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ABSTRACT

Econometrics of Individual Labor Market Transitions

This survey is devoted to the modelling and the estimation of reduced-form transition models,
which have been extensively used and estimated in labor microeconometrics. The first
section contains a general presentation of the statistical modelling of such processes using
continuous-time (event-history) data. It also presents parametric and nonparametric
estimation procedures, and focuses on the treatment of unobserved heterogeneity. The
second section deals with the estimation of markovian processes using discrete-time panel
observations. Here the main question is whether the discrete-time panel observation of a
transition process is generated by a continuous-time homogeneous Markov process. After
discussing this problem, we present maximum-likelihood and bayesian procedures for
estimating the transition intensity matrix governing the process evolution. Particular attention
is paid to the estimation of the continuous-time mover-stayer model, which is the more
elementary model of mixed Markov chains.
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1 Introduction

During the last twenty years, the microeconometric analysis of individual
transitions has been extensively used for investigating some problems inher-
ent in the functioning of contemporary labor markets, such as the relations
between individual mobility and wages, the variability of flows between em-
ployment, unemployment and non-employment through the business cycle,
or the effects of public policies (training programs, unemployment insur-
ance, ...) on individual patterns of unemployment. Typically, labor market
transition data register sequences of durations spent by workers in distinct
states, such as employment, unemployment and non-employment. When
individual participation histories are completely observed through panel or
retrospective surveys, the econometrician then disposes of continuous-time
realizations of the labor market participation process. When these histo-
ries are only observed at many successive dates through panel surveys, the
available information is a truncated one; more precisely it takes the form
of discrete-time observations of underlying continuous-time processes. Our
presentation of statistical procedures used for analysing individual transition
or mobility histories is based on the distinction between these two kinds of
data.

Statistical models of labor market transitions can be viewed as extensions
of the single-spell unemployment duration model (see Chapter 14, this vol-
ume). Theoretically, a transition process is a continuous-time process taking
its values in a finite discrete state space whose elements represent the main
labor force participation states, for example employment, unemployment and
non-employment.

The goal is then to estimate parameters which capture effects of different
time-independent or time-varying exogenous variables on intensities of tran-
sition between states of participation. Here transition intensities represent
conditional instantaneous probabilities of transition between two distinct
states at some date. Typically, the analyst is interested in knowing the sign
and the size of the influence of a given variable, such as the unemployment
insurance amount or the past training and employment experiences, on the
transition from unemployment to employment for example, and more gener-
ally in predicting the effect of such variables on the future of the transition
process. For this purpose, she can treat these variables as regressors in the
specification of transition intensities. Doing that, she estimates a reduced-
form model of transition. Estimation of a more structural model requires the
specification of an underlying dynamic structure in which the participation
state is basically the choice set for a worker and in which parameters to be



estimated influence directly individual objective functions (such as intertem-
poral utility functions) which must be maximized under some revelant con-
straints inside a dynamic programming setup. Such structural models have
been surveyed by Eckstein and Wolpin (1989) or Rust (1994).

Our survey focuses only on reduced-form transition models, which have
been extensively used and estimated in labor microeconometrics. The first
section contains a general presentation of the statistical modelling of the
transition process for continuous-time (event-history) data. The first sec-
tion briefly recalls the useful mathematical definitions, essentially the ones
characterizing the distribution of the joint sequence of visited states and of
sojourn durations in these states. It also presents parametric and nonpara-
metric estimation procedures, and ends with the question of the unobserved
heterogeneity treatment in this kind of process.

The second section deals with inference for a particular class of transi-
tion processes, namely markovian processes or simple mixtures of markovian
processes, using discrete-time panel observations. Here the main problem is
the embeddability of the discrete-time Markov chain into a continuous time
one. In other words, the question is whether or not the discrete-time panel
observations of a transition process are generated by a continuous-time ho-
mogeneous Markov process. After a discussion of this problem, the second
section presents maximum-likelihood and bayesian procedures for estimat-
ing the transition intensity matrix governing the evolution of the continuous-
time markovian process. Particular attention is paid to the estimation of the
continuous-time mover-stayer model, which is the more elementary model of
mixed Markov processes.

The conclusion points out some extensions.

2 Multi-Spell Multi-State Models

2.1 General framework
2.1.1 Notations

Let us consider a cadlag' stochastic process X;, t € IR™, taking its value in
a finite discrete-state space denoted £ = {1,...,K}, K € INand K > 2. In
other words, K represents the total number of states for the process, and X,
is the state occupied at time t by the individual (so X; € E,Vt € RT). Let

t4cadlag” means right-continuous, admitting left limits. For the definition of a cadlag
process, see chapter 15, section II.1; this volume.
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{x;, t € IRT} be a realization of this process. We suppose that all the individ-
ual realizations of this process are identically and independently distributed:
to simplify the notations, we can then omit the index for individuals.

As an illustration we consider the case of a labor force participation
process describing the state occupied by a worker at time t. In order to
simplify, we set:

1 if the individual is employed at time t
X; =4 2 if the individual is unemployed at time t (1)

3 if the individual is out of the labour force at time t

Now we suppose that each individual process is observed from the date
of entry into the labor market, denoted 7 for the individual, up to an ex-
ogenously fixed time 7, (7. > 79). An example of realization of process X;
is represented in Figure 1.

This figure shows that the individual is first employed from time 79 up
to time 71, then unemployed from time 71 up to time 79, then employed once
again from time 75 up to time 73, and finally out of the labor force (from
time 73 on) when the observation stops at time 7. If we denote:

u=1—T—1, £L=1,2,... (2)

the sojourn duration in state zr, , reached by the individual at time 7(,_1)
(before a transition to state z,, at time 7y), the process z; can be equivalently



characterized by the sequences { (74, z7,);¢ € IN} or {(uy, $Z£—0uk)£ S
ZN} with ug = 7. -

Now suppose that process X; is observed from the exogenous date g,
with 75 €79, 71[, up to time 7, and that the date of entry into the state
occupied at time 75 (i.e. the date of entry into the labor market, 77) is
unknown to the analyst. Then, the sojourn duration in state z,, = x, is
said to be left-censored. Symmetrically, for the example in Figure 1, the
sojourn duration in state x, = z,, is said to be right-censored, because the
couple (14, z,) is not observed.

We restrict now our attention to non left-censored samples, i.e. such that
75 = 7, for all individuals.? We define the event-history corresponding to
process X; for the observation period [rg, 7] as:

w = {TU’ Lrys Tls Lryyees Tny x‘l’n} (3)

where n is the number of transitions, i.e. the number of modifications, of
the studied process during the period [rg, 7.]. This event-history can be
equivalently defined as:

w = {TU’ U1y Trgturs U2y Trgturduzy -« Un)y Ty Z?:luf} (4)
This realization of the process from time 7y to time 7, can be written:

w = ((7-07 xTo)a (ulaxﬁ)a SRR (una xTn)’ (Un—l—l; 0)) (5)

where uy 11 = T, — 7y, is the duration of the last observed spell. The last spell
is right-censored. Indeed, 7,41 and z,4; are not observed. Consequently,
we fix 41 = 0 in order to signify that the last duration is at least equal to
Up1. This realization of the process can be rewritten

W = (yoayla"'aynayn—l-l) (6)

where

(10, 2r,) if k=0
yp = (Thyzr,) if 1 <k <n

(Tha1,0)if k=n+1
Let us define a spell as a period of time delimited by two successive tran-
sitions. The history of the process is a sequence of variables y, = (ug, z-,),
where uy, is the length of spell £ and z,, is the state occupied by the indi-
vidual at time 7.

2The statistical treatment of left-censored spells has been considered by Heckman and
Singer (1984), Ondrich (1985) and Amemiya (2001).



2.1.2 Distributions of spell durations.

Suppose now that the process enters state z,,_, (z,,_, € {1, ...,K}) at
time 7p—1 (¢ = 1,..., n+1). Let us examine the probability distribution
of the sojourn duration in state z,,_, entered after the (¢ — 1)-th transition
of the process. For that purpose, we assume that this sojourn duration is
generated by a conditional probability distribution P given the event-history
(yo, - .-, ye—1) and a vector of exogenous variables z, defined by the cumulative
distribution function

F(u|yoy..ye-1;2:0) =Pr[Us<u|yo...,ye-1;20] 0

=1-S(u|yo,..,yr-1;2;0)

where 6 is a vector of unknown parameters. Here U, denotes the random
variable corresponding to the duration of the £ — th spell of the process,
starting with its (£ — 1) — th transition. S(u | yo,...,ys—1;2;6) is the sur-
vivor function of the sojourn duration in the £ — th spell. If the probability
distribution P admits a density f with respect to the Lebesgue measure,
then:

F(u|y07"'ayl71;z;0):/0 f(t|y05"'7yffl;z;9) dt (8)
and
d
fu| yo,..ye—1;2,0) = o F(u | yo,...,yi—1;20)
4 (9)
= o S(u | yo,. - ye—1:2;0)

If the function f(u | yo,...,ys—1; 2;0) is cadlag, then there exists a func-
tion, called the hazard function of the sojourn duration in the £ — th spell,
defined as
flul yo,....ye—1320)

S(U | yOa"'ayfflazae) (10)

h(u | yOa"'ayffl;z;e) =

d
= _% IOg S(u‘yOa"'ayffl;z;g)

or equivalently as

. Priu<Us<u+tdu | Uy >u;yg, .-, Ye-1)
e Y15 2 =1
h(U|y0, s Ye I:Z:Q) du d}uIJI,IO du
(11)
From (9), it follows that:

—log S(ul| yo,.. . ye—132:0) = [o' h(t]yo,- - ye—1;2;0) dt

= H(u|yo,. .. .Y—1;20)
(12)



The function Hy(u | yo,...,ye—1) is called the conditional integrated haz-
ard function of the sojourn in the £—th spell, given the history of the process
up to time 7y_1.

Reduced-form statistical models of labour-market transitions can be viewed
as extensions of competing risks duration models or multi-states multi-spells
duration models. These concepts will now be specified.

2.1.3 Competing risks duration models

Let us assume that the number of states K is strictly greater than 2 (K > 2)
and that, for each spell, there exists (K — 1) independent latent random
variables, denoted Uy, (k # %r,_,; k € E). Each random variable Uy,
represents the latent sojourn duration in state x;,_, before a transition to
state k (k # x5, ,) during the ¢ — th spell of the process.

The observed sojourn duration uy is the minimum of these (K — 1) latent
durations:

ug =  inf {uz’f} (13)

k#ar,_

Then, for any 7y_1 € w:

K
S(U ‘ yUa"'aylfl;z;g) = H S(U,I{) ‘ yOa"'ayffl;z;g) (14)
i

Bt
Sl

where S(u,k | yo,....,ye—1;2;0) = Pr(U,j’f > u | yo,....yr—1;2) is the con-
ditional survival function of the sojourn duration in state z,_, before a
transition to state k during the £ — th spell of the process, given the history
of the process up to time 7y_1.

Let g(u,k | yo,...,ye—1;2;60) be the conditional density function of the
latent sojourn duration in state z,,_, before a transition to state k, and
hi(w | yo,-..,ye—1; 2;0) the associated conditional hazard function. Then we
have the relations:

g(u k| yo,.. .. ye—1;2;0)
S(u k| Yo, ye-1;2;0)

hk(u | yOa"'ayf—l;z;e) = (15)

and

S(u,k | yo,....ye-1;2;6) =exp (—/0 hi(t | yo,. .. ye—1;2;0) dt) (16)



Let us remark (14) and (16) imply:

u
S(u | yo,. .., Ye—1;2;0) = exp —/ > bt |y, ye—1;20) dt
0 kFar,_,
(17)
Thus the conditional density function of the observed sojourn duration
in state j during the ¢ — th spell of the process, given that this spell starts
at time 7,1 and ends at time 7,1 + u by a transition to state k, is:

f(U,I{) | Yo, - - - y3—15259) = hk(u | yUa"'aylfl;z;e)a

u K
X exp(-/ > hw(t ]y, ye1:20) dt) (18)
0
k'=1
kK'#wr,_

This is the likelihood contribution of the £ — th spell when this spell is
not right-censored (i.e. when 7, = 7y_1 +u < 7). When the £ —th spell lasts
more than 7, — 7y_1, the contribution of this spell to the likelihood function
is:

S(Te =71 | Yo, ye-1520) =Pr(Up > Te — g1 | Yo, Y015 2)

2.1.4 Multi-spells multi-states duration models

These models are the extension of the preceding independent competing risks
model, which treats the case of a single spell (the £ — th spell) with multiple
destinations. In the multi-spells multi-states model, the typical likelihood
contribution has the following form:

n+1

[’(0) = H f(yl ‘ Yo, - - -ayé—15259) (19)
=1

where f(ye | vo,..-,90-1;0) is the conditional density of Y; given Yy =
Y0, Y1 = Y1, Y1 =yr_1,4 = z and 6 is a vector of parameters. Defini-
tion (18) implies that:

n

£O) = [Ifre=7e=1,25,1y0, - - ye—1;2;0)
=1 (20)
X Sn-l—l(Te - Tn‘yOa < Yns 23 9)
The last term of the right-hand side product in (20) is the contribution of
the last observed spell, which is right-censored. References for a general



presentation of labor market transition econometric models can be found
in surveys by Flinn and Heckman (1982a, b, 1983a) or in the textbook by
Lancaster (1990a).

2.2 Nonparametric and parametric estimation

2.2.1 Nonparametric estimation

2.2.1.1 The Kaplan-Meier estimator In the elementary duration model,
a nonparametric estimator of the survivor function can be obtained using the
Kaplan-Meier estimator for right-censored data. Let us suppose that we ob-
serve I sample paths (i.i.d. realizations of the process X;) with the same
past history w7y, 7,—1]. Let I* be the number of sample paths such that
Tni < To and I — I* the number of sample paths for which the n-th spell
duration is right-censored, i.e. 7,; > Ty (or n(m,T2) < n), i denoting here
the index of the process realization (i =1,....I). If 7, 1,..., 7 1~ are the I*
ordered transition dates from state X, _, (i.e. 7,1 < ... < 7, 1» <Ty), the
Kaplan-Meier estimator of the survivor function Sy (¢ | w[r, Th—1]) is:
d;

Sult | i, ma 1)) = ]I (1__)

12Ty ; <t T
i=1,...,I%, t €]ty 1, Ts]

(21)

where r; is the number of sample paths for which the transition date from
state X, _, is greater than or equal to 7, ; and d; is the number of transition
times equal to 7,;. An estimator for the variance of the survivor function
estimate is given by the Greenwood’s formula:

Var [gn(t | w[TOaTn—l])]
~ {S’n(t‘u)[To,Tn,l])}Q x Z L (22)

1Ty i <t Ti (’ri - dz)

This estimator allows to implement nonparametric tests for the equality
of the survivor functions of two different subpopulations (such as the Savage
and log-rank tests).

In the case of multiple destinations (i.e. competing risks models), we
must restrict the set of sample paths indexed by 7 € {1,...,I*} to the pro-
cess realizations experiencing transitions from the state X, | to some state
k (k # X;,_,). Transitions to another state than k are considered as right-
censored durations. If we set X, |, = j, then the Kaplan-Meier estimator of



the survivor function Sji(t | w[ro, 7,—1]) is given by the appropriate appli-
cation of formula (21), and an estimator of its variance is given by formula
(22).

2.2.1.2 The Aalen estimator The function Hy(u | w[ro, 7¢1]), defined
in equation (12) and giving the integrated hazard function of the sojourn
duration in the ¢ — th spell, can be estimated nonparametrically using the
Aalen estimator (Aalen, 1978):

Hy(u|wlro,mea]) = Y — (23)

. T
171 <70, <U t

Hy(u | w[ry, 7—1]) is an unbiased estimator of Hy(u | w[r, 7¢—1]), and an
estimator of its variance is given by:

var [ﬁl(u | W[TO’TZ*I])] - 2 ﬁ (24)

171 <7 ; <U
In the competing risks model, equation (12) is equivalent to:

—log S]k(u | w[Tg,Tgfl]) = fou hjk(t | w[To,Tgfl]) dt (25)
= Hj(u | w[ro, 7-1])

where Hj,(u | w[ry, 7¢—1]) is the integrated intensity (or hazard) function
for a transition from state j to state k (k # j) during the ¢ — th spell of
the process, and given the past history w|7g, 7,—1] of the process. The Aalen
estimator of this function can be derived from the formula (24) by considering
indexes i corresponding to transitions from state j to state k during the £—th
spell of the process; indexes corresponding to other types of transition from
state j are now considered as right-censored durations. The Aalen estimator
can be used to implement nonparametric tests for the equality of two or more
transition intensities corresponding to distinct transitions.

2.2.2 Specification of conditional hazard functions



2.2.2.1 The Markov model In a markovian model, the hazard functions
hi(t | vo,...+Yr,_,;2;6) depend on t, on states z,,_, and on k, but are
independent of the previous history of the process. More precisely:

he(t | yo,. Yz y32;0) =hi(t | 27, 52;0), k#zr | (26)

and
hi(t] Yoy Yrp,;2,0) =0, ifj=ax,_,

When the Markov model is time-independent, it is said to be time-
homogeneous. In this case:

hi(t| 27,_,52:0) = hi(z7,_,;2:0) = h k(2:0), k#z,_,, Vte RT
(27)
The particular case of a continuous-time markovian model observed in
discrete-time will be extensively treated in the following subsection (this

Chapter). Let us now consider two simple examples of markovian processes.

Try_ 1>

Example 1:
Consider the case of a time-homogeneous markovian model with two
states (K = 2) and assume that:

a ifz;, =1and k=2
hi(t| z7,_,560) =4 B ifz,, , =2and k=1 (28)

0 otherwise

with 8 = (a,3). The parameter « > 0 is the instantaneous rate of
transition from state 1 (for instance, the employment state) to state 2 (for
instance, the unemployment state). Reciprocally, 8 > 0 is the instantaneous
rate of transition from state 2 to state 1.

Durations of employment (respectively, unemployment) are independently
and identically distributed according to an exponential distribution with pa-
rameter « (respectively, with parameter 3). If py(t9) and pa(t9) denote occu-
pation probabilities of states 1 and 2 at time ¢( respectively, then occupation
probabilities at time ¢ (¢ > ty) are respectively defined by:

_ g _ —(a+B)t

p1(t) = ot + {Pl(to) a-l—ﬂ} e 29)
_ __“ —(a+B)t

p2(t) = ot + {P2(to) a—i—ﬂ} e~ lat

10



Let (p7, p5) denote the stationary probability distribution of the process.
Then it is easy to verify from (29) that:

— d — -
a+p and Py = a+p

In the economic literature, there are many examples of stationary job
search models generating such a markovian time-homogeneous model with
two states (employment and unemployment): see, for instance, the survey by
Mortensen (1986). Extensions to three-states models (employment, unem-
ployment and out-of-labor-force states) have been considered, for example,
by Flinn and Heckman (1982a) and Burdett et al. (1984a, b). Markovian
models of labor mobility have been estimated, for instance, by Tuma and
Robins (1980), Flinn and Heckman (1983b), Mortensen and Neuman (1984)
Olsen, Smith and Farkas (1986) and Magnac and Robin (1994).

Example 2:
Let us consider now the example of a non-homogeneous markovian model

with two states (employment and unemployment, respectively denoted 1 and
2). Let us assume that the corresponding conditional hazard functions verify

Pl 5 (30)

)

ho(t;0) if 2, , =1and k=2
hi(t| zs_,30) =% hi(t;0) ifz,  =2and k=1 (31)
0 otherwise

Let p(0) = (p1(to),p2(to))" denote the initial probability distribution at
time tg. The distribution of state occupation probabilities at time t, denoted

p(t) = (p1(?),p2(#))'; is given by:

pi(t) = exp{= [ [h(s:0) + ha(5;0)] ds}
X [pi(to) + Ji, h(5:0) exp { [ (h(us0) + ha(u; 0)) du} dsJ
32)
and pa(t) =1 — p1(t) (see Chesher and Lancaster, 1983).

Non-homogeneous markovian models are often used to deal with pro-
cesses mainly influenced by the individual age at the transition date. For
example, let us consider a transition process {X;};>¢ with state-space £ =
{1,2,3}, and for which the time scale is the age (equal to A; at time ¢). If
the origin date of the process (i.e. the date of entry into the labor market) is
denoted A, for a given individual, then a realization of the process {X;};>0
over the period [A,,, 7¢] is depicted in Figure 2.

11
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Now let us suppose that transition intensities at time ¢ depend only on
the age attained at this time and are specified such as:

hk (t | Yo, - - 'aylfl;ATo; 0) = hk(At;xTz_l;e)

33
= exp (O‘Ir[,l,k + ﬁxwfl,k At) (33)

where o, and B (j,k € ExE and k # j) are parameters to be estimated.
In formula (33), the individual index is omitted for simplifying notations.
By noting that:

Ay = ATz71 + (At — AT[A) = ATZ71 + uy (34)

where uy denotes the time already spent in the £ — th spell at date ¢, it is
possible to write again transition intensities as:

hi(t | Yo, - .-, Ye—13 Ary ;1 0) = exp (axq_l,k + Borp_ ok Arp s+ Bar,_ ik Uté)
(35)
and to deduce the survivor function of the sojourn duration in the £—th spell
which has the form:

S(U | yOa"'ayffl;ATo;g)

Ay +u

-1

= exp{— Z exp(aacrz_l ,k'l'ﬁxrz_l k AT[,l +/3acv_1,k Uté) dt}
k#xr,_, Ary_y

(36)

12



where £ > 1. By setting u;p =1t — A
S{ulyos- - ye—1;Arg; 0} =
exp(car, )

exp| =35 [exp (e, (A +u)) = ex(Bir, e An )|
k#xe, | T Lk

7,_, in expression (36), it follows that:

37)
if 6:,37_1 & 7 0. Then the likelihood contribution of the £—th spell beginning
at age A;,_, with a transition to state x;,_, and ending at age A,, with a
transition to state z, is:

Lf = f(AT[_AT[_laxT[ ‘ Yo, - - -ay’rg_l;ATo; 9)
= hmv (Tl | Yo, - - '7y7'[_1;AT0;9) S(ATZ_AU_1 ‘ Yo, - - '7y’rz_1;ATo;9)

= exp (Oéxrlil,k + B, |k An)

exp(as,, i)
exp Z 3 —1
k' Az, ek

X

[exp(ﬂx-,-[71 k! AT[ ) - eXp(/Bx.,-[71 k! AT[_l )]

(38)

Non-homogeneous markovian models of transitions between employment

and unemployment have been estimated, for example, by Ridder (1986) and
Trivedi and Alexander (1989).

2.2.2.2 Semi-Markov models In semi-Markov models, hazard functions
depend only on the currently occupied state (denoted z,,_, for spell £), on the
destination state (denoted k), on the sojourn duration in state z,, , and on
the time of entry into the currently occupied state. If the spell corresponding
to the currently occupied state is the £ —th spell of the process, then hazard
functions of the semi-Markov model have two alternative representations:

hk(t | Yo, - - '7yffl;9) = hk(t | Tf,1;$Tl_1;9) (39)
or
hi(u | yo, .. ye—1;0) = hy(u | To—15 27,3 0) (40)

where u =t — 7,1 is the time already spent in the current state (i.e. in the
¢—th spell of the process). When the hazard functions do not depend on the
date 7y_1 of the last event, but depend only on the time already spent in the

13



current state, then the semi-Markov model is said to be time-homogeneous.
In this case, hazard functions defined in (40) are such that:

hg(u| To-1;27,_,;0) = hy(u | z-,_,;0), u € R* (41)

In this model, the mean duration of a sojourn in state z,_, can be
calculated using definitions of hazard and survivor functions, and thus it is
given by:

B(U; | 27,0) = [ uStul xn_l;Q){ Y il xn_l;Q)} du (42)
0 k#wr,
where Uy is the random variable representing the duration of a spell £ and
S(u |y ,;0) = exp(—/o S (s | 2r,_,;0) ds) (43)
k#ar_

This conditional expectation can be obtained using the following prop-
erty:
o
E(U | 2, ,;0) = /0 S(u| s, ,:0) du, (44)
(see, for instance, Klein and Moeschberger, 2003). Semi-markovian models
of transition between two or three states have been estimated by Flinn and

Heckman (1982b), Burdett, Kiefer and Sharma (1985), Bonnal, Fougére and
Sérandon (1997), and Gilbert, Kamionka and Lacroix (2001).

)

2.3 Unobserved Heterogeneity

Here heterogeneity is supposed to cover individual observable and unobserv-
able characteristics. Once again, we will omit the individual index.

2.3.1 Correlation between spells

Let us assume that the conditional model is time-homogeneous semi-markovian
and

hi(u | Yo, ye—13250:0) = hy(ue | Tr, 132300, k30, k) (45)

where v is a vector of individual unobserved heterogeneity terms and 6 is the
vector of parameters to be estimated.
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Let hi(ug | z7,_,; 2 Vg, | ki Hxvil,k) denote the conditional hazard func-
tion for the sojourn duration in the £ — th spell of the participation process,
when the currently occupied state is state £, , and the destination state is
k. Here z is a vector of exogenous variables, possibly time-dependent, v(; 1)
is an heterogeneity random term, which is unobserved, and Aj; is a vector
of parameters. The preceding hazard function is often supposed to be equal
to:

(| Trp_152y V7, | k> exr[,l,k) = exp [SO(ZQ Uy gzrl,l,k) + U:L‘rlfl,k] (46)

Several assumptions can be made concerning the unobserved random
terms v; . Firstly, v;; can be supposed to be specific to the transition from
j to k, so

vik #vjg  forany (4, k) # (5, k).

It can be also specific to the origin state, in which case :
vjr =vj for any k # j.

Finally, v;; can be supposed to be independent of states j and £ and
thus to be fixed over time for each individual, i.e.

vjr =v forany (j,k) € ExE, k#j.

This last assumption will be made through the remaining part of our
presentation. Let us remark that a fixed heterogeneity term is sufficient to
generate some correlation between spells durations. If we assume that v has a
probability density function with respect to the Lebesgue measure denoted
g(v | @), where « is a parameter, then we can deduce that the marginal
survivor function of the sojourn duration in the ¢ — th spell of the process,
when current state is #,,_,, has the form:

S(ug | Try_y; 230, ) = / S(ue | 2r,_y3230302,, ) glv ] @)dov
D¢g

= e {—eow) [ X ettt 0)d) o] o)

k#ar,
(47)

where 6, = {(qu_l’k)k;,éxrl_l , a} and D¢ is the support of the probabil-

1
ity distribution of the random variable v.
Such formalizations of heterogeneity have been used for estimation pur-

poses by Heckman and Borjas (1980), Butler et al. (1986, 1989), Mealli and
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Pudney (1996), Bonnal, Fougere and Sérandon (1997), Gilbert, Kamionka

i i

and Lacroix (2001), and Kamionka and Lacroix (2003).

e Example
To illustrate the treatment of unobserved heterogeneity in transition pro-

cesses, let us consider a realization of a two state time-homogeneous Markov
process. More precisely, let us assume that this realization generates a com-
plete spell in state 1 over the interval [0, 71] and a right-censored spell in state
2 over the interval [r1, 7.[. Transition intensities between the two states are
given by:

hi(t | Trp_13 Ve Azfl_l) = Az, T V2 (48)

where k € {1, 2}, A’Wq > 0andt € R', \; and \s are two positive param-
eters, and vy and w9 are two random variables supposed to be exponentially
distributed with a density function g(v | @) = a exp(—a v), @ > 0. We
want to deduce the likelihood function for this realization of the process
when vy and v9 are supposed to be spell-specific and independent (vy # v
and vy LLvg) or fixed over time (vy = vy = v). In the first case (v # vy and
v11lwg), the conditional likelihood function is:

Ly(A) = f(r,z7 | mo;v; A) S(Te—T71 | 7505 M), (49)
= (M+v1) exp{—(Ai+v1)71} exp{—(Aa+v2)(Te—T71)}

where v = (v1,v2)", A = (A, A2)', 2o = 1 and z,, = 2. Because v; and
v9 are unobserved, we must deal with the following marginalized likelihood
function:

i) = [ [ Lon a2 09) g(o | @) gle2 | @) dvy dvs
= f(711, 2+ | Zo;05A) S(Te — 71 | Z1; 05 A)

where

o 1
f(r,zr [ w05 A) = exp(=A1 1) (n + oz) (Al i 04) (51)

and  S(7e — 71| 7305 A) = exp(—Ag (Te — 1)) (ﬁ)

are the marginalized density and survivor functions of sojourn durations 7
and (7, — 71) in the first and second spells respectively.
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When the heterogeneity term is fixed over time (v; = vy = v), then the
marginal likelihood contribution is:

L(a,A) = /OOO(M—H)) exp {—(MiT1+A2(Te—T71)+v 7e) } @ exp(—av) dv,

« a
=exp{—M71 — A(7e —T1)} o {)\1 + P }

(52)
which is obviously not equal to the product of the marginalized density and
survivor functions of the sojourn durations in the first and second spells as
in the case where vy # vs. *

Now, let us assume that there exists a function v defining a one-to-one
relation between v and some random variable v, such as:

v =1, a) (53)

For instance, 1 can be the inverse of the c.d.f. for v, and v can be uniformly
distributed on [0, 1]. Then:

1
S(ug | Try_ 132302, )= /U S(ue | Tr,_y;239(v, )5 04, ) $(v) dv (54)

where ¢(.) is the density function of v. The marginal hazard function for
the sojourn in the £ — th spell can be deduced from equation (54) as:

e | 52300, ,) = = SCue | 005300, ) (59)

Using definitions (54) and (55), the individual contribution to the likeli-
hood function can be easily deduced and maximized with respect to 6, either
by usual procedures of likelihood maximization if the integrals (40) and (41)
can be easily calculated, or by simulation methods (see, e.g., Gouriéroux and
Monfort, 1997) in the opposite case.

For instance, let us consider the case of a semi-markovian model where
the individual heterogeneity term is fixed over time, i.e. v;; = v for any
(4, k) € ExE. From (20) and (46)-(47), the typical likelihood contribution
in the present case is:

n
Lv(e) = H hmT[ (Tl — Ti—1 ‘ Try_13250; emwil,xq)
/=

—

n+1 (56)

¢
Mew{- [ T maltlmzvite, 0 i)
=1 et

k#zr,_y
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with 7,41 = 7. by convention. Using relation (53), the marginalized likeli-

)

hood contribution obtained by integrating out v is:

£0) = [ Lu®) ) dv 57

When the integral is not analytically tractable, simulated ML estimators
of parameters o and (0;x)r-; can be obtained by maximizing the following
simulated likelihood function with respect to a and (6;5)k;:

1 N
In(0) = % 3 Lituna) (0) (58)
n=1

where v, is drawn from the distribution with density function ¢(.), which
must be conveniently chosen (for asymptotic properties of these estimators,
see Gouriéroux and Monfort, 1997).

2.3.2 Correlation between destination states

Let us assume that the conditional hazard function for the transition into
state k is given by the expression

hi(u | Yo, ye—1: 203 0) = hp(w3y) (Yo, -« ye—13268) G (59)

where ¢(.) is a positive function depending on the exogenous variables and
the history of the process, ; an unobserved heterogeneity component specific
to the individual ({; > 0), 8 and ~ are vectors of parameters, h{(u;7v) is a
baseline hazard function for the transition to state k (k € {1,...,K}). Let
us assume that (see Gilbert et al., 2001)

Ck = exp(ak U1 + bk ’02) (60)

where a and by are parameters such that ap = Ik > 2] for k =1,....K
and by = 1. The latent components vy and vy are assumed to be indepen-
dently and identically distributed with a p.d.f. denoted g(v; ), where « is
a parameter and vs € D¢, s = 1,2.

In this two factor loading model, the correlation between log((x) and
log(Ck'), Prg, is given by the expression

p ap ag + by by
k! =
Vai +b3Jal, + b,

(61)

18



where k. k' = 1,..., K. The contribution to the conditional likelihood func-

tion of a given realization of the process w = (y1,.. .. Yn, Ynt1) is:
n+1
E(G)Z/ / T fuelyo, - yemr; 2z 01,09: X) glvi;@) gvg; @) dvy dos
Da 'Da =
(62)
where

Sk L yo, - ye—1; 201,095 N) = hi(u | yo, .. yo—1; 23 v1,v3 A)%
u

XeXp{—/ > hy(t | yo, - ye—1; 201,023 A) d it} (63)
0 J7 %,y

and the conditional hazard function is given by expression (59). The expo-
nent dy is equal to 1 if & € {1,...,K}, and to 0 otherwise. X is a vector
of parameters and # = (a, A). As the last spell is right-censored, the corre-
sponding contribution of this spell is given by the survivor function

Un+1

f(yn+1\yo,---,yn;z;vl,vz;A)ZeXp{—/Zhj(t\yo,---,yn;Z;m,vz;/\)dt}
0 JF e,
(64)
where yn4+1 = (un41,0) (state 0 corresponds to right-censoring).

Bonnal et al. (1997) contains an example of a two factor loading model.
Lindeboom and van den Berg (1994), Ham and Lalonde (1996) and Eberwein
et al. (1997, 2002) use a one factor loading model in order to correlate the
conditional hazard functions. A four factor loading model has been proposed
by Mealli and Pudney (2003). Let us remark that, in the case of bivariate
duration models, association measures were studied by Van den Berg (1997).
Discrete distributions of the unobserved heterogeneity component can be al-
ternatively used (see, for instance, Heckman and Singer (1984), Gritz (1993),
Baker and Melino (2000)).

This way to correlate the transition rates using a factor loading model
is particularly useful for program evaluation on nonexperimental data. In
this case, it is possible to characterize the impact on the conditional hazard
functions of previous participation to a program by taking into account entry
selectivity phenomena.
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3 Markov Processes Using Discrete-Time Observa-
tions

The econometric literature on labor mobility processes observed with discrete-
time panel data makes often use of two elementary stochastic processes
describing individual transitions between a finite number of participation
states.

The first one is the continuous-time Markov chain, whose parameters
can be estimated through the quasi-Newton (or scoring) algorithm proposed
by Kalbfleisch and Lawless (1985). This kind of model allows to calculate
stationary probabilities of state occupation, the mean duration of sojourn in
a given state, and the intensities of transition from one state to another.

A main difficulty can appear in this approach: in some cases the discrete-
time Markov chain cannot be represented by a continuous-time process. This
problem is known as the embeddability problem which has been surveyed by
Singer and Spilerman (1976a, b) and Singer (1981, 1982). However, some
non-embeddable transition probability matrices can become embeddable af-
ter an infinitesimal modification complying with the stochastic property.
This suggests that the embeddability problem can be due to sampling er-
rors.

Geweke et al. (1986a) established a bayesian method to estimate the pos-
terior mean of the parameters associated to the Markov process and some
functions of these parameters, using a diffuse prior defined on the set of
stochastic matrices. Their procedure allows to determine the embeddabil-
ity probability of the discrete-time Markov chain and to derive confidence
intervals for its parameters under the posterior.

The second frequently used modelization incorporates a very simple form
of heterogeneity among the individuals: this is the mover-stayer model, which
was studied in the discrete-time framework by Frydman (1984), Sampson
(1990) and Fougére and Kamionka (2003). The mover-stayer model is a
stochastic process mixing two Markov chains. This modelling implies that
the reference population consists of two types of individuals: the “stayers”
permanently sojourning in a given state, and the “movers” moving between
states according to a non-degenerate Markov process.

These two modelizations will be successively studied in the following
subsection.
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3.1 The time-homogeneous markovian model

Let us consider a markovian process {X;, ¢t € IR} defined on a discrete
state-space E = {1,...,K}, K € IN, with a transition probability matrix
P(s,t) with entries p;x(s,t), (4,k) € E x E, 0 <s <t, where:

pik(s,t) =Pr{X; =k | X = j} (65)
K
and Z pjk(s,t) = 1. If this markovian process is time-homogeneous, then:
k=1
Pik(s,t) =pjr(0,t —s)=pjr(t—s), 0<s<t (66)
or equivalently:
P(s,t) = P(0,t —s)=P(t—s), 0<s<t (67)

This implies that transition intensities defined by:

hj,k = iitrﬁ)pj’k(t’t + At)/Ata At > 0, (ja k) € ExE, J 7é k (68)

are constant through time, i.e.:

hk(t | 1‘7'1,1;9) = hg,k(t ‘ 0) = h],k , 120, (]a k) € b xE, ]7& k (69)

where z;, | = j. These transition intensities are equal to the hazard func-
tions previously defined in equations (26) and (27). The K x K transition
intensity matrix, which is associated to the time-homogeneous markovian
process {X;,t € IR}, is denoted Q and has entries:

hj’kERJr'L'fj;ék, (j,k)EExE
K

9(j:k) = 8 =S hjm<0ifj=k jEE (70)

m=1
m#j

Let us denote @) the set of transition intensity matrices, i.e. the set of
(K x K) matrices with entries verifying the conditions (70). It is well known
(cf. Doob, 1953, p. 240 and 241) that the transition probability matrix over
an interval of length T can be written:

P(0,T) = exp(QT), T € R* (71)
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where exp(A) = 3232, A*/k! for any K x K matrix A.

Main properties of the time-homogeneous markovian process {X;, t €
IR™} with state-space E, are the following:

e sojourn times in state j (j € E) are positive random variables, which
are exponentially distributed with parameter —q(j,7):

with  Bluj] = varu;]'” = —q(j,4) ™",
e the probability of a transition to state k given that the process is
currently in state j (k # j) is independent of the sojourn time in state j,

and is found to be:

rig = —a(j,k)/a(j.5), k#j, (k) € ExXE (73)

e if the time-homogeneous Markov process {X;} is ergodic, its equilib-
rium (or limiting) probability distribution is denoted P* = (p7,...,p})" and
defined as the unique solution to the linear system of equations:

K
Q'P*=0 , with Y pj=1 (74)

=1

3.1.1 Maximum likelihood estimator of the matrix P using discrete-
time (multiwave) panel data

Let us suppose now that we observe 1 independent realizations of the process
{X:} at equally spaced times Ty, T1,..., T, (L > 1) such as: Ty—T;_1 =T,
¢=1,....L. Let us denote:

e 1 1(¢) the number of individuals who were in state j at time T;_; and
who are in state k at time T},

e n;(¢ — 1) the number of individuals who were in state j at time Tp_;.
Maximizing the conditional likelihood function given the initial distribution

at Tg:

L K
L(P.7)) =TI {pja(To—, Ty}
l:}i 4,k=1 (75)
= II {pis(0. 1)y

7.k=1

K

with 3 p;£(0,T) = 1, gives the (j, k) entry of the MLE P(0,T) for P(0,T):
k=1
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L L
Pk(0,T) = <Z n]-’k(ﬁ)) / <Z n;(f — 1)) (76)
=1 =1
(see Anderson and Goodman, 1957). If the solution Q to the equation:

P(0,T) = exp(QT), T > 0 (77)

belongs to the set @) of intensity matrices, then @ is a MLE estimator for Q.

Nevertheless, two difficulties may appear:?

e the equation (77) can have multiple solutions Q € @Q: this problem is
known as the aliasing problem;*

e none of the solutions @ to the equation (77) belongs to the set @ of
intensity matrices; in that case, the probability matrix P(0,T") is said to be
non-embeddable with a continuous-time Markov process.

3.1.2 Necessary conditions for embeddability

The unique necessary and sufficient condition for embeddability was given
by Kendall, who proved that, when K = 2, the transition matrix 13(0,T)
is embeddable if and only if the trace of ]3(0,T) is strictly greater than 1.
When K > 3, only necessary conditions are known; they are the following:®

1st necessary condition (Chung, 1967):

¢ if p; 1(0,T) = 0, then ﬁ;?,g(O,T) =0, Vn € IN, where ;5233(0,T) is the entry
(j, k) of the matrix [P(0,T)]",
o if §;1(0,T) # 0, then 5/} (0,T) # 0, Vn € IN;

2nd necessary condition (Kingman, 1962): det [ﬁ(O,T)] > 0,

3rd necessary condition (Elfving, 1937):

e no eigenvalue \; of P(0,T) can satisfy | A; |= 1, other than X; = 1;

e in addition, any negative eigenvalue must have even algebraic multiplicity;

3 A detailed analysis of these problems is developed in papers by Singer and Spilerman
(1976 a and b).

“The aliasing problem has also been considered by Phillips (1973).

®Singer and Spilerman (1976a) and Geweke, Marshall and Zarkin (1986b) survey this
problem.
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4th necessary condition (Runnenberg, 1962): the argument of any eigen-
value \; of P(0,T) must satisfy:

1 1 3 1

— 4+ )I< log \) < (= ——=)II

(5+ )M <argllog i) < (5 - %)

This last condition plays an important role in the remainder of the anal-

ysis.

3.1.3 Resolving the equation P(0,T) = exp(QT)

The proof of the following theorem can be found in Singer and Spilerman
(1976a):

If ]3(0,T) has K distinct S eigenvalues (M1, ..., \i) and can be written
P(0,T) = Ax Dx AL, where D = diag(\1, ..., A\x) and the eigenvec-
tor corresponding to N; (i = 1,...,K) is contained in the i_th column
of the (K x K) matriz A, then:

lngl ()\1) ces 0
log(P(0,T)) = QT = A x : . : x A7

0 long.()\K)
(78)

where logg; (Ni) = log | Ni | +(argh; + 2k;I1)i, k; € Z, is a branch of
the logarithm of \;, when \; € C. 7

Since equation (77) has as many solutions Q as there are combinations of
the form (logy, (A1),...,logy, (Ax)), the number of these solutions is infinite
when the matrix IS(U,T) has at least two complex conjugate eigenvalues.
However, an important implication of the fourth necessary condition for

SThe case of repeated eigenvalues arises very rarely in empirical applications. For its
treatment, the reader can consult Singer and Spilerman (1976a, p. 19-25).

"Let us recall that the logarithmic function is multiple valued in the complex set C. If
z=a+1b (z € C), then: log,(z) =log | z | +i(0 + 2kII), k € Z, with | z |= Va® + b2, and
6 = arg(z) = tan"'(b/a). Each value for k generates a distinct value for log(z), which is
called a branch of the logarithm.
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embeddability is that only finitely many branches of log(ﬁ(O, T)) need to be
checked for membership in Q). Indeed, this condition implies:

Vi, — Li(K) < k; <Ui(K) (79)

where  U;(K) = intpt

log | Ai | tan{(5 + £)II}— | arg A; ‘
211

log | N\i | tan{(3 — £)I}— | arg \; |

Li(K) = intpt 5TI

the function “intpt” being the integer part of a real number. So the number
of branches of A; which must be computed is equal to L;(K)+U;(K)+1, the
last one corresponding to the main branch (with k; = 0). Then the number
of solutions Q that must be examined for membership in @ is denoted k*(ﬁ)
and is equal to:

k*(P) =

j]:[l{Lj(K) +U;j(K)+1} ifv>1 (50)

1 ifo=0

where v denotes the number of complex conjugate eigenvalue pairs of the
matrix P(0,7). Let us remark that:

e for a real eigenvalue, only the principal branch of the logarithm must
be examined: other branches (with k; # 0) correspond to complex intensity
matrices Q;

e cach element of a complex conjugate eigenvalue pair has the same
number of candidate branches (see (79)); moreover, only combinations of
branches involving the same k; in each element of the pair must be com-
puted; all others correspond to complex intensity matrices; this fact explains
why the calculation of k*(ﬁ) is based on the number of complex conjugate
eigenvalue pairs, and why the number of branches needing to be checked for
each pair j is equal to L;(K)-+U;(K)~+1 rather than {L;(K) + U;(K) + 1}2.

If equation (77) has only one solution Q € @, this solution is the MLE
for the intensity matrix of the homogeneous continuous-time Markov process
{X;, t € R"}; an estimator for the asymptotic covariance matrix of Q has
been given by Kalbfleisch and Lawless (1985).
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3.1.4 The scoring procedure

Kalbfleisch and Lawless (1985) have proposed to maximize with respect to
6 the conditional likelihood function (75), i.e.

H {ep(@T)} 5", Qeq (81)

1,j=1

through a scoring algorithm. In this expression, {exp(QT)};; is the entry
(i,7) of the matrix exp(QT) = P(0,T) and 0 is the vector of extra diagonal
elements of the matrix @ (6 = 6(Q)). If it is assumed that matrix Q has
K distinct eigenvalues, denoted (dy, -, dk), matrices @ and P(0,T) can be
written as:

QR =A DQA_l = A diag (dl, s ,dK)A_l
and P(0,T) = exp(QT) = A exp(DgT)A™*

= A diag(e@T, ..., el TYA™! = A diag(Ay,---, Ag)A™!
(82)
These formulae lead to a convenient expression of the score (or gradient)
vector, which is:

_ 9 log L(Q 3{9XP(QT)}(z‘,j)/3(M
S) = { 0 qre } {Uzuzl i {exp(QT)}(i,j) } (83)

where

Hexp(QT)} _ 5~ 09 T° 2= w1, T°
Oqre _Z qug sl ;,;)Q qug @ s!
ZAngAfl

the matrix

oo s—1
8 T*
Z Dg(A 199 A)Dgy 1="—_ having elements:
Oqre s!

s=1r=0
edit _ ot
(Gké)(i,j)w 1 F ]
(Gkﬁ)(l,])t edit =7,

. . . _ 4-1.00Q
where (Ge)(; ;) is the entry (4,7) of the matrix Gy = A 1mA

26



The information matrix, which has the form

2 L K () _ o .
E _a IOgL(G) — Z Z E[Nz(e 1)] 8pz,](07T) apz,](OaT) (84)
0q1e0qy ¢ == rii(0,7) gy gy e

(see Kalbfleisch and Lawless, 1985, p. 864), is estimated by:

M(G) _ {i i nz(ﬂ — 1) api’j(O,T) api’j(O,T)} (85)

1=1i,5=1 pi,j(U,T) Oqre Oq ¢

The iterative formula for the scoring algorithm being:
Oni1 = On + M(0,) 1 S(6,)

where n > 0 and an initial value 6y = 0(Qy) is still to be chosen. Two cases
must be considered (the case with multiple solutions in @ is excluded):

e equation (77) admits only one solution for @ and this solution belongs
to the set @ of transition intensity matrices: @ is the MLE of the transi-
tion matrix @) of the time-homogeneous markovian process, and the matrix
M (6(Q))~" gives a consistent estimate of the covariance matrix of 6 = 6(Q);

e the unique solution Qg = @ to equation (77) doesn’t belong to the set
@: however, it may exist matrices P(0,T) = exp(QT) “close” to ]3(0,T) and
which are embeddable, i.e. such that Q € @ ; in this case, the scoring algo-
rithm of Kalbfleisch and Lawless (1985) can be applied to the maximization
of the likelihood (81) subject to the constraint @ € @ ; this constraint can
be directly introduced into the iterative procedure by setting

exp(a;j), a;j € R,j#1,(i,j) € ExE
K

%=\ qi=— qwi=4 i€E (86)
i

and the initial value g can be chosen to verify:

Qo = argmin | Qo — Q | (87)
Qe @Q

where Q = + log P(0,T).
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3.1.5 Bayesian inference

Geweke, Marshall and Zarkin (1986a) have developed a bayesian approach
for statistical inference on Q (and functions of Q) by using a diffuse prior
on the set of stochastic matrices. This approach can be justified with two
arguments:

e when the MLE of () is on the parameter set boundary, standard asymp-
totic theory cannot be applied any more; bayesian inference overcomes this
difficulty: the posterior confidence interval for () can be viewed as its asymp-
totic approximation;

e moreover, bayesian inference allows incorporating into the choice of the
prior distribution some information external to the sample (for example, the
distribution of sojourn durations in each state).

Let us denote Pk the set of (K x K) stochastic matrices, i.e. P, =
{P e Mgy :Vi,j € E,pi;>0and Yj° pi; =1}, Py the set of (K x K)
embeddable stochastic matrices, i.e. Py = {P € Mg i : P € Pg and 3Q €
Q.P(O,T) = exp(QT), T > 0}. For any P € P}, k*(P) denotes the number
of combinations of the form (78) belonging to @ and verifying equation (77).
Now let us consider a prior distribution on P € Pk, denoted u(P), a prior
distribution on @, denoted hy(P) and verifying Z:*:(f) hi(P) =1 for P €
Pg, and a IR-valued function of interest denoted g¢(@). If the posterior
embeddability probability of P is defined as:

fPI*{ L(P; N)u(P)dP

PP e P I N) = B Nu(P)ap

>0 (88)

then the expectation of g(Q) is equal to

I ST i (PYg[Qu(P)IL(P; N)u(P)dP

(89)

where the entry (i,5) of the matrix N is Y0, n; j(£), L(P; N) is the like-
lihood function and Q(P) is the transition intensity matrix corresponding
to the k-th combination of logarithms of the eigenvalues of matrix P. The
function of interest g(Q)) can be, for example, ¢(Q) = ¢; ;. (4,5) € E x E, or:

9(Q)=E {(qm' — E(qij | N;P € Py))* | N; P € P;;}
which is equivalent to:

9(Q) = E{a}; | N;P € P} — E*{q;; | N; P € P}
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The embeddability probability for P and the first moment of g(@Q) may
be computed using Monte-Carlo integration. This involves the choice of an
importance function from which a sequence of matrices {P;} € Pg can be
easily generated (see Geweke et al., 1986a, for such a function). Now let us
consider a function J(P;) such that J(P;) = 1if P, € P}, and J(P;) = 0
otherwise. If y(P;) is bounded above, then:

I
S J(P)L(P; N)u(P)/1(P)

lim =L
e iL(Pi;N)u(Pi)/I(Pi) (90)

i=1
= Pr[P € P} | N] a.s.

Moreover, if Hi(P) is a multinomial random variable such that Pr[Hy(P) =
1] = hy(P), and if ¢g(Q) is bounded above, then

I k*(Pl)
Y D H(P)glQw(P)]J(P)L(P: N)p(F;) /1(P;)
lim i=1 k=1
I—o00 (91)

1

Z L(Pi; N)p(F;) [ 1(F;)
=1

=E[( ) | N; P € Pj] a.s.

(see Geweke et al., 1986a, p. 658).

3.1.6 Tenure records

Up to now we concentrated on the statistical analysis of discrete-time ob-
servations of an underlying continuous-time Markov process. The available
information is sometimes richer than the one brought by discrete-time data,
but not as complete as the one contained in continuous-time data. Indeed it
can consist, for a given individual, in the joint sequence {(z7,,dr,) }¢=o,... 1, of
occupied states {xT, }s=o,....r. and of times {dr, }s=o,...;, already spent in these
states at distant observation times {7} }/—o...... Such data have been studied
in the continuous-time markovian framework by Magnac and Robin (1994),
who proposed to call this kind of observations “tenure records”. Figure 3
gives an example of a tenure record.

In this example, Ty, T7,T5 and T3 are the exogenous survey dates. The
process {X;};>o is first observed to be in state z7, = 1 at time Tp: it
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Figure 3
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occupies this state from date (Ty — dy) on. It is then observed to be in state
3 at successive times T} and T,. This state was entered at time (Ty — dy) =
(Ty — dg). Finally, the process is at time T3 in state zg, = 1 from date
(T3 — d3) on. Indeed it is possible that a spell covers two survey dates, as it
is the case for the second observed spell in the preceding example: obviously,
the information collected in T} is redundant.

Let us remark that in tenure records data sets, any sojourn duration is
right-censored with probability one. Typically, a tenure record consists of
a sequence {z7,,ds,tr}¢—0.... with the convention ¢;, = co. The process
{Xi}i>0 enters state z7, at time (Ty — d;) and is observed to stay in this
state for a duration greater than dy. Then the process is not observed (i.e.
is truncated) during a period of length t;, = (Ty41 — dgy1) — Ty. Let hyj(s, 1)
be the probability that the process {X;} enters state j at time ¢ given that
it was in state 7 at time s(s < t). If {X;} is time-homogeneous markovian,
then h;;(0,t —s) = hi;j(t —s),s < t. In this case, h;;(t) is equal to:

K
hij(t) = > pik(t) arj, (.§) EEXE (92)
k=1
ki

Consequently, the likelihood function for a tenure record {z7,,dy, ts}r—o,...L
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is the following:

L—-1
L= { H S(dy | xTz) h-’L’T[,mTHl (tf)} S(dr, | z7,)

=0
L—1 K
—exp(~Aug, ) T] { exp(Aar,d) Y- (ex0(Qt0)} ar, by i, |
=0 k=1

k;éle_i_l
(93)
where S(u | z7,) is the survivor function of the sojourn duration in state z7,
and @ is the transition intensity matrix with entries:

K
“Ni= =Y g, ifj =i
k=1
ki
Qij, if j#1

Q(Zaj) =

Magnac and Robin (1994) show that tenure records allow to identify the
intensity of transition from one state to the same state (for example, em-
ployment) when within-state mobility is allowed (i.e. when a worker can
directly move from one job to another). Discrete-time observations do not
present this advantage.

For a treatment of incomplete records, particularly in presence of un-
observed heterogeneity see, for instance, Kamionka (1998). Magnac et al.
(1995) propose to use indirect inference to estimate the parameters of a tran-
sition model under a semi-Markov assumption in the context of a censoring
mechanism.

3.2 The Mover-Stayer model
3.2.1 MLE for the discrete-time mover-stayer model

The mover-stayer model has been introduced by Blumen et al. (1955) for
studying the mobility of workers in the labor market. Subsequently, Good-
man (1961), Spilerman (1972) and Singer and Spilerman (1976a) have de-
veloped the statistical analysis of this model, essentially on the discrete-
time axis. The mover-stayer model in discrete time is a stochastic process
{X¢, £ € IN}, defined on a discrete state-space E = {1,...,K}, K € IN,
and resulting from the mixture of two independent Markov chains; the first
of these two chains, denoted {X},¢ € IN} is degenerate, i.e. its transition
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probability matrix is the identity matrix, denoted I. The other chain, de-
noted {X7 , £ € IN} is characterized by a non-degenerate transition matrix
M (s,u) =[ m;j(s,u) |, 4,5 =1,...,K,0 <s < u, where:

m; ;(s, u) =Pr{X3=j\X52=7j}, i,jEE, s,ue N, s<u (94)

K
and Zmi,j(s,u) =1.

j=1
Moreover, the Markov chain {X7,¢ € IN} is assumed to be time homoge-
neous, i.e.:

mij(s,u) =m;;j(0,u—s)=m;(u—s), 0<s<u (95)
which is equivalent to:

M(s,u) = M0O,u—s)=M(u-—s), 0<s<u (96)

Now let us assume that the mixed process {Xy, ¢ € IN} is observed at
fixed and equally distant times: 0,7,2T,...,LT, with T > 0 and L €
IN (L > 1). Transition probabilities for this process are given by the formu-
las:

pij(0,kT) =Pr[Xyr =5 | Xo=1], 4,j€FE, k=1,...,L (97)

_ { (1 = si)[my i (T)] ™) if jAi
si+ (1 —s)[mii(T)®)  if j=1i

where [m; ;(T)]*®) is the entry (i,4) of the matrix [M(T)]*, and (s;, 1 — s;),
with s; € [0,1], is a mixing measure for state i € E. So, in the mover-stayer
model, the reference population is composed of two kinds of individuals: the
“stayers”, permanently sojourning in the same state, and the “movers”, who
move from one state to another according to the time-homogeneous Markov
chain with transition probability matrix M (s,u),s < u. The proportion of
“stayers” in state i (i € E) is equal to s;.

The estimation of the transition matrix M (0,7T) and of the mixing mea-
sure s from a sample of N independent realizations of the process { Xy, ¢ € IN},
has been extensively treated by Frydman (1984) and then carried out by
Sampson (1990). The method developed by Frydman relies on a simple re-
cursive procedure, which will be rapidly surveyed. Formally, the form of the
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sample is:
{Xom)s Xr(n)> Xor(n)s - Xpr(n); 1 <n <N}

where Xyr(,) (K =0, ..., L) is the state of the process for the n_th realization
at time KT, and (L+1) is the number of equally spaced dates of observation.
Let us denote n;,,... i, the number of individuals for which the observed
discrete path is (ig,...,ir7), ni(KT) the number of individuals in state i at
time kT, n;;(kT) the number of individuals who are in state 4 at time (k—1)T
and in state j at time (kT'), n; the number of individuals who have a constant
path, 8 ie. g =1tr=...=47 =1,1 €K, Nij = Zﬁ:l n,‘j(kT) the total
number of observed transitions from state 7 to state j, n} = Zﬁ;ol n;(kT)
the total number of visits to state i before time (LT'), n; > 0 the proportion
of individuals initially (i.e. at date 0) in state i, i € E, with Zfil n; = 1.
The likelihood function for the sample is (Frydman, 1984, p. 633):

K K
L= 1] Li (98)
i—=1 i=1

where:

Li={si+(1- Sz‘)[mz‘z‘(UaT)];}”i(l — )"0 [y (0, T) e P
X H [mik(U,T)]nik

k=1

kAi
In this last expression, n;(0) is the number of individuals in state i at time 0,
n; is the number of individuals permanently observed in state ¢, (n;(0) — n;)
is the number of individuals initially in state 7 who experience at least one
transition in the L following periods, n;; is the total number of transitions
from state 7 to state k. Maximizing the function (98) with respect to M and

s subject to the constraints s; > 0, 1 € E, is equivalent to maximize the K
expressions:
L;=Log L; + N\;sj, i=1,..., K (99)

for which the first-order derivatives relatively to s; are:

8£z _ ni{l — [mii(O,T)]L} _ n,(O) — 1y
882' S; + (1 — Si)[mii(U,T)]L 1—s

+XN=0 (100)

8 Among the individuals permanently sojourning in state i, we must distinguish the
“stayers” from the “movers”; indeed, the probability that a “mover” is observed to be in
state i at each observation point is strictly positive and equal to {m;; (0, T)}~.
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Two situations should be considered:
First case: If s; > 0, then A\; = 0 and:

o i ni(0)[mi (0,T)]"
" n(0){1 = [myi(0,T)]E}

(101)

As shown by Frydman (1984, p. 634-635), the ML estimators of transition
probabilities m;; (with fixed i, and j varying from 1 to K) are given by the
recursive equation:

j—1 K
M (0,T) = ni{1 — M (0,7) = > mp(0,T)}) Y nig, j #4, i,j €EE
(= e
(102)
To solve equation (102), it is necessary to begin by setting j = 1if i # 1
and j = 2 if ¢ = 1. Furthermore, m;;(0,7T) is the solution, belonging to the
interval [0, 1], to the equation:

[nf — Lni(0)][mi; (0, T)]“+! + [Lng(0) — nyg][mi (0, T)]F
+[L’ni — n;‘]mii(O,T) + (n“ — Lni) =0 (103)

Frydman (1984) doesn’t notice that ;<0 whenever (%)g[mii(o,T)]L,
where (n;/n;(0)) is the proportion of individuals permanently observed in
state 7. In that case, the initial assumption s; > 0 is violated, and it is
necessary to consider the case where s; = 0.

Second case: If s; =0, then:
mij(O,T)znij/n;‘, V’i,j=1,...,K (104)

This is the usual ML estimator for the probability of transition from ¢ to j
for a first-order Markov chain in discrete time (for example, see Anderson and
Goodman, 1957, or Billingsley, 1961). A remark, which is not contained in
the paper by Frydman (1984), must be made. It may appear that Ln; = n;;
(with ms # 0), which means that no transition from state 7 to any other
distinct state is observed. This case arises when the number n; of individuals
permanently observed in state i is equal to the number n;(0) of individuals
initially present in state i (if n;(0) # 0). Then the estimation problem has
two solutions:

e s;=1 and m;; is non-identifiable (see equations (101) and (103)),

e s, =0 and m;; = 1.
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The first solution corresponds to a pure model of “stayers” in state 1,
the second to a time-homogeneous Markov chain in which state ¢ is absorb-
ing. The mover-stayer model, as a mixture of two Markov chains, is not
appropriate any more for state ¢. When this case appears in the applied
work, we propose to choose the solution s; = 0 and m;; = 1, especially
for computing the estimated marginal probabilities of the form Pr[ Xy, = 1],
k=0,...,L,i=1,.... K. The analytical expression of the estimated asymp-
totic covariance matrix for ML estimators M and § can be calculated using
second derivatives of expression (99).

3.2.2 Bayesian inference for the continuous-time mover-stayer
model

The mover-stayer model in continuous-time is a mixture of two indepen-
dent Markov chains; the first one denoted {X/, ¢+ € IRT} has a degenerate
transition matrix equal to the identity matrix I; the second one denoted
{X?, t € IR"} has a non-degenerate transition matrix M(s,t), 0 < s < t,
verifying over any interval of length T

M(0,T) = exp(QT), T € IR" (105)
Setting M (0, kT') = ||m; (0, kT)||, we get:
P(0,kT) = diag(s) + diag(Ix — s){exp(QT)}*, T >0, k=1,...,L (106)

where s = (s1,...,8k)", (Ix —s8) = (1 — s1,...,1 — sg)’, and diag(z) is
a diagonal matrix with vector x on the main diagonal. From the discrete-
time ML estimators of stayers’ proportions s and of the transition probability
matrix M (0, T), it is then possible to obtain the ML estimator of the intensity
matrix ) by resolving equation (105) (see subsection 2.1 above). But, due to
the possible problem of non-embeddability of the matrix M (0,T), it could
be better to adopt a bayesian approach, as the one proposed by Fougére and
Kamionka (2003). This approach is summarized below.

3.2.2.1 Definitions To write the likelihood-function and the expected
value under the posterior of some function of parameters, additional notation
is needed. Let Mk be the space of K x K stochastic matrices:

K
MK:{M:Hmij H : mijZO, Vi,j € E and Zmij:LViGE}.
j=1
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Clearly, the transition probability matrix M (0,T) belongs to Mg. Let
(M, s) be a prior mapping Mg x [0,1] into IR (the uniform prior will be
used in the application). p(M, s) is defined for M € Mg and for a vector of
mixing measures s = {s;, i € E} € [0,1]%. [0,1]¥ denotes the cartesian
product of K copies of [0, 1]. Let us denote @ the space of intensity matrices:

QZ{QZHQM H : qijZO, ’i,jEE, z;éjanquZSO,VzEE}

If M(0,T) is embeddable, there exists at least one matrix Q € @ defined
by the equation M (0,T) = exp(QT'), where T is the number of time units
between observations. Let M7} the space of embeddable stochastic matrices:

Mj = {M(0,T) € Mg : 3Q € Q, exp(QT) = M(0,T)}.

If Dg = Mg x[0,1]¥ represents the parameters space for the model, then
the space D}, = Mj; x [0, 1]% denotes the set of embeddable parameters and
D3 C Dg. As it was shown in subsection 2.1, the solution to M(0,T) =
exp(QT) may not be unique: this is the aliasing problem.

Let us consider now the set of matrices Q%) € @, solutions of the equa-
tion Q%) = log(M(0,T))/T, for k =1 ,..., B(M). B(M) is the number
of continuous-time underlying processes corresponding to the discrete-time
Markov chain represented by M(0,T) € Mg. We have B(M) € IN and
B(M) = 0 if M ¢ M}. Denote Q) (M) the intensity matrix that corre-
sponds to the k—th solution of log(M), k=1,...,B(M). Q®)(M), 1 <k <
B(M), is a function defined for M € M}, Q¥)(M) € Q. Let h¥) (M) be
a probability density function induced by a prior probability distribution on
the k—th solution of the equation M (0,T) = exp(QT) when M € Mj;. By
definition, () (M) verifies $>P hk) (M) = 1.,

Let ¢(Q,s) be a function defined for (Q,s) € @ x [0,1]X. This function
is such that the evaluation of its moments (in particular, the posterior mean
and the posterior standard deviation) is a question of interest. Thus, the
posterior probability that the transition probability matrix M is embeddable
has the form:

/D* L(M, s;N,n)u(M. s) d(M. s)
Pr[(M,s) € D} | (N,n)] = =&

(107)
i L(M,s;N,n)u(M,s) d(M,s)

3.2.2.2 Likelihood and importance functions The likelihood function
L = L(M,s; N,n) up to the initial distribution of the process {X(t), ¢ > 0}
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is B
Lo ] L (108)
where:
Li= [si+(1—s)x {exp(QT) i (1 — i)™ n; (0)—n;
x{exp(QT) i~ H {exp(QT)} ",

k#i,k=1

(109)

{exp(QT)}ir denoting the entry (i, k) of the K x K matrix exp(QT). If
Pr[M € M}, | N,n] > 0, then

Elg(Q,s) | (N,n); (M, s) € Dk] (110)

|3 b0 QW) 5) L(M,5:N.m) p(M, ) d(M. )

L(M,s;N,n) u(M,s) d(M,s)
D

In order to evaluate the integrals inside expressions (107) and (110), an
adaptation of the Monte-Carlo method may be used because an analytical
expression for Q) (M) or B(M) when K > 3 has not been found yet. Let
I(M, s) be a probability density function defined for (M,s) € Dg. I(M,s)
is the importance function from which a sequence {M;, s;} of parameters will
be drawn. We suppose that I(M,s) > 0 and that u(M,s) and g(Q,s) are
bounded above.

Let J(M) a function defined for M € M:

C(1if M e Mg
J(M) = {0 otherwise
Then
I
ZJ MlaslaN n) (Mzasl)/I(Mzasz)
lim = 111
Iﬁu}rloo T ( )
> L(Mj, s N,n) p(M;, si) /(M s;)
i=1

= Pr[(M,s) € D} | N,n]
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and

Elg(Q,s) | N,n;(M,s) ED;(] s

iB(M) hB(M;) g[QW (M), s;]T(M;) L(M;, s4; N,n) u(M;, s;)
= e I(M;, s;)
I—+o00 I
> J(M;) L(M;, i Nyn) pu(M;, s;)/1(M;, ;)

= (112)
where Pr[(M,s) € D} | N,n]is the probability under the posterior that the
discrete-time Mover-Stayer model is embeddable with the continuous-time
one, and E[g(Q,s) | N,n;(M,s) € Dy defines the posterior moments of
the parameters’ function of interest.

For a better convergence of estimators (111) and (112), I(M, s) should
be concentrated on the part of Dg where L(M,s; N,n) is nonnegligible.
For that purpose, if u(M,s) is not concentrated on some part of the set
Dy (that’s the case when p is uniform), I(M,s) can be taken proportional
to the likelihood L(M, s; N,n). Because drawing (M, s) from L(M,s; N,n)
is difficult, Fougeére and Kamionka (2003) choose a normal expansion for
L(M,s; N,n) with mean the ML estimator (M, ) and with covariance ma-
trix the inverse of the information matrix estimated at (M, 3).

When ¢(Q, s) and u(M,s) are bounded above, the convergence of the
estimator (112) is obtained almost surely. When the function ¢(@Q,s) does
not verify this property (for instance, if we are interested in the estimation
of ¢;j), the convergence of the expression (112) relies on the existence of the
posterior mean: E[g(Q,s) | (M,s) € D} N,n].

The covariance matrix V' associated to L(M,s; N,n) is block diagonal

with blocks consisting of matrices V;, 1 = 1,..., K, defined as:
-1
9*Log(Li(M, s; N,n)) 1

Vi(M,s) = —FE = R;(M,s)” 113
l( 78) [ 89k80l l( 78) ( )

. My 1,7 € E . . .
with 0,60, = <. ' ic R where R;(M, s) is the 1—th diagonal block of
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the information matrix R(M, s) associated to L(M, s; N,n). Then a sequence
of draws {(Mj, sg)}r—; . ; can be generated according to the density of a
multivariate normal distribution with mean (M,s) and covariance matrix
V(M,s) = R(M,s)~!. If we suppose that V;_ = P,P! is the Choleski’s
decomposition of the matrix V;_ obtained by dropping the last row and

column of matrix V; , and if y* ~ N(0x, I), then
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S; S;
mi1 mi1

F=pryk+| T | ~N( S V) (114)
MK —1 miKk—1

Finally, we can obtain m;x by setting m;x = 1 — Z]K;ll m; ;. Inside

the procedure, s;, (mj1,...,m; i), and V; are estimated by their MLE, re-
spectively 8;, (i 1,...,m; k), and V;. For more details, see Fougére and

Kamionka (2003).

3.2.2.3 - Limiting probability distribution and mobility indices
The mobility of movers can be appreciated by examination of the mobil-
ity indices for continuous-time Markov processes proposed by Geweke et al.
(1986b). For the movers process with intensity matrix @, four indices of
mobility can be considered:

M (Q) = —Klog[det%\/f(U,T))]/K = —tr(Q)/K

My(Q) =3T3 gij [i—j |

i=1K j=1 (115)

M3(Q)=— Hg'm)%'j
=1

Mi(Q) = —Rellog(\s)]

where:

. Hl(m) is the equilibrium probability in state ¢ for the movers, given by
equation Qlﬂ'l(m) =0, with Z{ilwgm) =1,

e the eigenvalues of the matrix M(0,T) denoted by Aq,..., Ak, are or-
dered so that | Ay [> ... >| Ax |,

e Re denotes the real part of the logarithm of the eigenvalue As.

We can also define the equilibrium (or limiting) probability distribution
for the mixed “mover-stayer” process { Xy, t € IR™}. For state 4, the limiting
probability, denoted m;, is given by:

K
= s+ > (1= s, i € B (116)
j=1

where:
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e 1 = {n;,7 € E} is the initial probability distribution (i.e. at the date
0) for the process {X;,t € R™},
(m)

e and m; " is the limiting probability of “movers” in state i.

It is easily verified that, for a purely markovian process (one for which
s; =0, Vi € E), the formula (116) becomes m; = Wl(m). The mobility indices
(115) and the limiting distribution (116) can be estimated using formula
(112) and taking respectively g(@Q,s) = M (Q) (1 <k < 4), or g(Q,s) =

3.2.2.4 Bayesian inference using Gibbs sampling The likelihood func-
tion of the sample X can be written

N 2
L(X|s, M, Xg =H > L(X (s, M. X o), 2n=k) Pr[zn=k|s, M, X ()]
n=1k=1

where L is the conditional contribution of the individual n given the initial
state X,(,) and the unobserved heterogeneity type z,. z, is an unobserved
indicator taking the value 1 if the individual is a stayer or the value 2 if the
individual is a mover.

The prior density on the parameter § = (s, M) is assumed to be the
product of the conjugate densities pi(s) and po(M), where

K
H bj) a;—

a] + )Sa] 1(1 _ Sj)bjfl
= J

is the Dirichlet distribution with parameters a; > 0, b; > 0, 5 = 1,..., K,
and

K
K Z ) K
=11 I my

k=1
K
i=1 i,j=1
H (cik)

is the matrix beta distribution with parameter o;; >0, 4,7 =1,..., K.
The conditional distribution of the unobserved type z, is thus

zn | 0, X(n) ~ B(L;p(X(n): 0)) (117)
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where

E(X(n) | s, M, Xo(n)azn = 1) Pr[zn =1 | s, M, Xo(n)]
2
Z[’(X(n) | s, M, Xo(n)azn = Z) PI‘[Zn =1 ‘ s, M, Xo(n)]
i=1

p(Xp;0) =

Combining the prior and the sample informations we obtain that

N N
sj | X, Z ~ Dirichlet <aj + 5702 20 b+ S i (2 - 1)) (118)
n=1

n=1

N
M | X,Z ~ Matrix beta (aik +3 (za - ONY ik =1, K) (119)
n=1
The Gibbs sampling algorithm runs like this:
Initialization: Fix an initial value 8(9) = (s(0) p7(0),

Update from (™) to §(™+1) by doing :

1 - Generate Z(™) according to the conditional distribution (117), given
6 =0 and X;

2 - Generate 9"+ = (s(m+1) pAr(m+1)) ysing the conditional distribution
(118) and (119), given Z = Z(™) and X.

Under general regularity conditions and for m large enough, the resulting
random variable (™) is distributed according to the stationary posterior
distribution u(@ | X). Draws from the stationary posterior distribution
(0 | X) may be used to obtain posterior estimates of § using an expression
similar to the one given by equation (112) (see Fougére and Kamionka, 2003).
Step one of the algorithm corresponds to a data augmentation step (see,
Robert and Casella, 2002).

4 Concluding remarks

This chapter has introduced reduced-form models and statistical methods
allowing to analyse longitudinal panel data on individual labor market tran-
sitions. The first section gave a very general presentation of methods con-
cerning continuous-time observations, while the second section focused on
the treatment of discrete-time observations for continuous-time discrete-state
processes.

Obviously, our survey did not intend to cover exhaustively a continu-
ously and rapidly growing literature. Among subjects treated in this field
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of research, two topics seem to be especially important. The first one is
the treatment of endogenous selection bias in dynamic populations (see Lan-
caster and Imbens, 1990, 1995, Lancaster, 1990b, Ham and Lalonde, 1996,
and Fougeére, Kamionka and Prieto, 2005). Indeed, some sampling schemes
for continuous-time discrete state space processes are such that the proba-
bility of being in the sample depends on the endogenous variable, i.e. being
in a given state (for example, unemployment) at some date. Consequently
inference from these endogenous samples requires specific statistical methods
which have begun to be elaborated (see the papers quoted above). Another
research area is the evaluation of the effect of public interventions such as
employment and training programs. Here the main problem is knowing if
these programs have a joint positive effect on earnings and employment rates
of beneficiaries (see, for example, papers by Card and Sullivan, 1988, Ham
and Lalonde, 1990, Heckman, 1990, Eberwein, Ham and Lalonde, 1997, Bon-
nal, Fougere and Sérandon, 1997, Heckman, Lalonde and Smith, 1999). In
order to avoid misleading results, this evaluation must take into account the
selection biases induced simultaneously by the process of eligibility to the
program and by the sampling scheme. Thus these two fields of research are
very closely connected.
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