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devising a simple and general algorithm for obtaining the normalized regression and applying 
it to the Oaxaca decomposition. This resolves the invariance problem in the detailed Oaxaca 
decomposition. An algorithm to calculate an asymptotic covariance matrix for estimates in the 
normalized regression for hypothesis testing is also derived. We extend these algorithms to 
non-linear equations where the underlying equation is linear and decompose differences in 
the first moment.     
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 Decomposition analysis, since the paper by Oaxaca (1973), explains wage differentials in terms of1

differences in individual characteristics (characteristics effect) and differences in the OLS
coefficients of wage equations (coefficients effect).

 Some have stopped doing detailed decompositions of the coefficients effect (e.g., Ham, Svenjnar2

and Terrell, 1998).

I. Introduction

“Normalized” regressions are a useful estimation tool for separately identifying the intercept

and coefficients of sets of dummy variables.  The coefficients of a set of dummy variables and the

intercept are identified in a regression framework by imposing the restriction that the coefficients

of a set of dummy variables sum to zero.  However, with few exceptions (e.g., Suits, 1984, Greene

and Seaks, 1991, Gardeazabal and Ugidos, 2004, and Yun, 2005) the normalized regression has not

penetrated everyday estimation practices despite its merits, with the exception of studies on industrial

wage differentials (Krueger and Summers, 1988,  Edin and Zetterberg, 1992, and Haisken-DeNew

and Schmidt, 1997). 

Recently it has been found that the normalized regression is very useful in resolving the

invariance or identification problem in detailed decompositions of wage differentials (Yun, 2005).

Oaxaca and Ransom (1999) show that the detailed Oaxaca decomposition of wage differentials is

not invariant to the choice of reference group when a set of dummy variables is used.   That is, if we1

use dummy variable(s), then the detailed coefficients effects attributed to individual variables are not

invariant to the choice of the omitted group(s).  This invariance or identification problem is well-

known to labor economists and has plagued decomposition analysis for a long time.2

This paper devises a simple and general algorithm for obtaining the normalized regression

and applying to the Oaxaca decomposition.  The simple algorithm  derives coefficients of the
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 The extension of the discussion to incorporate more sets of dummy variables is trivial.3

normalized regression and their covariance matrix using estimates and their covariance matrix from

the usual regression equation where reference groups are left out.  Once the normalized regression

is derived, we construct the Oaxaca decomposition equation in order to solve the invariance problem.

We discuss the inference of Oaxaca decomposition equation when the normalized regression is used

and point out that incorporating the normalized regression into the Oaxaca decomposition does not

change the inference of the decomposition equation for the overall characteristics and coefficients

effects. 

We extend the discussion to generalized decomposition analysis for differences in the first

moment, that is, the differences in the mean value of the variable of interest.  We show that the

algorithms used for linear regression to derive the normalized regression equation can be used for

deriving a normalized equation for a non-linear equation.  We also show that the Oaxaca-type

decomposition for the differences in the first moment can be easily combined with the normalized

equation.  For illustration purposes, we study changes in the labor market participation rate of white

women between 1980 and 2001 using the 1980 and 2001 waves of Panel Study of Income Dynamics.

II.  Deriving Normalized Regression

For illustration purposes, suppose that we have two sets of dummy variables in addition to

continuous variables in the regression equation.   The regression equation, suppressing individual3

subscripts, is

, (1)
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where there are two sets of categorical variables (d’s and q’s) and  L continuous variables (z’s); the

first and second sets of dummy variables (d’s and q’s) have J and K categories and J - 1 and K - 1

dummy variables in the equation, respectively; without loss of generality, the reference group is the

first category for each set of dummy variables.  We refer to equation (1) as the usual regression

equation.

Our question is how to derive coefficients for the normalized regression which does not omit

the reference groups in the estimating equation.  The proto-type normalized regression looks like

.

In order to construct the normalized regression, Suits (1984) proposes the restrictions

 and .  Since these restrictions do not have unique solutions, he specifies

the coefficients of the normalized regression as  and , and refines the

problem of deriving the normalized regression as finding values of  and .  It turns out that their

values are  and , where .  Since the publication

of Suits (1984), there have been several additional developments for deriving the normalized

regression.  

Greene and Seaks (1991) derive the normalized regression by obtaining expressions for the

restricted least square estimator and its covariance matrix in the classical regression model when the

matrix of exogenous variables is not necessarily of full rank.  Gardeazabal and Ugidos (2004) run

a regression after transforming the dummy variables to a deviation from the reference group, such
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as and .  In order to transform the dummy variables, they use the same restrictions as

Suits (1984), that is,  and .  However, the methods  developed by Greene

and Seaks (1991) and Gardeazabal and Ugidos (2004) may not be flexible enough to handle more

complicated econometric models (e.g., the selection model).  

An intuitive method to derive the normalized regression uses an averaging approach (Yun,

2005).  The normalized regression is the outcome of averaging all possible estimates with permuting

reference groups.  There is no need to run large numbers of regression equation in order to exhaust

all possible specifications of reference groups since any one regression equation can provide all

necessary information to obtain the normalized regression.  For example, suppose that we obtain

estimates for dummy variables ’s using the first category as the reference group as shown in

equation (1).  Using the obtained regression estimates, we can calculate the estimates when the

reference group is changed from the first category to the rth category.  The estimates made by

changing the reference group from the first category to the rth category will change from  to

, where  and .  And the intercept changes from  to   with the

change in the reference group.  We can do the same for variables ( ).  This averaging approach

implies that Suits’ constraint can be interpreted as the outcome of averaging of all possible estimates

with permuting reference groups.  Both the constraint approach by Suits (1984) and averaging

approach by Yun (2005) can be used whenever estimates of equation (1) are available. 

Once consistent estimates of equation (1) are obtained, we can manipulate these estimates
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 This paper assumes simple average of coefficients of dummy variables is used in order to derive4

the normalized regression equation.  Though it is easy to derive a normalized regression using  the
average of the dummy variables’ coefficients weighted by the share of each group, it has the
implication that the sum of the product of the dummy variables and their coefficients should be zero,
which is not attractive for the Oaxaca decomposition (Yun, 2005).

 The derivation of the normalized regression equation is developed by extending a method employed5

by Haisken-DeNew and Schmidt (1997). 

in order to obtain a normalized regression equation.   The normalized equation is:4

, (1')

where , , and .

To be succinct and derive a systematic solution, we may represent the above in terms of a

matrix.   Define the matrix of independent variables, , where ,5

, and .  X, D, Q and Z are, respectively, , ,

 and matrices where , and D and Q are matrices of two sets of

dummy variables, and Z is a matrix of continuous variables; 1 is a vector of ones ( ); Y is the

vector of the dependent variable ( );  is a coefficient vector ( ), where

, , and .  

A matrix representation of equation (1) is, .  In order to obtain the normalized

equation (1') it is useful to rewrite the equation as , where 

and .  The normalized regression, , is obtained by transforming
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 A normalized regression with weighted average of coefficients of dummy variables can be easily6

obtained by changing the weight matrix, W.  Define  and 

be vectors of shares of dummy variables, D and Q.  In order to find a weight matrix for obtaining a
normalized regression with weighted averages, replace   and  with  and

, and replace  with  and   when

 and , respectively.  and , which are  and

matrices, respectively.

to using a weight matrix, W, that is, , which yields ( ) vector of

, where .  The weight matrix

W is defined as

 , (2)

where , and 0, 1, and I are a matrix of zeros, a matrix of ones and an

identity matrix.6

The covariance matrix of estimates in the normalized regression equation ( ) can be also

easily obtained.  Suppose that the covariance matrix of estimates in the usual regression equation ( )

is obtained and is defined as

 .
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Similar to the derivation of , the covariance matrix for can be obtained by adding zero

vectors to the covariance matrix of as

 . (3)

Finally the covariance matrix of estimates for the normalized regression equation ( ) is computed

as . 

III.  Oaxaca Decomposition with Normalized Regression: Computation and Inference

The Oaxaca decomposition explains wage differentials due to differences in mean

characteristics and due to differences in returns to characteristics.  The decomposition equation using

the usual regression equation is as follows;

, (4)

where is an  vector of mean values of exogenous variables for group g

(A or B),  , and  is the average of the residuals for group g whose value is zero
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when OLS is used.

Based on the asymptotic variance for the characteristics and coefficients effects, the

hypothesis  test that the overall characteristics (coefficients) effect is significantly different from zero

can be derived.  The t-test for the characteristics and coefficients effects can be constructed as

 and , where and

 (Oaxaca and Ransom, 1998).

The invariance problem in the detailed Oaxaca decomposition is that the sum of the

coefficients effects of dummy variables  of D, i.e., , is not

invariant when the reference group is changed.  The same is true of the coefficients effects of dummy

variables of Q (Oaxaca and Ransom, 1999).  The normalized equation is ideal for solving the

invariance problem in the detailed Oaxaca decomposition (Yun, 2005).  The decomposition equation

with the normalized regression equation is

, (4')

where , and

 for group g (A or B).

The t-test for the characteristics and coefficients effects can be constructed as
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 Even if the normalized equation is constructed using weighted averages of sets of dummy variables,7

the conclusion on the inference is still valid.

 and , where  and

.

One may wonder whether utilizing the normalized regression equation for computing the

decomposition equation changes the size and inference of the overall characteristics and coefficients

effects, and therefore, the outcome of the t-tests.   It can be easily shown that both the size and the

asymptotic variances of the overall characteristics and coefficients effects do not change.  To show

these, first, note that and .  The next step is showing that

 and .  This step can be verified from the equality, .

Since  and , the equality on the size and asymptotic variances can be

established as and .   Therefore, the hypothesis test for the overall7

characteristics and coefficients effects is identical whether the usual or the normalized regression

equation is used for the decomposition equation.  Obviously, the size and variance of the detailed

decomposition for continuous variables (Z) do not change, but the size and variance of the detailed

decomposition for the sets of  dummy variables (D and Q) and the intercept change.
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 The key question is how to properly weight the contribution of each variable to the characteristics8

and coefficients effects.  In order to obtain a proper weight, we use two types of approximation; first,
we evaluate the value of the function using mean characteristics; second, we use a first order Taylor

expansion to linearize the characteristics and coefficients effects around  and ,

respectively.

IV.  Decomposing Differences in the First Moment and Normalized Equation

We will generalize what we have discussed using a linear equation in previous sections.

Suppose that a dependent variable is a function of a linear combination of independent variables,

though the function (F) itself may or may not be linear.  That is,

,

where matrices , , and  are defined same as in the section II;

F is a mapping of a linear combination of X ( ) to Y, and the function F is any once differentiable

function.

The difference in Y at the first moment, i.e., the mean difference of Y between groups A and

B can be decomposed as 

(5)

where “over bar” represents the value of the sample’s average.

The above decomposition is done at the aggregate or overall level;  this is widely accepted

as a way to decompose the differences in the first moment in terms of differences in characteristics,

, and in terms of differences in coefficients, .  The

next step is to find the contribution of each variable to the total difference (detailed decomposition).

Yun (2004) proposes the following detailed decomposition equation,8
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 The sequential replacement approach has its roots in simulation methods which switch one group's9

coefficient with other's.   It is usually done one by one in order to see the changes incurred due to the
substitution.   See Abowd and Killingsworth  (1984).

 See Doriron and Riddell (1994) for another approach to generalizing Even and Macpherson’s10

methodology.

, (6)

where

 ,  , and .

This decomposition methodology is free from path dependency, unlike a sequential

replacement approach that computes the contribution of an individual variable or its coefficient to

the differences in the first moment by switching values of one group with those of a comparison

group, such as in the method proposed by Fairlie (2003).   The sequential replacement approach is9

sensitive to the order of switching (see Ham, Svejnar and Terrell, 1998, p. 1137 for a discussion of

path-dependency).  The detailed decomposition equation (2) is a generalization of what Even and

Macpherson (1990, 1993) propose for only the characteristics effect when probit is used.  The

generalization by Yun (2004) is to both characteristics and coefficients effects and to when any non-

linear equation is used.  10

Suppose that we have obtained consistent estimates of and its covariance matrix, .  The

normalized equation for  can be obtained following the procedures described in the

section II.  That is, the normalized equation is ,where 



12

and , where  and the matrix W is defined same as in equation (2).

The asymptotic covariance of is computed as , where   is defined same as

in equation (3).

  The decomposition equation using the normalized equation is

(5')

and the detailed decomposition equation is 

,(6')

where

 ,  , , and

. 

Finally, the identity of asymptotic variance of characteristics and coefficients effects between

(5) and (5') can be established.  Let  and 

be characteristics and coefficients effects when the usual equation is used.  The asymptotic variances

of the  and  are calculated as

  and 
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,

where

  and  ,

where  and  are 1×T and 1×2T vectors of gradients (see Yun, forthcoming, for details of

deriving asymptotic variances). 

 Similarly we can compute the characteristics and coefficients effects when the normal

equation is used.  Let  and  be

characteristics and coefficients effects when the normal equation is used.  The asymptotic variances

of the  and  are calculated as

  and 

,

where
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 Participation rate is measured as the ratio of the employed to women of aged between 20 and 65.11

  and  ,

where  and  are  and  vectors of gradients. 

The equalities stating that asymptotic variances of the two effects are same whether we use

the usual or normal equations, that is,  and , are easily proven from the

equalities  and , and  and

.  Therefore, the hypotheses for the two effects are same whether the

usual or normalized equations are used.  Note that if , then the above findings are

simplified to those expressions in previous two sections, II and III. 

V.  Empirical Illustration

We illustrate how to use the normalized equation by studying sources of changes in the labor

market participation rates of white women between 1980 and 2001 using 1980 and 2001 waves of

Panel Study of Income Dynamics.   The participation rate has risen from 69.4% to 81.9%.  The first11

two columns of Table 1 show mean characteristics of white women in 1980 and 2001. We estimate

a probit model where the dependent variable has a value of one if woman is participating labor

market and zero otherwise.  In this probit model we have used two sets of dummy variables, one set
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for marriage (alas one variable, reference is not married) and the other for regions (three variables,

reference is the northeast region).  The last four columns of the Table 1 show both usual (with

reference groups omitted) and normalized estimates of the probit model of labor market

participation.  As it is clear from comparing the usual and normalized estimates, the intercept and

the coefficients on two sets of dummy variables are changed when transforming the usual estimates

to normalized estimates.

Table 2 shows a decomposition using the probit estimates.  It decomposes the predicted

changes in the participation rate of -12.3% into characteristics and coefficients effects.  The

aggregate characteristics effect shows that 29.8% of the total changes can be attributed to the changes

in characteristics between the 1980 and 2001, while 70.2% of total changes can be explain by

changes in behavioral response to characteristics (changes in coefficients) between the two years.

Table 2 shows that the size and asymptotic variance (or standard error) of the two aggregate effects

are identical whether the usual or the normalized estimates are employed.  It also shows that

decomposition components related to continuous variables are not affected by using the normalized

equation.  The characteristics effect of sets of dummy variables is not affected by the use of the

normalized equation as shown by characteristics columns of Marital Status and Regions.  However,

coefficients effects of Intercept, Marital Status and Regions, the focus of the identification problem

in the detailed decomposition, show changes when the normalized equation is used.  By using a

normalized equation, we can resolve the long standing issue of the identification or the invariance

problem in the detailed decomposition.
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VI.  Conclusion 

The normalized regression can solve the invariance problem in the detailed Oaxaca

decomposition.  We derive simple algorithms for obtaining the estimates and their asymptotic

covariance matrix for the normalized regression equation, provided that estimates and their

covariance matrix for the usual regression equation are obtained.  A decomposition equation utilizing

the normalized regression equation is discussed and its properties are compared with those of the

decomposition equation when the usual regression equation is used.

We also extend the discussion to when a non-linear equation is used for calculating the first

moment.  The findings with the linear regression equation can be generalized to non-linear equations

where we study differences in the first moments between comparison groups.  As an illustration, we

decompose changes in white women’s labor market participation rate between 1980 and 2001.  The

algorithms introduced in this paper for deriving normalized coefficients and their covariance matrix

are simple and practical.  Adopting these algorithms for deriving a normalized regression equation

facilitates a resolution to the identification or invariance problem in the detailed decomposition.
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Table 1. Mean Characteristics and Probit Estimates (Usual and Normalized)

Mean Probit Estimates (Usual) Probit Estimates (Normalized)

1980 2001 1980 2001 1980 2001

Intercept -0.936** -0.060 -1.027** -0.221

(0.425) (0.841) (0.426) (0.835)

Not Married 0.269 0.355 0.142*** 0.179***

(0.444) (0.478) (0.043) (0.060)

Married 0.731 0.645 -0.284*** -0.357*** -0.142*** -0.179***

(0.444) (0.478) (0.085) (0.121) (0.043) (0.060)

Northeast 0.250 0.193 -0.051 -0.018

(0.433) (0.395) (0.052) (0.085)

Midwest 0.303 0.244 0.098 0.151 0.047 0.133

(0.460) (0.429) (0.081) (0.138) (0.049) (0.082)

South 0.269 0.349 0.022 -0.057 -0.030 -0.074

(0.443) (0.477) (0.083) (0.124) (0.051) (0.069)

West 0.178 0.214 0.086 -0.024 0.034 -0.041

(0.382) (0.410) (0.095) (0.142) (0.061) (0.085)

Age 39.935 45.343 0.059*** 0.073** 0.059*** 0.073**

(12.887) (10.681) (0.020) (0.037) (0.020) (0.037)
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Age /100 17.609 21.700 -0.105*** -0.136*** -0.105*** -0.136***2

(10.840) (9.515) (0.023) (0.040) (0.023) (0.040)

Household Size 3.082 2.638 -0.006 0.064 -0.006 0.064

(1.489) (1.306) (0.045) (0.073) (0.045) (0.073)

Children aged 0.384 0.250 -0.467*** -0.469*** -0.467*** -0.469***

0 - 7 (0.719) (0.607) (0.062) (0.110) (0.062) (0.110)

Children aged 0.640 0.400 -0.121** -0.197** -0.121** -0.197**

8 - 18       (0.988) (0.781) (0.057) (0.095) (0.057) (0.095)

Education 12.373 13.440 0.134*** 0.076*** 0.134*** 0.076***

(2.241) (2.177) (0.015) (0.021) (0.015) (0.021)

Non-Labor Income 3.459 4.283 -0.052*** -0.011** -0.052*** -0.011**

($10,000) (3.562) (7.945) (0.009) (0.005) (0.009) (0.005)

Participation Rate 0.694 0.819

(0.461) (0.385)

Sample Size 2214 1211 2214 1121 2214 1211

Note.  a) ***, **, and * denote significance at the 1, 5 and 10 percent respectively.  b) Standard deviation and standard error are reported

in parenthesis for mean and probit estimates, respectively. c) Observations have been weighted using a weight variable provided by PSID.
d) Non-labor income is in 1995 constant dollar. 
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Table 2.  Decomposing Changes in Participation Rates of White Women between 1980 and 2001

Using Probit Estimates Using Normalized Estimates

Characteristics effect Coefficients Effect Characteristics effect Coefficients Effect

Estimate Share(%) Estimate Share(%) Estimate Share(%) Estimate Share(%)

Aggregate Effect -0.037*** 29.8 -0.087*** 70.2 -0.037*** 29.8 -0.087*** 70.2

(0.007) (0.015) (0.007) (0.015)

Intercept -0.225 182.9 -0.207 168.2

(0.240) (0.239)

Marital Status -0.008*** 6.9 0.012 -9.8 -0.008*** 6.9 0.003 -2.2

(0.002) (0.024) (0.002) (0.005)

       Not Married -0.004*** 3.4 -0.003 2.7

(0.001) (0.007)

      Married -0.008*** 6.9 0.012 -9.8 -0.004*** 3.4 0.006 -4.9

(0.002) (0.024) (0.001) (0.012)

Regions 0.000 -0.3 0.010 -7.9 0.000 -0.3 0.001 -0.9

(0.002) (0.027) (0.002) (0.003)

      Northeast -0.001 0.8 -0.002 1.4

(0.001) (0.005)

      Midwest 0.002 -1.6 -0.003 2.7 0.001 -0.8 -0.005 4.4

(0.002) (0.010) (0.001) (0.006)
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      South -0.001 0.5 0.007 -5.7 0.001 -0.7 0.004 -3.2

(0.002) (0.013) (0.001) (0.008)

      West -0.001 0.9 0.006 -4.9 -0.000 0.4 0.004 -3.4

(0.001) (0.009) (0.001) (0.006)

Age -0.111*** 89.9 -0.170 138.3 -0.111*** 89.9 -0.170 138.3

(0.032) (0.494) (0.032) (0.494)

Age /100 0.150*** -121.6 0.171 -138.8 0.150*** -121.6 0.171 -138.82

(0.028) (0.258) (0.028) (0.258)

Household size -0.001 0.8 -0.047 38.5 -0.001 0.8 -0.047 38.5

(0.007) (0.058) (0.007) (0.058)

Children aged 0 -  7 -0.022*** 17.7 0.000 -0.1 -0.022*** 17.7 0.000 -0.1

(0.004) (0.008) (0.004) (0.008)

Children aged 8 - 18 -0.010** 8.2 0.008 -6.4 -0.010** 8.2 0.008 -6.4

      (0.005) (0.011) (0.005) (0.011)

Education -0.050*** 40.3 0.200** -162.3 -0.050*** 40.3 0.200** -162.3

(0.006) (0.095) (0.006) (0.095)

Non-Labor Income 0.015*** -12.0 -0.044*** 35.8 0.015*** -12.0 -0.044*** 35.8

(0.003) (0.012) (0.003) (0.012)

Note.  a) ***, **, and * denote significance at the 1, 5 and 10 percent respectively.  b) Share is percentage share of predicted changes in the
participation rates of -12.3% (= 69.5 - 81.8).  The observed changes are -12.5% (= 69.4 - 81.9).  c) Standard errors are reported in parentheses.
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