimum wage lead to an inefficiently

low number of active firms who invest more and more until, at some point, all firms

leave the market.

Theorem 3: Under free–entry, an increase of the minimum wage reduces the num-

ber of firms and raises investment. Social welfare increases for moderate levels of

the minimum wage and it falls for higher levels. There exists a minimum wage

implementing the social optimum (nS, AS) as a decentralized equilibrium.

11



Figure 1: The bold curve shows market size and investment for different levels of

the minimum wage.

6 Conclusions

The paper has established a beneficial effect of a minimum wage policy which is dif-

ferent from the well–known positive employment effects in monopsonistic or oligop-

sonistic labour markets. In an economy with full employment of all workers and

market power on the side of firms, there is too little investment because workers

benefit from better technology via higher wages, whereas investment costs are only

borne by firms. A binding minimum entails that all marginal returns from invest-

ment accrue to firms which induces them to invest more.

There may be other dimensions along which minimum wages have positive welfare

effects. This paper has abstracted from issues of firm location by assuming that firms
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always locate symmetrically around the circle. In a related paper (Kaas and Madden

(2006)) we show within a two–firm Hotelling model that there is too much differ-

entiation of non–wage job characteristics under laissez–faire. A moderate minimum

wage turns out to be welfare–improving by reducing horizontal job differentiation.
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Appendix

Proof of Proposition 1:

If firm 1 deviates with A1 from A2 = . . . = An = A a little, it competes with its

immediate neighbors i = 2, n, and its stage II best response (3) to the symmetric

wages w2 = wn is7

w1 = k1 + w2
2 , (9)

where k1 ≡ (A1 − t/n2)/2. Because firm 2 competes with i = 1, 3, its best response

is

w2 = k + w1 + w3
4 ,

where k ≡ (A− t/n2)/2. Similarly, the best response of all firms i = 2, . . . ,m, where

m ≤ n/2, is

wi = k +
wi−1 + wi+1

4 , i = 2, . . . ,m. (10)

Suppose that n is even so that n = 2m. Then, the best response for all firms

i = 2, . . . ,m is given by (10), and the best response problem of firm m + 1 is

wm+1 = k + wm
2 , (11)

because wm = wm+2. Therefore, the stage II Nash equilibrium is a solution (wi)
n
i=1

that satisfies wi = wn+2−i, i = 2, . . . ,m, and the best–response conditions (9), (10)

and (11). With λi ≡ wi − 2k, one needs to find a solution to the difference equation

λi+1 = 4λi − λi−1 , i = 2, . . . ,m , (12)

7As we show in the proof of Theorem 1 below, the profit function of firm i is strictly concave

in wi in the whole domain wi ∈ [0, Ai]. Therefore equation (3) describes indeed the best response

of firm i provided that employment levels at firms i− 1, i and i + 1 are strictly positive. Below we

show that this is the case when A1 lies in the range (4).
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satisfying the boundary conditions

λ1 = k1 − k + λ2/2 , (13)

λm+1 = λm/2 . (14)

The general solution of (12) is λi = αµi−1
1 + βµi−1

2 , where µ1 = 2 +
√

3 and µ2 =

2 −
√

3. The two boundary conditions (13) and (14) yield

α = β
(µ2
µ1

)m

β =
2(k1 − k)/

√
3

1 − (µ2/µ1)
m .

Using this shows that

w1 = λ1 + 2k = α + β + 2k = A − t/n2 + ζ(n)(A1 − A) , (15)

where

ζ(n) ≡ 1√
3
· (2 +

√
3)n/2 + (2 −

√
3)n/2

(2 +
√

3)n/2 − (2 −
√

3)n/2
.

Thus, ζ(2) = 2/3 and ζ(∞) = 1/
√

3. Moreover, ζ is declining in n, and a similar

consideration for odd values of n confirms that ζ(n) ∈ [
√

3
−1

, 2/3] for all n. The

stage II equilibrium wage paid by the neighbors of firm 1 is

w2 = λ2 + 2k = 2λ1 − 2(k1 − k) + 2k = A − t/n2 + (2ζ(n) − 1)(A1 − A) . (16)

The expressions for employment at firms 1,2 and n follow then from (2) which are

all positive, provided that A1 is in the range (4). It can also be shown that then all

other firms’ employment levels are positive. Thus, the established solution is indeed

a Nash equilibrium. 2

Proof of Theorem 1:

It remains to prove that firm 1 does not want to deviate above A1 ≡ A∗+ t/(n2(2ζ−
1)) in order to capture its immediate neighbors’ markets (any further upward devi-

ations to capture an even larger market are not profitable for similar reasons). First

of all, note that employment of firm 1 can be written as L1 = max(0, L−

1 + L+
1 )

where

L+
1 = min( 1

2n + n
2t(w1 − w2),

1
n + n

4t(w1 − w3),
3
2n + n

6t(w1 − w3), . . .) ,
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L−

1 = min( 1
2n + n

2t(w1 − wn), 1
n + n

4t(w1 − wn−1),
3
2n + n

6t(w1 − wn−2), . . .) .

These equations reflect the observation that employment of some low wage firms next

to firm 1 may be zero in which case firm 1 competes with other firms located further

away. The equations show that L1 is strictly increasing, continuous and concave

in w1. Therefore, firm 1’s profit function π1 = (A1 − w1)L1 is strictly concave

and continuous in all arguments. This implies that there exists a continuous best

response function w1 = R1(w2, . . . , wn). Moreover, R1 is non–decreasing in each

argument (just as (3) is non–decreasing in w2 and wn). A Nash equilibrium of any

subgame after technology choices (Ai)
n
i=1 is a fixed point of the collection of best

response functions R = (R1, . . . , Rn) :
∏

i[0, Ai] → ∏

i[0, Ai]. Because each Ri is

non–decreasing, a fixed point exists because of Tarsky’s fixed point theorem (see

Theorem M.I.3 in Mas-Colell, Whinston, and Green (1995)). Hence any stage II

subgame has a pure strategy equilibrium.

Suppose now that A1 > A1 so that L2 = Ln = 0 and firm 1 competes with 3 and

n − 1. Given that these firms set wages w3 = wn−1, firm 1’s employment is

L1 = 2
n + n

2t(w1 − w3) ,

and so its profit is

π1(A1, w1, w3) = (A1 − w1)
(

2
n + n

2t(w1 − w3)
)

− c(A1 − B)2 .

Firm 1’s best response at stage II is

w1(A1, w3) =
A1 + w3 − 4t/n2

2 ,

which gives

π̂1(A1, w3) ≡ π1(A1, w1(A1, w3), w3) = n
8t

(

A1 − w3 + 4t
n2

)2
− c(A1 − B)2 ,

a decreasing function of w3. In any subgame equilibrium at stage II in which 1 and

3 compete, firm 3’s wage w3(A1) is increasing in A1. The optimal technology choice

of firm 1, denoted Â1 ≥ A1 solves

π̂′

1A(Â1, w3(Â1)) + π̂′

1w(Â1, w3(Â1))w
′

3(Â1) = 0 .

16



Because of w′

3 > 0 and π̂′

1w < 0,

π̂′

1A(Â1, w3(Â1)) > 0 .

Further, because π̂′

1A is decreasing in the second argument and since w3(Â1) > w∗ =

A∗ − t/n2, we also have

π̂′

1A(Â1, w
∗) > 0 . (17)

Assumption (1) implies that π̂1 is concave in A1. The unique maximizer of π̂1(., w
∗),

denoted Ã1, must be bigger than Â1 because of (17). If we can show that Ã1 is smaller

than A1 we obtain a contradiction because Â1 < Ã1 < A1 ≤ Â1. Maximization of

π̂1(., w
∗) and using w∗ = B + (1 − ζ)/(cn) − t/n2 yields

Ã1 = B + 1
8ct − 1

(

5t
n − 1 − ζ

c

)

.

The condition Ã1 < A1 = B+(1−ζ)/(cn)+t/(n2(2ζ−1)) turns out to be equivalent

to

4ct
n > 2 + 8ζ2 − 7ζ . (18)

The right–hand side attains the maximum of 8/9 at ζ = 2/3 so that (18) holds if

ct/n > 2/9, another implication of assumption (1). 2

Proof of Proposition 2:

Note first that each firm i’s profit functions is strictly concave in wi ≥ w so that

a local best response is a global best response. On (a), suppose first that A1 > Â.

Then the proof is as in Proposition 1 because all wages are above the minimum

wage and no firm can increase its profit by reducing its wage to the minimum. Now

consider A1 ≤ Â. When A = w + t/n2 so that Â = A, all firms pay the minimum

wage: (3) shows that w is a best response for any i to both neighbors setting w.

When A > w + t/n2 and A1 = Â < A, firm 1 pays the minimum wage and all other

firms pay higher wages: Proposition 1 shows that 1’s immediate neighbors 2 and n

pay higher wages, and the same is true for all other firms which follows directly from

the solution in the proof of Proposition 1. When A1 < Â, nothing changes relative

to A1 = Â since firm 1 keeps paying the minimum wage and all other firms are not

affected by the lower investment of firm 1.
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On (b), suppose first that A1 ≤ w + t/n2. Then (3) shows that any firm i = 1, . . . , n

would optimally wish to pay a wage below the minimum wage when its two neighbors

pay the minimum. Since i’s payoff is concave in wi, wi = w is thus a best response

to wi−1 = wi+1 = w, and so all firms pay the minimum wage in the stage II Nash

equilibrium. When A1 > w+t/n2, in contrast, firm 1’s best response to w2 = wn = w

exceeds w. Then, in the stage II Nash equilibrium firm 1 (and potentially some of

its neighbors) pay wages above the minimum wage. 2

Proof of Theorem 3:

Suppose that n firms enter the market at stage 0. Each firm’s profit depends on the

level of the minimum wage. According to Theorem 2, firms can be in one of three

situations.

1. If w < w∗(n) = B +
1 − ζ(n)

cn − t
n2 , the minimum wage does not bind, firms

invest A∗(n), and profits are

π∗(n) = t
n3 − c

(1 − ζ(n)
cn

)2
.

2. If w∗(n) ≤ w < wS(n) = B + 1
2cn − t

n2 , the minimum wage binds, firms invest

more than A∗(n) but less than AS(n), and profits are

πB(n) = t
n3 − c

(

w + t
n2 − B

)2
.

3. If wS(n) < w, the minimum wage binds, firms invest AS(n), and profits are

πS(n) =
(

B + 1
2cn − w

)

1
n − c

(

1
2cn

)2
. (19)

When w is increased above w∗ = w∗(n∗), less than n∗ firms enter the market who all

invest more than A∗(n). At some point, firms start investing AS(n). This happens

when the number of firms n̂ satisfies

πB(n̂) = πS(n̂) = F .

The corresponding minimum wage is wS(n̂) = B + 1
2cn̂ − t

n̂2 . Using (19),

πS(n̂) = t
n̂3 − 1

4cn̂2 > G(n̂) ,
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where G is defined in the text. This implies that n̂ > nS because G is downward–

sloping. Therefore, when the minimum wage is increased further, the number of

firms falls to the first–best level nS who invest the first–best AS = AS(nS). The

corresponding level of the minimum wage can be computed as follows. Using (19),

the free–entry condition πS(nS) = F can be solved for the socially optimal minimum

wage

wS = B + 1
2cnS − t

6(nS)2 .

Because wS > wS(nS), this level of the minimum wage leads indeed to nS firms

entering the market who make profit πS(nS) = F . 2
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