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ABSTRACT 
 

Econometrics of Individual Labor Market Transitions 

 
This survey is devoted to the modelling and the estimation of reduced-form transition models, 
which have been extensively used and estimated in labor microeconometrics. The first 
section contains a general presentation of the statistical modelling of such processes using 
continuous-time (event-history) data. It also presents parametric and nonparametric 
estimation procedures, and focuses on the treatment of unobserved heterogeneity. The 
second section deals with the estimation of markovian processes using discrete-time panel 
observations. Here the main question is whether the discrete-time panel observation of a 
transition process is generated by a continuous-time homogeneous Markov process. After 
discussing this problem, we present maximum-likelihood and bayesian procedures for 
estimating the transition intensity matrix governing the process evolution. Particular attention 
is paid to the estimation of the continuous-time mover-stayer model, which is the more 
elementary model of mixed Markov chains.  
 
 
JEL Classification: C41, C51, J64 
 
Keywords: labor market transitions, markovian processes, mover-stayer model, 

unobserved heterogeneity 
 
 
Corresponding author: 
 
Denis Fougère 
CREST-INSEE 
15, Bd Gabriel Peri 
92245 Malakoff Cedex 
France 
Email: fougere@ensae.fr 
  



1 Introdu
tionDuring the last twenty years, the mi
roe
onometri
 analysis of individualtransitions has been extensively used for investigating some problems inher-ent in the fun
tioning of 
ontemporary labor markets, su
h as the relationsbetween individual mobility and wages, the variability of �ows between em-ployment, unemployment and non-employment through the business 
y
le,or the e�e
ts of publi
 poli
ies (training programs, unemployment insur-an
e, ...) on individual patterns of unemployment. Typi
ally, labor markettransition data register sequen
es of durations spent by workers in distin
tstates, su
h as employment, unemployment and non-employment. Whenindividual parti
ipation histories are 
ompletely observed through panel orretrospe
tive surveys, the e
onometri
ian then disposes of 
ontinuous-timerealizations of the labor market parti
ipation pro
ess. When these histo-ries are only observed at many su

essive dates through panel surveys, theavailable information is a trun
ated one; more pre
isely it takes the formof dis
rete-time observations of underlying 
ontinuous-time pro
esses. Ourpresentation of statisti
al pro
edures used for analysing individual transitionor mobility histories is based on the distin
tion between these two kinds ofdata.Statisti
al models of labor market transitions 
an be viewed as extensionsof the single-spell unemployment duration model (see Chapter 14, this vol-ume). Theoreti
ally, a transition pro
ess is a 
ontinuous-time pro
ess takingits values in a �nite dis
rete state spa
e whose elements represent the mainlabor for
e parti
ipation states, for example employment, unemployment andnon-employment.The goal is then to estimate parameters whi
h 
apture e�e
ts of di�erenttime-independent or time-varying exogenous variables on intensities of tran-sition between states of parti
ipation. Here transition intensities represent
onditional instantaneous probabilities of transition between two distin
tstates at some date. Typi
ally, the analyst is interested in knowing the signand the size of the in�uen
e of a given variable, su
h as the unemploymentinsuran
e amount or the past training and employment experien
es, on thetransition from unemployment to employment for example, and more gener-ally in predi
ting the e�e
t of su
h variables on the future of the transitionpro
ess. For this purpose, she 
an treat these variables as regressors in thespe
i�
ation of transition intensities. Doing that, she estimates a redu
ed-form model of transition. Estimation of a more stru
tural model requires thespe
i�
ation of an underlying dynami
 stru
ture in whi
h the parti
ipationstate is basi
ally the 
hoi
e set for a worker and in whi
h parameters to be1



estimated in�uen
e dire
tly individual obje
tive fun
tions (su
h as intertem-poral utility fun
tions) whi
h must be maximized under some revelant 
on-straints inside a dynami
 programming setup. Su
h stru
tural models havebeen surveyed by E
kstein and Wolpin (1989) or Rust (1994).Our survey fo
uses only on redu
ed-form transition models, whi
h havebeen extensively used and estimated in labor mi
roe
onometri
s. The �rstse
tion 
ontains a general presentation of the statisti
al modelling of thetransition pro
ess for 
ontinuous-time (event-history) data. The �rst se
-tion brie�y re
alls the useful mathemati
al de�nitions, essentially the ones
hara
terizing the distribution of the joint sequen
e of visited states and ofsojourn durations in these states. It also presents parametri
 and nonpara-metri
 estimation pro
edures, and ends with the question of the unobservedheterogeneity treatment in this kind of pro
ess.The se
ond se
tion deals with inferen
e for a parti
ular 
lass of transi-tion pro
esses, namely markovian pro
esses or simple mixtures of markovianpro
esses, using dis
rete-time panel observations. Here the main problem isthe embeddability of the dis
rete-time Markov 
hain into a 
ontinuous timeone. In other words, the question is whether or not the dis
rete-time panelobservations of a transition pro
ess are generated by a 
ontinuous-time ho-mogeneous Markov pro
ess. After a dis
ussion of this problem, the se
ondse
tion presents maximum-likelihood and bayesian pro
edures for estimat-ing the transition intensity matrix governing the evolution of the 
ontinuous-time markovian pro
ess. Parti
ular attention is paid to the estimation of the
ontinuous-time mover-stayer model, whi
h is the more elementary model ofmixed Markov pro
esses.The 
on
lusion points out some extensions.2 Multi-Spell Multi-State Models2.1 General framework2.1.1 NotationsLet us 
onsider a 
adlag1 sto
hasti
 pro
ess Xt, t 2 IR+, taking its value ina �nite dis
rete-state spa
e denoted E = f1; : : :;Kg, K 2 IN and K � 2. Inother words, K represents the total number of states for the pro
ess, and Xtis the state o

upied at time t by the individual (so Xt 2 E;8t 2 IR+). Let1�
adlag� means right-
ontinuous, admitting left limits. For the de�nition of a 
adlagpro
ess, see 
hapter 15, se
tion II.1, this volume.2



Figure 1xt3 � �2 � �1 � � t�0 �1 �2 �3 �efxt; t 2 IR+g be a realization of this pro
ess. We suppose that all the individ-ual realizations of this pro
ess are identi
ally and independently distributed:to simplify the notations, we 
an then omit the index for individuals.As an illustration we 
onsider the 
ase of a labor for
e parti
ipationpro
ess des
ribing the state o

upied by a worker at time t. In order tosimplify, we set:Xt = 8><>: 1 if the individual is employed at time t2 if the individual is unemployed at time t3 if the individual is out of the labour for
e at time t (1)Now we suppose that ea
h individual pro
ess is observed from the dateof entry into the labor market, denoted �0 for the individual, up to an ex-ogenously �xed time �e (�e > �0). An example of realization of pro
ess Xtis represented in Figure 1.This �gure shows that the individual is �rst employed from time �0 upto time �1, then unemployed from time �1 up to time �2, then employed on
eagain from time �2 up to time �3, and �nally out of the labor for
e (fromtime �3 on) when the observation stops at time �e. If we denote:u` = �` � �`�1 ; ` = 1; 2; : : : (2)the sojourn duration in state x�(`�1) rea
hed by the individual at time �(`�1)(before a transition to state x�` at time �`), the pro
ess xt 
an be equivalently3




hara
terized by the sequen
es f (�`; x�`) ; ` 2 IN g or f(u`; x�k̀=0uk)` ; ` 2INg with u0 = �0.Now suppose that pro
ess Xt is observed from the exogenous date �s,with �s 2℄�0; �1[, up to time �e and that the date of entry into the stateo

upied at time �s (i.e. the date of entry into the labor market, �0) isunknown to the analyst. Then, the sojourn duration in state x�s = x�0 issaid to be left-
ensored. Symmetri
ally, for the example in Figure 1, thesojourn duration in state x�e = x�3 is said to be right-
ensored, be
ause the
ouple (�4; x�4) is not observed.We restri
t now our attention to non left-
ensored samples, i.e. su
h that�s = �0, for all individuals.2 We de�ne the event-history 
orresponding topro
ess Xt for the observation period [�0; �e℄ as:! = f�0; x�0 ; �1; x�1 ; : : :; �n; x�ng (3)where n is the number of transitions, i.e. the number of modi�
ations, ofthe studied pro
ess during the period [�0; �e℄. This event-history 
an beequivalently de�ned as:! = n�0; u1; x�0+u1 ; u2; x�0+u1+u2 ; : : :; un); x�0+ �ǹ=1u`o (4)This realization of the pro
ess from time �0 to time �e 
an be written:! = ((�0; x�0); (u1; x�1); : : :; (un; x�n); (un+1; 0)) (5)where un+1 = �e��n is the duration of the last observed spell. The last spellis right-
ensored. Indeed, �n+1 and xn+1 are not observed. Consequently,we �x xn+1 = 0 in order to signify that the last duration is at least equal toun+1. This realization of the pro
ess 
an be rewritten! = (y0; y1; : : :; yn; yn+1) (6)where yk = 8>>><>>>: (�0; x�0) if k = 0(�k; x�k) if 1 � k � n(�n+1; 0) if k = n+ 1Let us de�ne a spell as a period of time delimited by two su

essive tran-sitions. The history of the pro
ess is a sequen
e of variables yk = (uk; x�k),where uk is the length of spell k and x�k is the state o

upied by the indi-vidual at time �k.2The statisti
al treatment of left-
ensored spells has been 
onsidered by He
kman andSinger (1984), Ondri
h (1985) and Amemiya (2001).4



2.1.2 Distributions of spell durations.Suppose now that the pro
ess enters state x�`�1 (x�`�1 2 f1; : : :;Kg) attime �`�1 (` = 1; : : :; n + 1). Let us examine the probability distributionof the sojourn duration in state x�`�1 entered after the (`� 1)-th transitionof the pro
ess. For that purpose, we assume that this sojourn duration isgenerated by a 
onditional probability distribution P given the event-history(y0; : : :; y`�1) and a ve
tor of exogenous variables z, de�ned by the 
umulativedistribution fun
tionF (u j y0; : : :; y`�1; z; �) = Pr [U` � u j y0; : : :; y`�1; z; �℄= 1� S(u j y0; : : :; y`�1; z; �) (7)where � is a ve
tor of unknown parameters. Here U` denotes the randomvariable 
orresponding to the duration of the ` � th spell of the pro
ess,starting with its (` � 1) � th transition. S(u j y0; : : :; y`�1; z; �) is the sur-vivor fun
tion of the sojourn duration in the `� th spell. If the probabilitydistribution P admits a density f with respe
t to the Lebesgue measure,then: F (u j y0; : : :; y`�1; z; �) = Z u0 f(t j y0; : : :; y`�1; z; �) dt (8)and f(u j y0; : : :; y`�1; z; �) = ddu F (u j y0; : : :; y`�1; z; �)= � ddu S(u j y0; : : :; y`�1; z; �) (9)If the fun
tion f(u j y0; : : :; y`�1; z; �) is 
adlag, then there exists a fun
-tion, 
alled the hazard fun
tion of the sojourn duration in the ` � th spell,de�ned ash(u j y0; : : :; y`�1; z; �) = f(u j y0; : : :; y`�1; z; �)S(u j y0; : : :; y`�1; z; �)= � ddu log S(u j y0; : : :; y`�1; z; �) (10)or equivalently ash(ujy0; : : :; y`�1; z; �) du = limd u#0 Pr [u�U`<u+d u j U`�u; y0; : : :; y`�1℄d u (11)From (9), it follows that:� log S(u j y0; : : :; y`�1; z; �) = R u0 h(t j y0; : : :; y`�1; z; �) dt= H(u j y0; : : :; y`�1; z; �) (12)5



The fun
tion H`(u j y0; : : :; y`�1) is 
alled the 
onditional integrated haz-ard fun
tion of the sojourn in the `�th spell, given the history of the pro
essup to time �`�1.Redu
ed-form statisti
al models of labour-market transitions 
an be viewedas extensions of 
ompeting risks duration models or multi-states multi-spellsduration models. These 
on
epts will now be spe
i�ed.2.1.3 Competing risks duration modelsLet us assume that the number of states K is stri
tly greater than 2 (K > 2)and that, for ea
h spell, there exists (K � 1) independent latent randomvariables, denoted U?k;` (k 6= x�`�1 ; k 2 E). Ea
h random variable U�k;`represents the latent sojourn duration in state x�`�1 before a transition tostate k (k 6= x�`�1) during the `� th spell of the pro
ess.The observed sojourn duration u` is the minimum of these (K�1) latentdurations: u` = infk 6=x�`�1 nu�k;`o (13)Then, for any �`�1 2 !:S(u j y0; : : :; y`�1; z; �) = KYk=1k 6=j S(u; k j y0; : : :; y`�1; z; �) (14)where S(u; k j y0; : : :; y`�1; z; �) = Pr(U�k;` � u j y0; : : :; y`�1; z) is the 
on-ditional survival fun
tion of the sojourn duration in state x�`�1 before atransition to state k during the `� th spell of the pro
ess, given the historyof the pro
ess up to time �`�1.Let g(u; k j y0; : : :; y`�1; z; �) be the 
onditional density fun
tion of thelatent sojourn duration in state x�`�1 before a transition to state k, andhk(u j y0; : : :; y`�1; z; �) the asso
iated 
onditional hazard fun
tion. Then wehave the relations:hk(u j y0; : : :; y`�1; z; �) = g(u; k j y0; : : :; y`�1; z; �)S(u; k j y0; : : :; y`�1; z; �) (15)andS(u; k j y0; : : :; y`�1; z; �) = exp�� Z u0 hk(t j y0; : : :; y`�1; z; �) dt� (16)
6



Let us remark (14) and (16) imply:S(u j y0; : : :; y`�1; z; �) = exp0B�� Z u0 Xk 6=x�`�1 hk(t j y0; : : :; y`�1; z; �) dt1CA(17)Thus the 
onditional density fun
tion of the observed sojourn durationin state j during the `� th spell of the pro
ess, given that this spell startsat time �`�1 and ends at time �`�1 + u by a transition to state k, is:f(u; k j y0; : : : y`�1; z; �) = hk(u j y0; : : :; y`�1; z; �);� exp�� Z u0 KXk0=1k0 6=x�`�1 hk0(t j y0; : : :; y`�1; z; �) dt� (18)This is the likelihood 
ontribution of the ` � th spell when this spell isnot right-
ensored (i.e. when �` = �`�1+u � �e). When the `� th spell lastsmore than �e � �`�1, the 
ontribution of this spell to the likelihood fun
tionis: S(�e � �`�1 j y0; : : :; y`�1; z; �) = Pr(U` > �e � �`�1 j y0; : : :; y`�1; z)2.1.4 Multi-spells multi-states duration modelsThese models are the extension of the pre
eding independent 
ompeting risksmodel, whi
h treats the 
ase of a single spell (the `� th spell) with multipledestinations. In the multi-spells multi-states model, the typi
al likelihood
ontribution has the following form:L(�) = n+1Ỳ=1 f(y` j y0; : : :; y`�1; z; �) (19)where f(y` j y0; : : :; y`�1; �) is the 
onditional density of Y` given Y0 =y0; Y1 = y1; : : :; Y`�1 = y`�1; Z = z and � is a ve
tor of parameters. De�ni-tion (18) implies that:L(�) = nỲ=1 f(�`��`�1; x�` jy0; : : :; y`�1; z; �)� Sn+1(�e � �njy0; : : :; yn; z; �) (20)The last term of the right-hand side produ
t in (20) is the 
ontribution ofthe last observed spell, whi
h is right-
ensored. Referen
es for a general7



presentation of labor market transition e
onometri
 models 
an be foundin surveys by Flinn and He
kman (1982a, b, 1983a) or in the textbook byLan
aster (1990a).2.2 Nonparametri
 and parametri
 estimation2.2.1 Nonparametri
 estimation2.2.1.1 The Kaplan-Meier estimator In the elementary duration model,a nonparametri
 estimator of the survivor fun
tion 
an be obtained using theKaplan-Meier estimator for right-
ensored data. Let us suppose that we ob-serve I sample paths (i.i.d. realizations of the pro
ess Xt) with the samepast history ![�0; �n�1℄. Let I? be the number of sample paths su
h that�n;i � T2 and I � I? the number of sample paths for whi
h the n-th spellduration is right-
ensored, i.e. �n;i > T2 (or n(�0; T2) < n), i denoting herethe index of the pro
ess realization (i = 1; : : :; I). If �n;1; : : :; �n;I? are the I?ordered transition dates from state X�n�1 (i.e. �n;1 � : : : � �n;I? � T2), theKaplan-Meier estimator of the survivor fun
tion Sn(t j ![�0; �n�1℄) is:Ŝn(t j ![�0; �n�1℄) = Yi:�n;i�t�1� diri�i = 1; : : :; I?; t 2℄�n�1; T2℄ (21)where ri is the number of sample paths for whi
h the transition date fromstate X�n�1 is greater than or equal to �n;i and di is the number of transitiontimes equal to �n;i. An estimator for the varian
e of the survivor fun
tionestimate is given by the Greenwood's formula:Var hŜn(t j ![�0; �n�1℄)i' nŜn(t j ![�0; �n�1℄)o2 � Xi:�n;i�t diri(ri � di) (22)This estimator allows to implement nonparametri
 tests for the equalityof the survivor fun
tions of two di�erent subpopulations (su
h as the Savageand log-rank tests).In the 
ase of multiple destinations (i.e. 
ompeting risks models), wemust restri
t the set of sample paths indexed by i 2 f1; : : :; I?g to the pro-
ess realizations experien
ing transitions from the state X�n�1 to some statek (k 6= X�n�1). Transitions to another state than k are 
onsidered as right-
ensored durations. If we set X�n�1 = j, then the Kaplan-Meier estimator of8



the survivor fun
tion Sjk(t j ![�0; �n�1℄) is given by the appropriate appli-
ation of formula (21), and an estimator of its varian
e is given by formula(22).2.2.1.2 The Aalen estimator The fun
tion H`(u j ![�0; �`�1℄), de�nedin equation (12) and giving the integrated hazard fun
tion of the sojournduration in the ` � th spell, 
an be estimated nonparametri
ally using theAalen estimator (Aalen, 1978):Ĥ`(u j ![�0; �`�1℄) = Xi:�`�1��`;i<u diri (23)Ĥ`(u j ![�0; �`�1℄) is an unbiased estimator of H`(u j ![�0; �`�1℄), and anestimator of its varian
e is given by:var hĤ`(u j ![�0; �`�1℄)i = Xi:�`�1��`;i<u diri(ri � di) (24)In the 
ompeting risks model, equation (12) is equivalent to:� log Sjk(u j ![�0; �`�1℄) = R u0 hjk(t j ![�0; �`�1℄) dt= Hjk(u j ![�0; �`�1℄) (25)where Hjk(u j ![�0; �`�1℄) is the integrated intensity (or hazard) fun
tionfor a transition from state j to state k (k 6= j) during the ` � th spell ofthe pro
ess, and given the past history ![�0; �`�1℄ of the pro
ess. The Aalenestimator of this fun
tion 
an be derived from the formula (24) by 
onsideringindexes i 
orresponding to transitions from state j to state k during the `�thspell of the pro
ess; indexes 
orresponding to other types of transition fromstate j are now 
onsidered as right-
ensored durations. The Aalen estimator
an be used to implement nonparametri
 tests for the equality of two or moretransition intensities 
orresponding to distin
t transitions.2.2.2 Spe
i�
ation of 
onditional hazard fun
tions
9



2.2.2.1 The Markov model In a markovian model, the hazard fun
tionshk(t j y0; : : :; y�`�1 ; z; �) depend on t, on states x�`�1 and on k, but areindependent of the previous history of the pro
ess. More pre
isely:hk(t j y0; : : :; y�`�1 ; z; �) = hk(t j x�`�1 ; z; �); k 6= x�`�1 (26)and hj(t j y0; : : :; y�`�1 ; z; �) = 0; if j = x�`�1When the Markov model is time-independent, it is said to be time-homogeneous. In this 
ase:hk(t j x�`�1 ; z; �) = hk(x�`�1 ; z; �) = hx�`�1 ;k(z; �) ; k 6= x�`�1 ; 8t 2 IR+(27)The parti
ular 
ase of a 
ontinuous-time markovian model observed indis
rete-time will be extensively treated in the following subse
tion (thisChapter). Let us now 
onsider two simple examples of markovian pro
esses.Example 1:Consider the 
ase of a time-homogeneous markovian model with twostates (K = 2) and assume that:hk(t j x�`�1 ; �) = 8>>><>>>:� if x�`�1 = 1 and k = 2� if x�`�1 = 2 and k = 10 otherwise (28)with � = (�; �). The parameter � > 0 is the instantaneous rate oftransition from state 1 (for instan
e, the employment state) to state 2 (forinstan
e, the unemployment state). Re
ipro
ally, � > 0 is the instantaneousrate of transition from state 2 to state 1.Durations of employment (respe
tively, unemployment) are independentlyand identi
ally distributed a

ording to an exponential distribution with pa-rameter � (respe
tively, with parameter �). If p1(t0) and p2(t0) denote o

u-pation probabilities of states 1 and 2 at time t0 respe
tively, then o

upationprobabilities at time t (t > t0) are respe
tively de�ned by:p1(t) = ��+ � + �p1(t0)� ��+ �� e�(�+�)tp2(t) = ��+ � + �p2(t0)� ��+ �� e�(�+�)t (29)
10



Let (p?1; p?2) denote the stationary probability distribution of the pro
ess.Then it is easy to verify from (29) that:p?1 = ��+ � and p?2 = ��+ � (30)In the e
onomi
 literature, there are many examples of stationary jobsear
h models generating su
h a markovian time-homogeneous model withtwo states (employment and unemployment): see, for instan
e, the survey byMortensen (1986). Extensions to three-states models (employment, unem-ployment and out-of-labor-for
e states) have been 
onsidered, for example,by Flinn and He
kman (1982a) and Burdett et al. (1984a, b). Markovianmodels of labor mobility have been estimated, for instan
e, by Tuma andRobins (1980), Flinn and He
kman (1983b), Mortensen and Neuman (1984),Olsen, Smith and Farkas (1986) and Magna
 and Robin (1994).Example 2:Let us 
onsider now the example of a non-homogeneous markovian modelwith two states (employment and unemployment, respe
tively denoted 1 and2). Let us assume that the 
orresponding 
onditional hazard fun
tions verifyhk(t j x�`�1 ; �) = 8>>><>>>:h2(t; �) if x�`�1 = 1 and k = 2h1(t; �) if x�`�1 = 2 and k = 10 otherwise (31)Let p(0) = (p1(t0); p2(t0))0 denote the initial probability distribution attime t0. The distribution of state o

upation probabilities at time t, denotedp(t) = (p1(t); p2(t))0, is given by:p1(t) = expn� R tt0 [h1(s; �) + h2(s; �)℄ dso� hp1(t0) + R tt0 h1(s; �) expnR st0(h1(u; �) + h2(u; �)) duo dsi(32)and p2(t) = 1� p1(t) (see Chesher and Lan
aster, 1983).Non-homogeneous markovian models are often used to deal with pro-
esses mainly in�uen
ed by the individual age at the transition date. Forexample, let us 
onsider a transition pro
ess fXtgt�0 with state-spa
e E =f1; 2; 3g, and for whi
h the time s
ale is the age (equal to At at time t). Ifthe origin date of the pro
ess (i.e. the date of entry into the labor market) isdenoted A�0 for a given individual, then a realization of the pro
ess fXtgt�0over the period [A�0 ; �e℄ is depi
ted in Figure 2.11



Figure 2xt3 � �2 � �1 � � tA�0 A�1 A�2 A�3 A�eNow let us suppose that transition intensities at time t depend only onthe age attained at this time and are spe
i�ed su
h as:hk (t j y0; : : :; y`�1;A�0 ; �) = hk(At;x�`�1 ; �)= exp ��x�`�1 ;k + �x�`�1 ;k At� (33)where �j;k and �j;k (j; k 2 E�E and k 6= j) are parameters to be estimated.In formula (33), the individual index is omitted for simplifying notations.By noting that: At = A�`�1 + (At �A�`�1) = A�`�1 + ut` (34)where ut` denotes the time already spent in the ` � th spell at date t, it ispossible to write again transition intensities as:hk(t j y0; : : :; y`�1;A�0 ; �) = exp ��x�`�1 ;k + �x�`�1 ;k A�`�1 + �x�`�1 ;k ut`�(35)and to dedu
e the survivor fun
tion of the sojourn duration in the `�th spellwhi
h has the form:S(u j y0; : : :; y`�1;A�0 ; �)= expf�Xk 6=x�`�1 Z A�`�1+uA�`�1 exp(�x�`�1 ;k+�x�`�1 ;k A�`�1+�x�`�1 ;k ut`) d t g(36)12



where ` � 1. By setting ut` = t�A�`�1 in expression (36), it follows that:Sfu j y0; : : :; y`�1;A�0 ; �g =exp0B��Xk 6=x�`�1exp(�x�`�1 ;k)�x�`�1 ;k hexp(�x�`�1 ;k (A�`�1+u))� exp(�x�`�1 ;kA�`�1)i1CA(37)if �x�`�1 ;k 6= 0. Then the likelihood 
ontribution of the `� th spell beginningat age A�`�1 with a transition to state x�`�1 and ending at age A�` with atransition to state x�` is:L` = f(A�`�A�`�1 ; x�` j y0; : : :; y�`�1 ;A�0 ; �)= hx�` (�` j y0; : : :; y�`�1 ;A�0 ; �) S(A�`�A�`�1 j y0; : : :; y�`�1 ;A�0 ; �)= exp ��x�`�1 ;k + �x�`�1 ;k A�`�� exp0B��Xk0 6=x�`�1exp(�x�`�1 ;k0)�x�`�1 ;k0 hexp(�x�`�1 ;k0 A�`)� exp(�x�`�1 ;k0 A�`�1)i1CA(38)Non-homogeneous markovian models of transitions between employmentand unemployment have been estimated, for example, by Ridder (1986) andTrivedi and Alexander (1989).2.2.2.2 Semi-Markov models In semi-Markov models, hazard fun
tionsdepend only on the 
urrently o

upied state (denoted x�`�1 for spell `), on thedestination state (denoted k), on the sojourn duration in state x�`�1 and onthe time of entry into the 
urrently o

upied state. If the spell 
orrespondingto the 
urrently o

upied state is the `� th spell of the pro
ess, then hazardfun
tions of the semi-Markov model have two alternative representations:hk(t j y0; : : :; y`�1; �) = hk(t j �`�1;x�`�1 ; �) (39)or hk(u j y0; : : :; y`�1; �) = hk(u j �`�1;x�`�1 ; �) (40)where u = t� �`�1 is the time already spent in the 
urrent state (i.e. in the`� th spell of the pro
ess). When the hazard fun
tions do not depend on thedate �`�1 of the last event, but depend only on the time already spent in the13




urrent state, then the semi-Markov model is said to be time-homogeneous.In this 
ase, hazard fun
tions de�ned in (40) are su
h that:hk(u j �`�1;x�`�1 ; �) = hk(u j x�`�1 ; �); u 2 IR+ (41)In this model, the mean duration of a sojourn in state x�`�1 
an be
al
ulated using de�nitions of hazard and survivor fun
tions, and thus it isgiven by:E(U` j x�`�1 ; �) = Z 10 u S(u j x�`�1 ; �)� Xk 6=x�`�1 hk(u j x�`�1 ; �)� du (42)where U` is the random variable representing the duration of a spell ` andS(u j x�`�1 ; �) = exp(� Z u0 Xk 6=x�`�1 hk(s j x�`�1 ; �) d s) (43)This 
onditional expe
tation 
an be obtained using the following prop-erty: E(U` j x�`�1 ; �) = Z 10 S(u j x�`�1 ; �) d u; (44)(see, for instan
e, Klein and Moes
hberger, 2003). Semi-markovian modelsof transition between two or three states have been estimated by Flinn andHe
kman (1982b), Burdett, Kiefer and Sharma (1985), Bonnal, Fougère andSérandon (1997), and Gilbert, Kamionka and La
roix (2001).2.3 Unobserved HeterogeneityHere heterogeneity is supposed to 
over individual observable and unobserv-able 
hara
teristi
s. On
e again, we will omit the individual index.2.3.1 Correlation between spellsLet us assume that the 
onditional model is time-homogeneous semi-markovianand hk(u j y0; : : :; y`�1; z; v; �) = hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) (45)where v is a ve
tor of individual unobserved heterogeneity terms and � is theve
tor of parameters to be estimated.14



Let hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) denote the 
onditional hazard fun
-tion for the sojourn duration in the `� th spell of the parti
ipation pro
ess,when the 
urrently o

upied state is state x�`�1 and the destination state isk. Here z is a ve
tor of exogenous variables, possibly time-dependent, v(j;k)is an heterogeneity random term, whi
h is unobserved, and �jk is a ve
torof parameters. The pre
eding hazard fun
tion is often supposed to be equalto:hk(u` j x�`�1 ; z; vx�`�1 ;k; �x�`�1 ;k) = exp h'(z;u`; �x�`�1 ;k) + vx�`�1 ;ki (46)Several assumptions 
an be made 
on
erning the unobserved randomterms vj;k. Firstly, vj;k 
an be supposed to be spe
i�
 to the transition fromj to k, so vj;k 6= vj0;k0 for any (j; k) 6= (j0; k0):It 
an be also spe
i�
 to the origin state, in whi
h 
ase :vj;k = vj for any k 6= j:Finally, vj;k 
an be supposed to be independent of states j and k andthus to be �xed over time for ea
h individual, i.e.vj;k = v for any (j; k) 2 E�E; k 6= j:This last assumption will be made through the remaining part of ourpresentation. Let us remark that a �xed heterogeneity term is su�
ient togenerate some 
orrelation between spells durations. If we assume that v has aprobability density fun
tion with respe
t to the Lebesgue measure denotedg(v j �), where � is a parameter, then we 
an dedu
e that the marginalsurvivor fun
tion of the sojourn duration in the ` � th spell of the pro
ess,when 
urrent state is x�`�1 , has the form:S(u` j x�`�1 ; z; �x�`�1 ) = ZDG S(u` j x�`�1 ; z; v; �x�`�1 ) g(v j �) d v= ZDG exp�� exp(v) Z u`0 � Xk 6=x�`�1 exp('(z; t; �x�`�1 ;k)�dt� g(v j �) d v(47)where �x�`�1 = n(�x�`�1 ;k)k 6=x�`�1 ; �o and DG is the support of the probabil-ity distribution of the random variable v.Su
h formalizations of heterogeneity have been used for estimation pur-poses by He
kman and Borjas (1980), Butler et al. (1986, 1989), Mealli and15



Pudney (1996), Bonnal, Fougère and Sérandon (1997), Gilbert, Kamionkaand La
roix (2001), and Kamionka and La
roix (2003).� ExampleTo illustrate the treatment of unobserved heterogeneity in transition pro-
esses, let us 
onsider a realization of a two state time-homogeneous Markovpro
ess. More pre
isely, let us assume that this realization generates a 
om-plete spell in state 1 over the interval [0; �1℄ and a right-
ensored spell in state2 over the interval [�1; �e[. Transition intensities between the two states aregiven by: hk(t j x�`�1 ; vx�`�1 ;�x�`�1 ) = �x�`�1 + vx�`�1 (48)where k 2 f1; 2g, �x�`�1 > 0 and t 2 IR+, �1 and �2 are two positive param-eters, and v1 and v2 are two random variables supposed to be exponentiallydistributed with a density fun
tion g(v j �) = � exp(�� v), � > 0. Wewant to dedu
e the likelihood fun
tion for this realization of the pro
esswhen v1 and v2 are supposed to be spell-spe
i�
 and independent (v1 6= v2and v1??v2) or �xed over time (v1 = v2 = v). In the �rst 
ase (v1 6= v2 andv1??v2), the 
onditional likelihood fun
tion is:Lv(�) = f(�1; x�1 j x0; v;�) S(�e��1 j x�1 ; v;�);= (�1+v1) exp f�(�1+v1)�1g exp f�(�2+v2)(�e��1)g (49)where v = (v1; v2)0, � = (�1; �2)0, x0 = 1 and x�1 = 2. Be
ause v1 andv2 are unobserved, we must deal with the following marginalized likelihoodfun
tion:L(�;�) = Z 10 Z 10 L(v1; v2; �1; �2) g(v1 j �) g(v2 j �) d v1 d v2= f(�1; x�1 j x0;�;�) S(�e � �1 j x1;�;�) (50)where f(�1; x�1 j x0;�;�) = exp(��1 �1)� ��1 + ����1 + 1�1 + ��and S(�e � �1 j x�1 ;�;�) = exp(��2 (�e � �1)) � �(�e � �1) + �� (51)are the marginalized density and survivor fun
tions of sojourn durations �1and (�e � �1) in the �rst and se
ond spells respe
tively.
16



When the heterogeneity term is �xed over time (v1 = v2 = v), then themarginal likelihood 
ontribution is:L(�; �) = Z 10 (�1+v) exp f�(�1�1+�2(�e��1)+v �e)g� exp(�� v) d v;= exp f��1�1 � �2(�e � �1)g ��+ �e ��1 + ��+ �e� (52)whi
h is obviously not equal to the produ
t of the marginalized density andsurvivor fun
tions of the sojourn durations in the �rst and se
ond spells asin the 
ase where v1 6= v2. ?Now, let us assume that there exists a fun
tion  de�ning a one-to-onerelation between v and some random variable �, su
h as:v =  (�; �) (53)For instan
e,  
an be the inverse of the 
.d.f. for v, and � 
an be uniformlydistributed on [0; 1℄. Then:S(u` j x�`�1 ; z; �x�`�1 ) = Z 10 S(u` j x�`�1 ; z; (�; �); �x�`�1 ) �(�) d� (54)where �(:) is the density fun
tion of �. The marginal hazard fun
tion forthe sojourn in the `� th spell 
an be dedu
ed from equation (54) as:h(u` j x�`�1 ; z; �x�`�1 ) = � ddu`S(u` j x�`�1 ; z; �x�`�1 ) (55)Using de�nitions (54) and (55), the individual 
ontribution to the likeli-hood fun
tion 
an be easily dedu
ed and maximized with respe
t to �, eitherby usual pro
edures of likelihood maximization if the integrals (40) and (41)
an be easily 
al
ulated, or by simulation methods (see, e.g., Gouriéroux andMonfort, 1997) in the opposite 
ase.For instan
e, let us 
onsider the 
ase of a semi-markovian model wherethe individual heterogeneity term is �xed over time, i.e. vj;k = v for any(j; k) 2 E�E. From (20) and (46)-(47), the typi
al likelihood 
ontributionin the present 
ase is:Lv(�) = nỲ=1 hx�` ��` � �`�1 j x�`�1 ; z; v; �x�`�1 ;x�`�� n+1Ỳ=1 exp�� Z �`�`�1 Xk 6=x�`�1 hk(t j x�`�1 ; z; v; �x�`�1 ;k) dt� (56)17



with �n+1 = �e by 
onvention. Using relation (53), the marginalized likeli-hood 
ontribution obtained by integrating out � is:L(�) = Z 10 L (�;�)(�) �(�) d � (57)When the integral is not analyti
ally tra
table, simulated ML estimatorsof parameters � and (�jk)k 6=j 
an be obtained by maximizing the followingsimulated likelihood fun
tion with respe
t to � and (�jk)k 6=j :LN (�) = 1N NXn=1L (�n;�) (�) (58)where �n is drawn from the distribution with density fun
tion �(:), whi
hmust be 
onveniently 
hosen (for asymptoti
 properties of these estimators,see Gouriéroux and Monfort, 1997).2.3.2 Correlation between destination statesLet us assume that the 
onditional hazard fun
tion for the transition intostate k is given by the expressionhk(u j y0; : : :; y`�1; z; v;�) = h0k(u; 
) '(y0; : : :; y`�1; z;�) �k (59)where '(:) is a positive fun
tion depending on the exogenous variables andthe history of the pro
ess, �k an unobserved heterogeneity 
omponent spe
i�
to the individual (�k > 0), � and 
 are ve
tors of parameters, h0k(u; 
) is abaseline hazard fun
tion for the transition to state k (k 2 f1; : : :;Kg). Letus assume that (see Gilbert et al., 2001)�k = exp(ak v1 + bk v2) (60)where ak and bk are parameters su
h that ak = 1I [k � 2 ℄ for k = 1; : : :;Kand b1 = 1. The latent 
omponents v1 and v2 are assumed to be indepen-dently and identi
ally distributed with a p.d.f. denoted g(v;�), where � isa parameter and vs 2 DG, s = 1; 2.In this two fa
tor loading model, the 
orrelation between log(�k) andlog(�k0), �k;k0, is given by the expression�k;k0 = ak ak0 + bk bk0qa2k + b2kqa2k0 + b2k0 (61)18



where k; k0 = 1; : : :;K. The 
ontribution to the 
onditional likelihood fun
-tion of a given realization of the pro
ess w = (y1; : : :; yn; yn+1) is:L(�)= ZDG ZDG n+1Ỳ=1 f(y`jy0; : : :; y`�1; z; v1; v2;�) g(v1;�) g(v2;�) d v1 d v2(62)wheref(u; k j y0; : : :; y`�1; z; v1; v2;�) = hk(u j y0; : : :; y`�1; z; v1; v2;�)Æk� expf� Z u0 Xj 6=x�`�1 hj(t j y0; : : :; y`�1; z; v1; v2;�) d tg (63)and the 
onditional hazard fun
tion is given by expression (59). The expo-nent Æk is equal to 1 if k 2 f1; : : :;Kg, and to 0 otherwise. � is a ve
torof parameters and � = (�; �). As the last spell is right-
ensored, the 
orre-sponding 
ontribution of this spell is given by the survivor fun
tionf(yn+1jy0; : : :; yn; z; v1; v2;�)= expf�un+1Z0 Xj 6=x�nhj(tjy0; : : :; yn; z; v1; v2;�) d tg(64)where yn+1 = (un+1; 0) (state 0 
orresponds to right-
ensoring).Bonnal et al. (1997) 
ontains an example of a two fa
tor loading model.Lindeboom and van den Berg (1994), Ham and Lalonde (1996) and Eberweinet al. (1997, 2002) use a one fa
tor loading model in order to 
orrelate the
onditional hazard fun
tions. A four fa
tor loading model has been proposedby Mealli and Pudney (2003). Let us remark that, in the 
ase of bivariateduration models, asso
iation measures were studied by Van den Berg (1997).Dis
rete distributions of the unobserved heterogeneity 
omponent 
an be al-ternatively used (see, for instan
e, He
kman and Singer (1984), Gritz (1993),Baker and Melino (2000)).This way to 
orrelate the transition rates using a fa
tor loading modelis parti
ularly useful for program evaluation on nonexperimental data. Inthis 
ase, it is possible to 
hara
terize the impa
t on the 
onditional hazardfun
tions of previous parti
ipation to a program by taking into a

ount entrysele
tivity phenomena.
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3 Markov Pro
esses Using Dis
rete-Time Observa-tionsThe e
onometri
 literature on labor mobility pro
esses observed with dis
rete-time panel data makes often use of two elementary sto
hasti
 pro
essesdes
ribing individual transitions between a �nite number of parti
ipationstates.The �rst one is the 
ontinuous-time Markov 
hain, whose parameters
an be estimated through the quasi-Newton (or s
oring) algorithm proposedby Kalb�eis
h and Lawless (1985). This kind of model allows to 
al
ulatestationary probabilities of state o

upation, the mean duration of sojourn ina given state, and the intensities of transition from one state to another.A main di�
ulty 
an appear in this approa
h: in some 
ases the dis
rete-time Markov 
hain 
annot be represented by a 
ontinuous-time pro
ess. Thisproblem is known as the embeddability problem whi
h has been surveyed bySinger and Spilerman (1976a, b) and Singer (1981, 1982). However, somenon-embeddable transition probability matri
es 
an be
ome embeddable af-ter an in�nitesimal modi�
ation 
omplying with the sto
hasti
 property.This suggests that the embeddability problem 
an be due to sampling er-rors.Geweke et al. (1986a) established a bayesian method to estimate the pos-terior mean of the parameters asso
iated to the Markov pro
ess and somefun
tions of these parameters, using a di�use prior de�ned on the set ofsto
hasti
 matri
es. Their pro
edure allows to determine the embeddabil-ity probability of the dis
rete-time Markov 
hain and to derive 
on�den
eintervals for its parameters under the posterior.The se
ond frequently used modelization in
orporates a very simple formof heterogeneity among the individuals: this is the mover-stayer model, whi
hwas studied in the dis
rete-time framework by Frydman (1984), Sampson(1990) and Fougère and Kamionka (2003). The mover-stayer model is asto
hasti
 pro
ess mixing two Markov 
hains. This modelling implies thatthe referen
e population 
onsists of two types of individuals: the �stayers�permanently sojourning in a given state, and the �movers� moving betweenstates a

ording to a non-degenerate Markov pro
ess.These two modelizations will be su

essively studied in the followingsubse
tion.
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3.1 The time-homogeneous markovian modelLet us 
onsider a markovian pro
ess fXt; t 2 IR+g de�ned on a dis
retestate-spa
e E = f1; : : :;Kg, K 2 IN , with a transition probability matrixP (s; t) with entries pj;k(s; t), (j; k) 2 E �E; 0 � s � t, where:pj;k(s; t) = PrfXt = k j Xs = jg (65)and KXk=1 pj;k(s; t) = 1. If this markovian pro
ess is time-homogeneous, then:pj;k(s; t) = pj;k(0; t� s) � pj;k(t� s); 0 � s � t (66)or equivalently: P (s; t) = P (0; t � s) � P (t� s); 0 � s � t (67)This implies that transition intensities de�ned by:hj;k = lim�t#0 pj;k(t; t+�t)=�t; �t � 0; (j; k) 2 E �E; j 6= k (68)are 
onstant through time, i.e.:hk(t j x�`�1 ; �) = hj;k(t j �) = hj;k ; t � 0; (j; k) 2 E �E; j 6= k (69)where x�`�1 = j. These transition intensities are equal to the hazard fun
-tions previously de�ned in equations (26) and (27). The K �K transitionintensity matrix, whi
h is asso
iated to the time-homogeneous markovianpro
ess fXt; t 2 IR+g, is denoted Q and has entries:q(j; k) = 8>><>>:hj;k 2 IR+ if j 6= k; (j; k) 2 E �E� KXm=1m6=j hj;m � 0 if j = k; j 2 E (70)Let us denote IQ the set of transition intensity matri
es, i.e. the set of(K�K) matri
es with entries verifying the 
onditions (70). It is well known(
f. Doob, 1953, p. 240 and 241) that the transition probability matrix overan interval of length T 
an be written:P (0; T ) = exp(QT ); T 2 IR+ (71)21



where exp(A) =P1k=0Ak=k! for any K �K matrix A.Main properties of the time-homogeneous markovian pro
ess fXt; t 2IR+g with state-spa
e E, are the following:� sojourn times in state j (j 2 E) are positive random variables, whi
hare exponentially distributed with parameter �q(j; j):uj � exp(�q(j; j)); j = 1; : : :;K (72)with E[uj ℄ = var[uj ℄1=2 = �q(j; j)�1;� the probability of a transition to state k given that the pro
ess is
urrently in state j (k 6= j) is independent of the sojourn time in state j,and is found to be:rj;k = �q(j; k)=q(j; j); k 6= j; (j; k) 2 E �E (73)� if the time-homogeneous Markov pro
ess fXtg is ergodi
, its equilib-rium (or limiting) probability distribution is denoted P � = (p�1; : : :; p�K)0 andde�ned as the unique solution to the linear system of equations:Q0P � = 0 ; with KXi=1 p�i = 1 (74)3.1.1 Maximum likelihood estimator of the matrix P using dis
rete-time (multiwave) panel dataLet us suppose now that we observe � independent realizations of the pro
essfXtg at equally spa
ed times T0; T1; : : :; TL (L > 1) su
h as: T`�T`�1 = T ,` = 1; : : :; L. Let us denote:� nj;k(`) the number of individuals who were in state j at time T`�1 andwho are in state k at time T`,� nj(`� 1) the number of individuals who were in state j at time T`�1.Maximizing the 
onditional likelihood fun
tion given the initial distributionat T0: L(P (0; T )) = LỲ=1 KYj;k=1 fpj;k(T`�1; T`)gnj;k(`)= KYj;k=1 fpj;k(0; T )g�L̀=1nj;k(`) (75)with KXk=1 pj;k(0; T ) = 1, gives the (j; k) entry of the MLE bP (0; T ) for P (0; T ):22



bpj;k(0; T ) =  LX̀=1nj;k(`)! = LX̀=1nj(`� 1)! (76)(see Anderson and Goodman, 1957). If the solution bQ to the equation:bP (0; T ) = exp( bQT ); T > 0 (77)belongs to the set IQ of intensity matri
es, then bQ is a MLE estimator for Q.Nevertheless, two di�
ulties may appear:3� the equation (77) 
an have multiple solutions bQ 2 IQ: this problem isknown as the aliasing problem;4� none of the solutions bQ to the equation (77) belongs to the set IQ ofintensity matri
es; in that 
ase, the probability matrix bP (0; T ) is said to benon-embeddable with a 
ontinuous-time Markov pro
ess.3.1.2 Ne
essary 
onditions for embeddabilityThe unique ne
essary and su�
ient 
ondition for embeddability was givenby Kendall, who proved that, when K = 2, the transition matrix bP (0; T )is embeddable if and only if the tra
e of bP (0; T ) is stri
tly greater than 1.When K � 3, only ne
essary 
onditions are known; they are the following:51st ne
essary 
ondition (Chung, 1967):� if bpj;k(0; T ) = 0; then bp(n)j;k (0; T ) = 0; 8n 2 IN , where bp(n)j;k (0; T ) is the entry(j; k) of the matrix [ bP (0; T )℄n,� if bpj;k(0; T ) 6= 0, then bp(n)j;k (0; T ) 6= 0, 8n 2 IN ;2nd ne
essary 
ondition (Kingman, 1962): det h bP (0; T )i > 0,3rd ne
essary 
ondition (Elfving, 1937):� no eigenvalue �i of bP (0; T ) 
an satisfy j �i j= 1, other than �i = 1;� in addition, any negative eigenvalue must have even algebrai
 multipli
ity;3A detailed analysis of these problems is developed in papers by Singer and Spilerman(1976 a and b).4The aliasing problem has also been 
onsidered by Phillips (1973).5Singer and Spilerman (1976a) and Geweke, Marshall and Zarkin (1986b) survey thisproblem. 23



4th ne
essary 
ondition (Runnenberg, 1962): the argument of any eigen-value �i of bP (0; T ) must satisfy:( 12 + 1K )� � arg(log �i) � (32 � 1K )�This last 
ondition plays an important role in the remainder of the anal-ysis.3.1.3 Resolving the equation P̂ (0; T ) = exp(Q̂T )The proof of the following theorem 
an be found in Singer and Spilerman(1976a):If bP (0; T ) has K distin
t 6 eigenvalues (�1; : : :; �K) and 
an be writtenbP (0; T ) = A�D�A�1, where D = diag(�1; : : :; �K) and the eigenve
-tor 
orresponding to �i (i = 1; : : :;K) is 
ontained in the i�th 
olumnof the (K �K) matrix A, then:log( bP (0; T )) = bQT = A�0B� logk1(�1) : : : 0... . . . ...0 : : : logkK (�K) 1CA�A�1(78)where logki(�i) = log j �i j +(arg�i + 2ki�)i; ki 2 ZZ ; is a bran
h ofthe logarithm of �i, when �i 2 C. 7Sin
e equation (77) has as many solutions bQ as there are 
ombinations ofthe form (logk1(�1); : : :; logkK (�K)), the number of these solutions is in�nitewhen the matrix bP (0; T ) has at least two 
omplex 
onjugate eigenvalues.However, an important impli
ation of the fourth ne
essary 
ondition for6The 
ase of repeated eigenvalues arises very rarely in empiri
al appli
ations. For itstreatment, the reader 
an 
onsult Singer and Spilerman (1976a, p. 19-25).7Let us re
all that the logarithmi
 fun
tion is multiple valued in the 
omplex set C. Ifz = a+ ib (z 2 C), then: logk(z) = log j z j +i(�+2k�); k 2 ZZ , with j z j= pa2 + b2, and� = arg(z) = tan�1(b=a). Ea
h value for k generates a distin
t value for log(z), whi
h is
alled a bran
h of the logarithm. 24



embeddability is that only �nitely many bran
hes of log( bP (0; T )) need to be
he
ked for membership in IQ. Indeed, this 
ondition implies:8�i; � Li(K) � ki � Ui(K) (79)where Ui(K) = intpt ����� log j �i j tanf(12 + 1K )�g� j arg �i j2� �����Li(K) = intpt ����� log j �i j tanf(32 � 1K )�g� j arg �i j2� �����the fun
tion �intpt� being the integer part of a real number. So the numberof bran
hes of �i whi
h must be 
omputed is equal to Li(K)+Ui(K)+1, thelast one 
orresponding to the main bran
h (with ki = 0). Then the numberof solutions bQ that must be examined for membership in IQ is denoted k�( bP )and is equal to:k�( bP ) = 8><>: vYj=1 fLj(K) + Uj(K) + 1g if v � 11 if v = 0 (80)where v denotes the number of 
omplex 
onjugate eigenvalue pairs of thematrix bP (0; T ). Let us remark that:� for a real eigenvalue, only the prin
ipal bran
h of the logarithm mustbe examined: other bran
hes (with ki 6= 0) 
orrespond to 
omplex intensitymatri
es bQ;� ea
h element of a 
omplex 
onjugate eigenvalue pair has the samenumber of 
andidate bran
hes (see (79)); moreover, only 
ombinations ofbran
hes involving the same ki in ea
h element of the pair must be 
om-puted; all others 
orrespond to 
omplex intensity matri
es; this fa
t explainswhy the 
al
ulation of k�( bP ) is based on the number of 
omplex 
onjugateeigenvalue pairs, and why the number of bran
hes needing to be 
he
ked forea
h pair j is equal to Lj(K)+Uj(K)+1 rather than fLj(K) + Uj(K) + 1g2.If equation (77) has only one solution bQ 2 IQ, this solution is the MLEfor the intensity matrix of the homogeneous 
ontinuous-time Markov pro
essfXt; t 2 IR+g; an estimator for the asymptoti
 
ovarian
e matrix of bQ hasbeen given by Kalb�eis
h and Lawless (1985).
25



3.1.4 The s
oring pro
edureKalb�eis
h and Lawless (1985) have proposed to maximize with respe
t to� the 
onditional likelihood fun
tion (75), i.e.L(�) = KYi;j=1 f exp(QT )g�L̀=1ni;j(`)(i;j) ; Q 2 IQ (81)through a s
oring algorithm. In this expression, fexp(QT )gi;j is the entry(i; j) of the matrix exp(QT ) = P (0; T ) and � is the ve
tor of extra diagonalelements of the matrix Q (� � �(Q)). If it is assumed that matrix Q hasK distin
t eigenvalues, denoted (d1; � � � ; dK), matri
es Q and P (0; T ) 
an bewritten as: Q = A DQA�1 = A diag (d1; � � � ; dK)A�1and P (0; T ) = exp(QT ) = A exp(DQT )A�1= A diag(ed1T ; � � � ; edKT )A�1 = A diag(�1; � � � ; �K)A�1(82)These formulae lead to a 
onvenient expression of the s
ore (or gradient)ve
tor, whi
h is:S(�) = �� logL(Q)� qk` � = 8<: KXi;j=1 LX̀=1ni;j(`) �fexp(QT )g(i;j)=�qk`fexp(QT )g(i;j) 9=; (83)where �fexp(QT )g�qk` = 1Xs=1 (�Qs�qk` )T ss! = 1Xs=1 s�1Xr=0Qr �Q�qk` �Qs�1�r � T ss!= AVk`A�1the matrixVk` = 1Xs=1 s�1Xr=0DrQ(A�1 �Q�qk`A)Ds�1�rQ T ss! having elements:8><>: (Gk`)(i;j) edit � edj tdi � dj ; i 6= j;(Gk`)(i;j)t edit ; i = j;where (Gk`)(i;j) is the entry (i; j) of the matrix Gk` = A�1 �Q�qk`A:26



The information matrix, whi
h has the formE "��2 logL(�)�qk`�qk0`0 # = 8<: LX̀=1 KXi;j=1 E[Ni(`� 1)℄pi;j(0; T ) �pi;j(0; T )�qk` �pi;j(0; T )�qk0`0 9=; (84)(see Kalb�eis
h and Lawless, 1985, p. 864), is estimated by:M(�) = 8<: LX̀=1 KXi;j=1 ni(`� 1)pi;j(0; T ) �pi;j(0; T )�qk` �pi;j(0; T )�qk0`0 9=; (85)The iterative formula for the s
oring algorithm being:�n+1 = �n +M(�n)�1S(�n)where n � 0 and an initial value �0 = �(Q0) is still to be 
hosen. Two 
asesmust be 
onsidered (the 
ase with multiple solutions in Q is ex
luded):� equation (77) admits only one solution for bQ and this solution belongsto the set IQ of transition intensity matri
es: Q̂ is the MLE of the transi-tion matrix Q of the time-homogeneous markovian pro
ess, and the matrixM(�( bQ))�1 gives a 
onsistent estimate of the 
ovarian
e matrix of �̂ = �( bQ);� the unique solution Q0 = bQ to equation (77) doesn't belong to the setIQ; however, it may exist matri
es ~P (0; T ) = exp( ~QT ) �
lose� to bP (0; T ) andwhi
h are embeddable, i.e. su
h that ~Q 2 IQ ; in this 
ase, the s
oring algo-rithm of Kalb�eis
h and Lawless (1985) 
an be applied to the maximizationof the likelihood (81) subje
t to the 
onstraint Q 2 IQ ; this 
onstraint 
anbe dire
tly introdu
ed into the iterative pro
edure by settingqi;j = 8>><>>: exp(ai;j); ai;j 2 IR; j 6= i; (i; j) 2 E �Eqii = � KXk=1k 6=i qik; i = j; i 2 E (86)and the initial value Q0 
an be 
hosen to verify:Q0 = argminQ2 IQ k Q0 � bQ k (87)where bQ = 1T log bP (0; T ).
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3.1.5 Bayesian inferen
eGeweke, Marshall and Zarkin (1986a) have developed a bayesian approa
hfor statisti
al inferen
e on Q (and fun
tions of Q) by using a di�use prioron the set of sto
hasti
 matri
es. This approa
h 
an be justi�ed with twoarguments:� when the MLE of Q is on the parameter set boundary, standard asymp-toti
 theory 
annot be applied any more; bayesian inferen
e over
omes thisdi�
ulty: the posterior 
on�den
e interval for Q 
an be viewed as its asymp-toti
 approximation;� moreover, bayesian inferen
e allows in
orporating into the 
hoi
e of theprior distribution some information external to the sample (for example, thedistribution of sojourn durations in ea
h state).Let us denote PK the set of (K � K) sto
hasti
 matri
es, i.e. Pk =fP 2 MK;K : 8i; j 2 E; pi;j � 0 and PKj=1 pi;j = 1g; P �K the set of (K �K)embeddable sto
hasti
 matri
es, i.e. P �K = fP 2MK;K : P 2 PK and 9Q 2IQ; P (O;T ) = exp(QT ); T > 0g. For any P 2 P �K ; k�(P ) denotes the numberof 
ombinations of the form (78) belonging to IQ and verifying equation (77).Now let us 
onsider a prior distribution on P 2 PK , denoted �(P ), a priordistribution on Q, denoted hk(P ) and verifying Pk�(P )k=1 hk(P ) = 1 for P 2PK , and a IR-valued fun
tion of interest denoted g(Q). If the posteriorembeddability probability of P is de�ned as:Pr(P 2 P �K j N) = RP �K L(P ;N)�(P )dPRPK L(P ;N)�(P )dP > 0 (88)then the expe
tation of g(Q) is equal toE[g(Q) j N;P 2 P �K ℄ = RP �K Pk�(P )k=1 hk(P )g[Qk(P )℄L(P ;N)�(P )dPRP �K L(P ;N)�(P )dP (89)where the entry (i; j) of the matrix N is PL̀=1 ni;j(`); L(P ;N) is the like-lihood fun
tion and Qk(P ) is the transition intensity matrix 
orrespondingto the k-th 
ombination of logarithms of the eigenvalues of matrix P . Thefun
tion of interest g(Q) 
an be, for example, g(Q) = qi;j; (i; j) 2 E�E, or:g(Q) = E n(qi;j �E(qi;j j N ;P 2 P �K))2 j N ;P 2 P �Kowhi
h is equivalent to:g(Q) = E nq2i;j j N ;P 2 P �Ko�E2 fqi;j j N ;P 2 P �Kg28



The embeddability probability for P and the �rst moment of g(Q) maybe 
omputed using Monte-Carlo integration. This involves the 
hoi
e of animportan
e fun
tion from whi
h a sequen
e of matri
es fPig 2 PK 
an beeasily generated (see Geweke et al., 1986a, for su
h a fun
tion). Now let us
onsider a fun
tion J(Pi) su
h that J(Pi) = 1 if Pi 2 P �K and J(Pi) = 0otherwise. If �(Pi) is bounded above, then:limI!1 IXi=1 J(Pi)L(Pi;N)�(Pi)=I(Pi)IXi=1 L(Pi;N)�(Pi)=I(Pi)= Pr[P 2 P �K j N ℄ a.s. (90)Moreover, if Hk(P ) is a multinomial random variable su
h that Pr[Hk(P ) =1℄ = hk(P ), and if g(Q) is bounded above, thenlimI!1 IXi=1 k�(Pi)Xk=1 Hk(Pi)g[Qk(Pi)℄J(Pi)L(Pi;N)�(Pi)=I(Pi)IXi=1 J(Pi)L(Pi;N)�(Pi)=I(Pi)= E[g(Q) j N ;P 2 P �K ℄ a.s. (91)(see Geweke et al., 1986a, p. 658).3.1.6 Tenure re
ordsUp to now we 
on
entrated on the statisti
al analysis of dis
rete-time ob-servations of an underlying 
ontinuous-time Markov pro
ess. The availableinformation is sometimes ri
her than the one brought by dis
rete-time data,but not as 
omplete as the one 
ontained in 
ontinuous-time data. Indeed it
an 
onsist, for a given individual, in the joint sequen
e f(xT` ; dT`)g`=0;���;L ofo

upied states fxT`g`=0;���;L and of times fdT`g`=0;���;L already spent in thesestates at distant observation times fT`g`=0;���L. Su
h data have been studiedin the 
ontinuous-time markovian framework by Magna
 and Robin (1994),who proposed to 
all this kind of observations �tenure re
ords�. Figure 3gives an example of a tenure re
ord.In this example, T0; T1; T2 and T3 are the exogenous survey dates. Thepro
ess fXtgt�0 is �rst observed to be in state xT0 = 1 at time T0: it29



Figure 3"xt3 � �2 �1 � � � ! t�0 T0 T1 T2 T3d0 d1 d3 !  !  !d2 !o

upies this state from date (T0� d0) on. It is then observed to be in state3 at su

essive times T1 and T2. This state was entered at time (T1 � d1) =(T2 � d2). Finally, the pro
ess is at time T3 in state xT3 = 1 from date(T3 � d3) on. Indeed it is possible that a spell 
overs two survey dates, as itis the 
ase for the se
ond observed spell in the pre
eding example: obviously,the information 
olle
ted in T1 is redundant.Let us remark that in tenure re
ords data sets, any sojourn duration isright-
ensored with probability one. Typi
ally, a tenure re
ord 
onsists ofa sequen
e fxT` ; d`; t`g`=0;���;L with the 
onvention tL = 1. The pro
essfXtgt�0 enters state xT` at time (T` � d`) and is observed to stay in thisstate for a duration greater than d`. Then the pro
ess is not observed (i.e.is trun
ated) during a period of length t` = (T`+1 � d`+1)� T`. Let hij(s; t)be the probability that the pro
ess fXtg enters state j at time t given thatit was in state i at time s(s < t). If fXtg is time-homogeneous markovian,then hij(0; t� s) � hij(t� s); s < t. In this 
ase, hij(t) is equal to:hij(t) = KXk=1k 6=j pik(t) qkj; (i; j) 2 E �E (92)Consequently, the likelihood fun
tion for a tenure re
ord fxT` ; d`; t`g`=0;���;L30



is the following:L =(L�1Ỳ=0 S(d` j xT`) hxT` ;xT`+1 (t`))S(dL j xTL)= exp(��xTLdL) L�1Ỳ=0 � exp(��xT`d`) KXk=1k 6=xT`+1fexp(Qt`)g(xT` ;k) � qk;xT`+1�(93)where S(u j xT`) is the survivor fun
tion of the sojourn duration in state xT`and Q is the transition intensity matrix with entries:Q(i; j) = 8>>><>>>: ��i = � KXk=1k 6=i qik; if j = iqij ; if j 6= iMagna
 and Robin (1994) show that tenure re
ords allow to identify theintensity of transition from one state to the same state (for example, em-ployment) when within-state mobility is allowed (i.e. when a worker 
andire
tly move from one job to another). Dis
rete-time observations do notpresent this advantage.For a treatment of in
omplete re
ords, parti
ularly in presen
e of un-observed heterogeneity see, for instan
e, Kamionka (1998). Magna
 et al.(1995) propose to use indire
t inferen
e to estimate the parameters of a tran-sition model under a semi-Markov assumption in the 
ontext of a 
ensoringme
hanism.3.2 The Mover-Stayer model3.2.1 MLE for the dis
rete-time mover-stayer modelThe mover-stayer model has been introdu
ed by Blumen et al. (1955) forstudying the mobility of workers in the labor market. Subsequently, Good-man (1961), Spilerman (1972) and Singer and Spilerman (1976a) have de-veloped the statisti
al analysis of this model, essentially on the dis
rete-time axis. The mover-stayer model in dis
rete time is a sto
hasti
 pro
essfX`; ` 2 IN g, de�ned on a dis
rete state-spa
e E = f1; : : :;Kg, K 2 IN ,and resulting from the mixture of two independent Markov 
hains; the �rstof these two 
hains, denoted fX 1̀; ` 2 IN g is degenerate, i.e. its transition31



probability matrix is the identity matrix, denoted I. The other 
hain, de-noted fX 2̀ ; ` 2 IN g is 
hara
terized by a non-degenerate transition matrixM(s; u) =k mi;j(s; u) k, i; j = 1; : : :;K, 0 � s � u, where:mi;j(s; u) = PrfX2u = j j X2s = ig; i; j 2 E; s; u 2 IN ; s � u (94)and KXj=1mi;j(s; u) = 1.Moreover, the Markov 
hain fX 2̀; ` 2 IN g is assumed to be time homoge-neous, i.e.: mi;j(s; u) = mi;j(0; u� s) � mi;j(u� s); 0 � s � u (95)whi
h is equivalent to:M(s; u) =M(0; u� s) �M(u� s); 0 � s � u (96)Now let us assume that the mixed pro
ess fX`; ` 2 IN g is observed at�xed and equally distant times: 0; T; 2T; : : :; LT; with T > 0 and L 2IN (L � 1). Transition probabilities for this pro
ess are given by the formu-las: pi;j(0; kT ) = Pr[XkT = j j X0 = i℄; i; j 2 E; k = 1; : : :; L (97)= � (1� si)[mi;j(T )℄(k) if j 6= isi + (1� si)[mi;i(T )℄(k) if j = iwhere [mi;j(T )℄(k) is the entry (i; j) of the matrix [M(T )℄k, and (si; 1� si),with si 2 [0; 1℄, is a mixing measure for state i 2 E. So, in the mover-stayermodel, the referen
e population is 
omposed of two kinds of individuals: the�stayers�, permanently sojourning in the same state, and the �movers�, whomove from one state to another a

ording to the time-homogeneous Markov
hain with transition probability matrix M(s; u); s � u. The proportion of�stayers� in state i (i 2 E) is equal to si.The estimation of the transition matrix M(0; T ) and of the mixing mea-sure s from a sample ofN independent realizations of the pro
ess fX`; ` 2 IN g,has been extensively treated by Frydman (1984) and then 
arried out bySampson (1990). The method developed by Frydman relies on a simple re-
ursive pro
edure, whi
h will be rapidly surveyed. Formally, the form of the32



sample is: fX0(n);XT (n);X2T (n); : : :;XLT (n); 1 � n � NgwhereXkT (n) (k = 0; : : :; L) is the state of the pro
ess for the n�th realizationat time kT , and (L+1) is the number of equally spa
ed dates of observation.Let us denote ni0;: : :;iLT the number of individuals for whi
h the observeddis
rete path is (i0; : : :; iLT ), ni(kT ) the number of individuals in state i attime kT , nij(kT ) the number of individuals who are in state i at time (k�1)Tand in state j at time (kT ), ni the number of individuals who have a 
onstantpath, 8 i.e. i0 = iT = : : : = iLT = i, i 2 E, nij = PLk=1 nij(kT ) the totalnumber of observed transitions from state i to state j, n�i = PL�1k=0 ni(kT )the total number of visits to state i before time (LT ), �i � 0 the proportionof individuals initially (i.e. at date 0) in state i, i 2 E, with PKi=1 �i = 1.The likelihood fun
tion for the sample is (Frydman, 1984, p. 633):L = KYi=1 �ni(0)i KYi=1Li (98)where:Li = fsi + (1� si)[mii(0; T )℄Lgni(1� si)ni(0)�ni [mii(0; T )℄nii�Lni� KYk=1k 6=i [mik(0; T )℄nikIn this last expression, ni(0) is the number of individuals in state i at time 0,ni is the number of individuals permanently observed in state i, (ni(0)�ni)is the number of individuals initially in state i who experien
e at least onetransition in the L following periods, nik is the total number of transitionsfrom state i to state k. Maximizing the fun
tion (98) with respe
t to M ands subje
t to the 
onstraints si � 0, i 2 E, is equivalent to maximize the Kexpressions: Li = Log Li + �isi; i = 1; : : :;K (99)for whi
h the �rst-order derivatives relatively to si are:�Li�si = nif1� [mii(0; T )℄Lgsi + (1� si)[mii(0; T )℄L � ni(0) � ni1� si + �i = 0 (100)8Among the individuals permanently sojourning in state i, we must distinguish the�stayers� from the �movers�; indeed, the probability that a �mover� is observed to be instate i at ea
h observation point is stri
tly positive and equal to fmii(0; T )gL.33



Two situations should be 
onsidered:First 
ase: If si > 0, then �i = 0 and:si = ni � ni(0)[mii(0; T )℄Lni(0)f1 � [mii(0; T )℄Lg (101)As shown by Frydman (1984, p. 634-635), the ML estimators of transitionprobabilities mij (with �xed i, and j varying from 1 to K) are given by there
ursive equation:bmij(0; T ) = nijf1� bmii(0; T ) � j�1Xk=1k 6=i bmik(0; T )g= KXk=jk 6=i nik; j 6= i; i; j 2 E(102)To solve equation (102), it is ne
essary to begin by setting j = 1 if i 6= 1and j = 2 if i = 1. Furthermore, bmii(0; T ) is the solution, belonging to theinterval [0; 1℄, to the equation:[n�i � Lni(0)℄[mii(0; T )℄L+1 + [Lni(0)� nii℄[mii(0; T )℄L+[Lni � n�i ℄mii(0; T ) + (nii � Lni) = 0 (103)Frydman (1984) doesn't noti
e that si�0 whenever ( nini(0) )�[mii(0; T )℄L,where (ni=ni(0)) is the proportion of individuals permanently observed instate i. In that 
ase, the initial assumption si > 0 is violated, and it isne
essary to 
onsider the 
ase where si = 0.Se
ond 
ase: If si = 0, then:bmij(0; T ) = nij=n�i ; 8 i; j = 1; : : :;K (104)This is the usual ML estimator for the probability of transition from i to jfor a �rst-order Markov 
hain in dis
rete time (for example, see Anderson andGoodman, 1957, or Billingsley, 1961). A remark, whi
h is not 
ontained inthe paper by Frydman (1984), must be made. It may appear that Lni = nii(with nii 6= 0), whi
h means that no transition from state i to any otherdistin
t state is observed. This 
ase arises when the number ni of individualspermanently observed in state i is equal to the number ni(0) of individualsinitially present in state i (if ni(0) 6= 0). Then the estimation problem hastwo solutions:� si=1 and mii is non-identi�able (see equations (101) and (103)),� si = 0 and mii = 1. 34



The �rst solution 
orresponds to a pure model of �stayers� in state i,the se
ond to a time-homogeneous Markov 
hain in whi
h state i is absorb-ing. The mover-stayer model, as a mixture of two Markov 
hains, is notappropriate any more for state i. When this 
ase appears in the appliedwork, we propose to 
hoose the solution si = 0 and mii = 1, espe
iallyfor 
omputing the estimated marginal probabilities of the form Pr[XkT = i℄,k = 0; : : :; L; i = 1; : : :;K. The analyti
al expression of the estimated asymp-toti
 
ovarian
e matrix for ML estimators 
M and bs 
an be 
al
ulated usingse
ond derivatives of expression (99).3.2.2 Bayesian inferen
e for the 
ontinuous-time mover-stayermodelThe mover-stayer model in 
ontinuous-time is a mixture of two indepen-dent Markov 
hains; the �rst one denoted fX1t ; t 2 IR+g has a degeneratetransition matrix equal to the identity matrix I; the se
ond one denotedfX2t ; t 2 IR+g has a non-degenerate transition matrix M(s; t), 0 � s � t,verifying over any interval of length T :M(0; T ) = exp(QT ); T 2 IR+ (105)Setting M(0; kT ) = kmi;j(0; kT )k, we get:P (0; kT ) = diag(s)+diag(1IK�s)fexp(QT )gK ; T � 0; k = 1; : : :; L (106)where s = (s1; : : :; sK)0, (1IK � s) = (1 � s1; : : :; 1 � sK)0, and diag(x) isa diagonal matrix with ve
tor x on the main diagonal. From the dis
rete-time ML estimators of stayers' proportions s and of the transition probabilitymatrixM(0; T ), it is then possible to obtain the ML estimator of the intensitymatrix Q by resolving equation (105) (see subse
tion 2.1 above). But, due tothe possible problem of non-embeddability of the matrix M(0; T ), it 
ouldbe better to adopt a bayesian approa
h, as the one proposed by Fougère andKamionka (2003). This approa
h is summarized below.3.2.2.1 De�nitions To write the likelihood-fun
tion and the expe
tedvalue under the posterior of some fun
tion of parameters, additional notationis needed. Let MK be the spa
e of K �K sto
hasti
 matri
es:MK = fM =k mij k : mij � 0; 8i; j 2 E and KXj=1mij = 1; 8 i 2 Eg:35



Clearly, the transition probability matrix M(0; T ) belongs to MK . Let�(M; s) be a prior mapping MK � [0; 1℄ into IR (the uniform prior will beused in the appli
ation). �(M; s) is de�ned for M 2MK and for a ve
tor ofmixing measures s = fsi ; i 2 Eg 2 [0; 1℄K . [0; 1℄K denotes the 
artesianprodu
t of K 
opies of [0; 1℄: Let us denote IQ the spa
e of intensity matri
es:IQ = fQ =k qij k : qij � 0; i; j 2 E; i 6= j and qii � 0;8i 2 Eg:IfM(0; T ) is embeddable, there exists at least one matrix Q 2 IQ de�nedby the equation M(0; T ) = exp(QT ), where T is the number of time unitsbetween observations. Let M�K the spa
e of embeddable sto
hasti
 matri
es:M�K = f M(0; T ) 2 MK : 9 Q 2 IQ; exp(QT ) =M(0; T )g:IfDK =MK�[0; 1℄K represents the parameters spa
e for the model, thenthe spa
e D�K =M�K� [0; 1℄K denotes the set of embeddable parameters andD�K � DK . As it was shown in subse
tion 2.1, the solution to M(0; T ) =exp(QT ) may not be unique: this is the aliasing problem.Let us 
onsider now the set of matri
es Q(k) 2 IQ, solutions of the equa-tion Q(k) = log(M(0; T ))=T , for k = 1 ; : : :; B(M). B(M) is the numberof 
ontinuous-time underlying pro
esses 
orresponding to the dis
rete-timeMarkov 
hain represented by M(0; T ) 2 MK . We have B(M) 2 IN andB(M) = 0 if M =2 M�K . Denote Q(k)(M) the intensity matrix that 
orre-sponds to the k�th solution of log(M), k = 1; : : :; B(M). Q(k)(M); 1 � k �B(M), is a fun
tion de�ned for M 2 M�K , Q(k)(M) 2 Q. Let h(k)(M) bea probability density fun
tion indu
ed by a prior probability distribution onthe k�th solution of the equation M(0; T ) = exp(QT ) when M 2 M�K . Byde�nition, h(k)(M) veri�es PB(M)k=1 h(k)(M) = 1.Let g(Q; s) be a fun
tion de�ned for (Q; s) 2 IQ � [0; 1℄K . This fun
tionis su
h that the evaluation of its moments (in parti
ular, the posterior meanand the posterior standard deviation) is a question of interest. Thus, theposterior probability that the transition probability matrixM is embeddablehas the form:Pr[(M; s) 2 D�K j (N;n)℄ = ZD�K L(M; s;N;n)�(M; s) d(M; s)ZDK L(M; s;N;n)�(M; s) d(M; s) (107)3.2.2.2 Likelihood and importan
e fun
tions The likelihood fun
tionL � L(M; s;N;n) up to the initial distribution of the pro
ess fX(t); t � 0g36



is L / KYi=1Li (108)where:Li = [ si + (1� si)� fexp(QT )gLii ℄ni � (1� si)ni(0)�ni�fexp(QT )gnii�Lniii KYk 6=i;k=1 fexp(QT )gnikik ; (109)fexp(QT )gi;k denoting the entry (i; k) of the K � K matrix exp(QT ). IfPr[M 2M�K j N;n℄ > 0, thenE[g(Q; s) j (N;n); (M; s) 2 D�K ℄ (110)= ZD�K B(M)Xk=1 h(k)(M) g(Q(k)(M); s) L(M; s;N;n) �(M; s) d(M; s)ZDK L(M; s;N;n) �(M; s) d(M; s)In order to evaluate the integrals inside expressions (107) and (110), anadaptation of the Monte-Carlo method may be used be
ause an analyti
alexpression for Q(k)(M) or B(M) when K � 3 has not been found yet. LetI(M; s) be a probability density fun
tion de�ned for (M; s) 2 DK . I(M; s)is the importan
e fun
tion from whi
h a sequen
e fMi; sig of parameters willbe drawn. We suppose that I(M; s) > 0 and that �(M; s) and g(Q; s) arebounded above.Let J(M) a fun
tion de�ned for M 2MK :J(M) = � 1 if M 2M�K0 otherwiseThen limI! +1 IXi=1 J(Mi) L(Mi; si;N;n) �(Mi; si)=I(Mi; si)IXi=1L(Mi; si;N;n) �(Mi; si)=I(Mi; si) (111)a:s= Pr[(M; s) 2 D�K j N;n℄37



and E[g(Q; s) j N;n; (M; s) 2 D�K ℄ a:s=limI!+1 IXi=1 B(M)Xk=1 h(k)(Mi) g[Q(k)(Mi); si℄J(Mi) L(Mi; si;N;n) �(Mi; si)I(Mi; si)IXi=1 J(Mi) L(Mi; si;N;n) �(Mi; si)=I(Mi; si) (112)where Pr[(M; s) 2 D�K j N;n℄ is the probability under the posterior that thedis
rete-time Mover-Stayer model is embeddable with the 
ontinuous-timeone, and E[g(Q; s) j N;n; (M; s) 2 D�K ℄ de�nes the posterior moments ofthe parameters' fun
tion of interest.For a better 
onvergen
e of estimators (111) and (112), I(M; s) shouldbe 
on
entrated on the part of DK where L(M; s;N;n) is nonnegligible.For that purpose, if �(M; s) is not 
on
entrated on some part of the setDK (that's the 
ase when � is uniform), I(M; s) 
an be taken proportionalto the likelihood L(M; s;N;n). Be
ause drawing (M; s) from L(M; s;N;n)is di�
ult, Fougère and Kamionka (2003) 
hoose a normal expansion forL(M; s;N;n) with mean the ML estimator (
M; bs) and with 
ovarian
e ma-trix the inverse of the information matrix estimated at (
M; bs).When g(Q; s) and �(M; s) are bounded above, the 
onvergen
e of theestimator (112) is obtained almost surely. When the fun
tion g(Q; s) doesnot verify this property (for instan
e, if we are interested in the estimationof qij), the 
onvergen
e of the expression (112) relies on the existen
e of theposterior mean: E[g(Q; s) j (M; s) 2 D�K ;N;n℄.The 
ovarian
e matrix V asso
iated to L(M; s;N;n) is blo
k diagonalwith blo
ks 
onsisting of matri
es Vi, i = 1; : : :;K, de�ned as:Vi(M; s) = �E "�2Log(Li(M; s;N;n))��k��l #�1 = Ri(M; s)�1 (113)with �k; �l = �mi;j ; i; j 2 Esi ; i 2 E where Ri(M; s) is the i�th diagonal blo
k ofthe information matrix R(M; s) asso
iated to L(M; s;N;n). Then a sequen
eof draws f(Mk; sk)gk=1;: : :;I 
an be generated a

ording to the density of amultivariate normal distribution with mean (M; s) and 
ovarian
e matrixV (M; s) = R(M; s)�1. If we suppose that Vi� = PiP 0i is the Choleski'sde
omposition of the matrix Vi� obtained by dropping the last row and
olumn of matrix Vi , and if yk � N(0K ; IK), then38



zk = Pi yk +0BBB� simi1...miK�11CCCA � N(0BBB� simi1...miK�11CCCA ; Vi�) (114)Finally, we 
an obtain miK by setting miK = 1 � PK�1j=1 mi;j. Insidethe pro
edure, si, (mi;1; : : :;mi;K), and Vi are estimated by their MLE, re-spe
tively ŝi, (m̂i;1; : : :; m̂i;K), and V̂i. For more details, see Fougère andKamionka (2003).3.2.2.3 - Limiting probability distribution and mobility indi
esThe mobility of movers 
an be appre
iated by examination of the mobil-ity indi
es for 
ontinuous-time Markov pro
esses proposed by Geweke et al.(1986b). For the movers pro
ess with intensity matrix Q, four indi
es ofmobility 
an be 
onsidered:M1(Q) = � log[det(M(0; T ))℄=K = �tr(Q)=KM2(Q) = KXi=1�(m)i KXj=1 qij j i� j jM3(Q) = � KXj=1�(m)j qijM4(Q) = �<e[log(�2)℄ (115)
where:� �(m)i is the equilibrium probability in state i for the movers, given byequation Q0�(m)i = 0, with �Ki=1�(m)i = 1,� the eigenvalues of the matrix M(0; T ) denoted by �1; : : :; �K , are or-dered so that j �1 j� : : : �j �K j,� <e denotes the real part of the logarithm of the eigenvalue �2.We 
an also de�ne the equilibrium (or limiting) probability distributionfor the mixed �mover-stayer� pro
ess fXt; t 2 IR+g. For state i, the limitingprobability, denoted �i, is given by:�i = si�i + �(m)i KXj=1 (1� sj)�j ; i 2 E (116)where: 39



� � = f�i; i 2 Eg is the initial probability distribution (i.e. at the date0) for the pro
ess fXt; t 2 IR+g,� and �(m)i is the limiting probability of �movers� in state i.It is easily veri�ed that, for a purely markovian pro
ess (one for whi
hsi = 0; 8i 2 E), the formula (116) be
omes �i = �(m)i . The mobility indi
es(115) and the limiting distribution (116) 
an be estimated using formula(112) and taking respe
tively g(Q; s) = Mk(Q) (1 � k � 4), or g(Q; s) = �.
3.2.2.4 Bayesian inferen
e using Gibbs sampling The likelihood fun
-tion of the sample X 
an be writtenL(Xjs;M;X0)= NYn=1 2Xk=1L(X(n)js;M;Xo(n); zn=k) Pr[zn=kjs;M;Xo(n)℄where L is the 
onditional 
ontribution of the individual n given the initialstate Xo(n) and the unobserved heterogeneity type zn. zn is an unobservedindi
ator taking the value 1 if the individual is a stayer or the value 2 if theindividual is a mover.The prior density on the parameter � = (s;M) is assumed to be theprodu
t of the 
onjugate densities �1(s) and �2(M), where�1(M) = KYj=1 �(aj + bj)�(aj)�(bj)saj�1j (1� sj)bj�1is the Diri
hlet distribution with parameters aj > 0, bj > 0, j = 1; :::;K,and �2(M) = KYi=1 �( KXk=1�ik)KYk=1�(�ik) KYi;j=1m�ij�1ijis the matrix beta distribution with parameter �ij > 0, i; j = 1; : : :;K.The 
onditional distribution of the unobserved type zn is thuszn j �;X(n) � B(1; p(X(n); �)) (117)40



wherep(Xn; �) = L(X(n) j s;M;Xo(n); zn = 1) Pr[zn = 1 j s;M;Xo(n)℄2Xi=1L(X(n) j s;M;Xo(n); zn = i) Pr[zn = i j s;M;Xo(n)℄Combining the prior and the sample informations we obtain thatsj j X;Z � Diri
hlet aj + NXn=1 i(n)j (2� zn); bj + NXn=1 i(n)j (zn � 1)! (118)M j X;Z � Matrix beta �ik + NXn=1(zn � 1)N (n)ik ; i; k = 1; : : :;K! (119)The Gibbs sampling algorithm runs like this:Initialization: Fix an initial value �(0) = (s(0);M (0)).Update from �(m) to �(m+1) by doing :1 - Generate Z(m) a

ording to the 
onditional distribution (117), given� = �(m) and X;2 - Generate �(m+1) = (s(m+1);M (m+1)) using the 
onditional distribution(118) and (119), given Z = Z(m) and X.Under general regularity 
onditions and form large enough, the resultingrandom variable �(m) is distributed a

ording to the stationary posteriordistribution �(� j X). Draws from the stationary posterior distribution�(� j X) may be used to obtain posterior estimates of � using an expressionsimilar to the one given by equation (112) (see Fougère and Kamionka, 2003).Step one of the algorithm 
orresponds to a data augmentation step (see,Robert and Casella, 2002).4 Con
luding remarksThis 
hapter has introdu
ed redu
ed-form models and statisti
al methodsallowing to analyse longitudinal panel data on individual labor market tran-sitions. The �rst se
tion gave a very general presentation of methods 
on-
erning 
ontinuous-time observations, while the se
ond se
tion fo
used onthe treatment of dis
rete-time observations for 
ontinuous-time dis
rete-statepro
esses.Obviously, our survey did not intend to 
over exhaustively a 
ontinu-ously and rapidly growing literature. Among subje
ts treated in this �eld41



of resear
h, two topi
s seem to be espe
ially important. The �rst one isthe treatment of endogenous sele
tion bias in dynami
 populations (see Lan-
aster and Imbens, 1990, 1995, Lan
aster, 1990b, Ham and Lalonde, 1996,and Fougère, Kamionka and Prieto, 2005). Indeed, some sampling s
hemesfor 
ontinuous-time dis
rete state spa
e pro
esses are su
h that the proba-bility of being in the sample depends on the endogenous variable, i.e. beingin a given state (for example, unemployment) at some date. Consequentlyinferen
e from these endogenous samples requires spe
i�
 statisti
al methodswhi
h have begun to be elaborated (see the papers quoted above). Anotherresear
h area is the evaluation of the e�e
t of publi
 interventions su
h asemployment and training programs. Here the main problem is knowing ifthese programs have a joint positive e�e
t on earnings and employment ratesof bene�
iaries (see, for example, papers by Card and Sullivan, 1988, Hamand Lalonde, 1990, He
kman, 1990, Eberwein, Ham and Lalonde, 1997, Bon-nal, Fougère and Sérandon, 1997, He
kman, Lalonde and Smith, 1999). Inorder to avoid misleading results, this evaluation must take into a

ount thesele
tion biases indu
ed simultaneously by the pro
ess of eligibility to theprogram and by the sampling s
heme. Thus these two �elds of resear
h arevery 
losely 
onne
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