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ABSTRACT

IZA DP No. 14860 NOVEMBER 2021

A Demand-Oriented Approach to Health 
Care Capacity Planning

The planning practice of health care capacities suffers from sectoral and regional constraints 

and it remains difficult to ensure an equal access for patients. Moreover, standard planning 

approaches lack the choice-theoretic grounding necessary for making reliable predictions of 

the demand and competition for supplied care. This paper presents a general equilibrium 

model designed to overcome such shortcomings. The derived metric of access to care 

is demand-oriented measuring the time patients waste seeking treatment. It contrasts 

with the usual metrics based on the floating catchment area (FCA) method, which suffer 

from supply bias and ad hoc specification. The approach is illustrated using Germany as 

an example. Much in line with official planning figures, overcapacities are shown to exist 

in all specialities. However, a closer look at the data provides a differentiated picture. 

Overcapacities are typical for urban regions and they go hand in hand with supply deficits 

in rural areas, albeit to a specialty-specific extent. In smaller towns, the supply is more in 

line with demand.
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1 Introduction 

All well-developed health systems use capacity planning to ensure adequate access to care and a 

balanced allocation of resources (Ono et al., 2013). Despite their central importance for health care, 

common planning methods suffer from two severe shortcomings. First, they typically assume that 

medical demand is exogenously determined although it cannot be denied that the demand is susceptible 

to subjective choice and social influence. Second, planning methods are almost without exception area- 

and sector-specific (Ono et al., 2013). Yet in reality, health care is characterised by a transfer of services 

between regions and sectors, especially between urban and rural areas and between the ambulatory and 

hospital care sectors. Thus, (Czihal et al., 2012) have shown for Germany that there are regions, which, 

as net importers of health services, meet only 39% of their local demand. By contrast, net exporters 

deliver up to 473% of services used locally. 

We contribute to the literature by developing a model that allows overcoming these two shortcomings. 

We do so by drawing on general equilibrium models developed over the last fifty years to explain 

interregional and intersectoral trade in goods and services. These models allow demand and supply 

relationships to be represented by equations that can be given a gravity-theoretical interpretation and 

that can be used for predicting trade very accurately (Anderson, 2011). They do so because they have a 

firm grounding in choice theory (Redding, 2010). 

Our paper synthesises the full equilibrium trade model of Anderson and van Wincoop (2003) and the 

partial equilibrium model set up by Bikker and de Vos (1992) for analysing inpatient care as the result 

of a supply-demand relationship. Using Germany as an example, we demonstrate that the presented 

approach is well suited to measure access to health care and to improve practical capacity planning. As 

one might expect, rural and deprived regions are shown to suffer from undersupply with health care 

resources while oversupply is a characteristic of urban areas. A closer look at the individual sectors 

reveals a more differentiated picture. 

Our paper is structured as follows: After Section 2 has briefly summarized the relevant literature, Section 

3 introduces a simple yet full equilibrium model that allows us to derive a gravity-theoretical 

representation of the demand for medical treatment. In Sections 4 and 5 it is shown how the model can 

be used for planning the spatial allocation of capacities that ensures an equal access to care. Section 6 

provides an application to Germany. Section 7 concludes. 

 

2 Related literature 

Gravity models are derived from the law of gravity in classical physics, which states that two bodies 

attract each other and that the strength of the attraction depends on the masses of the bodies and their 

physical distance (Anderson, 2011). This basic idea is taken up by economic gravity models. The first 
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theoretical modelling in the context of international trade was performed by Anderson (1979),1 who 

derived the gravity equation by assuming regionally distributed consumers and producers of 

commodities. The consumers maximize utility at constant elasticity of substitution (CES), the producers 

maximize profit, and interregional trade is costly. It follows from the model that, after controlling for 

size differences, trade between two regions depends on the ratio of bilateral trade costs to the average 

of all trade costs. Variants of the model in more recent publications supplement the assumption of CES 

preferences with an assumption of monopolistic competition in order to endogenize the specialization 

of producers. An early example of this is Bergstrand (1985). 

For the health economics literature, the description of catchment areas by Huff (1964) is the first 

reference for the concept of gravity. Lowe and Sen (1996) use a gravity equation to predict patient flows 

and catchment areas. The commonest approach to measuring access to health care captures the idea of 

gravity in supply-demand relationships by building on the floating catchment area (FCA) metric2 

(Delamater, 2013). However, this approach suffers from a strong supply bias, with the demand and 

competition for medical treatment represented only by functional ad-hoc specifications. As a 

consequence, estimates of model parameters are often determined anecdotally. For example, catchment 

areas are simply set at 30 to 60 minutes or at corresponding distances (Delamater, 2013), or are replaced 

by proxy variables (Matthews et al., 2019). The model presented in this paper endogenizes the demand 

for health care. We therefore call it demand oriented. The FCA metric is shown to refer to the special 

case characterized by exogenous demand. 

Trade models cannot be readily applied to the exchange of health services, as prices play different roles. 

In goods markets, it is clearly the task of prices to balance demand and supply. In health care, prices 

exist at best in the form of co-payments. Overwhelmingly, queues take over the allocative control 

function (Lindsay and Feigenbaum, 1984). Waiting times are even considered a "key policy concern" in 

many OECD countries, though not in all (Sá et al., 2019; OECD, 2020, Fig. 1.2). As a result, there is 

also a growing literature analysing the optimal management of queues when supply is taken as given. 

In contrast, the model presented here is intended to serve demand-oriented planning of regionally and 

sectorally differentiated capacities. It therefore assumes that when service capacities are scarce, waiting 

times form endogenously, which, in addition to spatial distances, dampen demand or redirect it to 

competing capacities and thus bring it into line with supply. It should be mentioned that, unlike waiting 

times, the quality of supply is not an object of the modelling, even though quality is undoubtedly 

demand-determining in practice. However, we refrain from modelling demand for quality, as it is not a 

primary consideration in capacity planning. 

 
1 It should be noted, however, that Leamer and Stern  (1970) had already provided the trade gravity equation by 

intuitive reasoning.  
2 Variants of the FCA method are the two-step (2S-), the extended two-step (E2S-), and the kernel density two-

step (KD2S-) FCA methods. They mainly differ from the base version in spatial weighting (Delamater , 2013). 

The integrated (i-) and the three-step (3S-) FCA methods are discussed in Section 3.4. 
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3 Modelling supply and demand for health care 

Health care capacities are assumed to differ by the place of service delivery, ݆ ∈ {ͳ, . . . , #݆}, and the type 

of medical speciality, ݏ ∈ {ͳ, . . . ,  They are demanded from individuals and used by those in their .{ݏ#

patient role. An individual’s place of residence is not necessarily the place where health services are 

delivered. On the contrary, it is assumed that patients travel from their homes, ݅ ∈ {ͳ, . . . , #݅}, to the 

locations, ݆, where they receive treatment. The spatial distance between the place of residence ݅ and the 

place of service delivery ݆ is denoted by ݀௜௝.  

 

3.1 The demand for health care 

An individual with residence at ݅ derives utility ܷ݅ from health-neutral consumption ܿ௜ and the bundle 

of treatments, 𝑛௜∙ = (𝑛௜௝𝑠)௝𝑠 ≡ (𝑛௜ଵଵ, . . , 𝑛௜௝𝑠 , . . ), which she or he expects to receive from providers of 

health services of specialities ݏ at locations ݆. Those health services, 𝑛௜௝𝑠, have a time dimension. The 

utility derived from them is modelled as a nested function, ௜ܸ ≡ ܸሺ ∙ܹሺ𝑛௜∙ሻሻ with ∙ܹ ≡ ሺ ଵܹ, . . , 𝑠ܹ, . . ሻ. 

The function 𝑠ܹ = 𝑠ܹ(𝑛௜ଵ𝑠, . . , 𝑛௜௝𝑠, . . ) captures utility derived from services of the speciality ݏ at the 

various locations. 

 ܷ݅ሺܿ݅, 𝑛݅∙ሻ ≡ ܿͳ݅−𝜇݅ ∙ ܸ𝜇݅݅  with  ܸ ≡ [∑ 𝜗𝑠 ∙ 𝑠ܹ𝜎−భ𝜎𝑠 ] 𝜎𝜎−ͳ
  and  𝑠ܹ ≡ [∑ 𝑛௜௝𝑠𝜔𝑠−భ𝜔𝑠  ௝ ] 𝜔𝑠𝜔𝑠−భ

.  (1) 

Substitutability is assumed at each of the three utility levels, albeit at constant elasticity and to varying 

degrees. At the top level, the elasticity of substitution is assumed to be one between health services and 

health-neutral consumption (Cobb-Douglas) and the partial elasticity of health-neutral consumption is ͳ − 𝜇௜. The parameter 𝜇௜ can be interpreted as need for health care. At the lowest level, the elasticity of 

substitution carries an index ݏ. The idea is that the substitutability between treatments from service 

providers of different locations varies with the kind of speciality, notably between elective and 

emergency treatments. In the case of emergency, spatial substitutability will be large, while 𝜔𝑠 will be 

smaller for elective treatment. Substitutability between different specialities will be particularly small 

with a tendency towards complementarity in demand, 𝜎 < ͳ. The relative importance of specialities is 

captured by the preference weights 𝜗𝑠. 

Individuals must keep to two budgets. One is for financing health-neutral consumption by income from 

labour. The price of consumption is normalized to one and the real wage rate is ݓ. The other budget is 

for spending time. It is restricted by ݕ which can be read as “year”. Time is used for labour supply, ݈௜, 
health services, 𝑛௜௝𝑠, and time wasted for receiving medical treatment. The latter includes both the time 

the patient needs to visit a doctor’s location, ௜݂௝𝑠 ≡ 𝑠݂ሺ݀௜௝ሻ, and the time, 𝜏௝𝑠, he or she has to wait for 
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receiving treatment. We assume that distances, unlike waiting times, are unalterable. The total time it 

takes to be treated is ݏ݆݅ݐ ≡ 𝑛݆݅ݏ ∙ 𝜏݆ݏ ∙  For model-related reasons, the time components are assumed .ݏ݆݂݅

to be multiplicatively connected. 

 ܿ௜ = ݓ ∙ ݈௜    (consumption budget)    (2) ∑ 𝑛௜௝𝑠௝𝑠 ∙ 𝜏௝𝑠 ∙ ௜݂௝𝑠 = ݕ − ݈௜  (time budget).     (3) 

By maximizing the utility function (1) subject to the constraints (2) and (3) we obtain the supply of 

labour, ݈௜, as a fraction of ݕ, the demand for health-neutral consumption, ܿ௜ = ܿ௜ሺݓሻ, as a function of 

the real wage rate, ݓ, and the demand for health services as a function of time wasted for receiving 

treatment, 𝑛௜௝𝑠. As distances are assumed to be unalterable the demand for health services, 𝑛௜௝𝑠ሺ𝜏. ሻ, is 

stated as a function of the waiting time profile, 𝜏. ≡ (𝜏௝𝑠)௝𝑠, while the dependence on ݂݆݅ݏ is supressed: 

 ݈௜ = ሺͳ − 𝜇௜ሻݕ , ܿ௜ሺݓሻ = ሺͳݓ − 𝜇௜ሻݕ, 𝑛௜௝𝑠ሺ𝜏. ሻ = 𝜇௜ݕ ∙ 𝜗𝑠𝜎 ∙ 𝜏ೕ𝑠−𝜔𝑠 ∙௙೔ೕ𝑠−𝜔𝑠்೔ሺ𝜏.ሻ    (4) 

The denominator, 

 ௜ܶሺ𝜏. ሻ ≡ ∑ 𝜗𝑠𝜎 ∙ 𝜏௝𝑠ଵ−𝜔ݏ ∙ ௜݂௝𝑠ଵ−𝜔ݏ௝𝑠 ,        (5) 

can be interpreted as a (preference-weighted) index of wasted time (per unit of demand for health care). 

The waste of time reduces the demand. It is worth noting that the index is independent of 𝜏. and constant 

in ݅ if 𝜔𝑠 = ͳ for all s (Cobb-Douglas). An implication of equations (3) and (4) is that 𝜇௜ݕ = ݕ − ݈௜ can 

be interpreted as the time which individuals expect to spend on the consumption of health services. 

 

3.2 The supply of medical treatment and general equilibrium conditions 

In many countries, the remuneration of health care services is strictly regulated. In such circumstances, 

doctors’ scope of action is limited to the amount of labour they choose to supply. In its simplest form, 

the amount 𝐿௝𝑠 chosen by a doctor practicing in speciality ݏ at location ݆ is merely a function of the 

doctor’s real fee, ℎ௝𝑠. Total labour supply, ௝ܵ𝑠, amounts to individual labour supply, 𝐿௝𝑠ሺℎ௝𝑠ሻ, multiplied 

by the number of doctors, ܣ௝𝑠. 

Patients demand health services that are time consuming. Let 𝐼௜ be the number of individuals with 

residence ݅ and ݔ௜௝𝑠 = .௜௝𝑠ሺ𝜏ݔ ሻ ≡ 𝐼௜ ∙ 𝑛௜௝𝑠ሺ𝜏. ሻ the time demanded by those individuals for treatment in 

speciality ݏ at location ݆. In equilibrium, the demand is met by supply,  

 ∑ ௜௝𝑠௜ݔ = ∑ 𝐼௜ ∙ 𝑛௜௝𝑠௜ ሺ𝜏. ሻ = ௝𝑠ܣ ∙ 𝐿௝𝑠 ≡ ௝ܵ𝑠 for all ݆(6)    .ݏ 

The equation shows that waiting times, 𝜏., have the function of balancing the demand for medical 

treatments and their supply. When high demand meets low supply, waiting times become long. 
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By assumption, consumer goods are produced at constant returns to scale using labour as the only input. 

In equilibrium, the supply price is determined by the cost of labour. Health services are financed by a 

payroll tax at rate ܾ. Thus ͳ − ܾ =  must apply. The balancing of revenues and expenditures in the ݓ

health budget requires 

 ܾ ∙ ∑ 𝐼௜ ∙ ݈௜௜ = ∑ ௝𝑠ܣ ∙ ℎ௝𝑠 ∙ 𝐿௝𝑠௝𝑠  .        (7) 

The right-hand side of eq. (7) represents doctors’ demand for consumption goods. By Walras’ Law this 

demand is equal to ∑ 𝐼௜ ∙ ሺ݈௜௜ − ܿ௜), which can be interpreted as the individuals’ excess supply of 

consumption goods. The payroll tax rate, ܾ, balances the budget. 

 

3.3 A gravity-theoretic representation of the demand for medical treatment 

The spatial distribution of the demand for medical treatment is given by ݔ௜௝𝑠. In order to investigate this 

distribution more closely, we introduce the concept of access to (health) care, 

௜𝑠ߚ  = .௜𝑠ሺ𝜏ߚ ሻ ≡ ∑ 𝜏௝𝑠−𝜔𝑠 ∙ ௜݂௝𝑠−𝜔𝑠௝  .       (8) 

The interpretation is suggested by the finding that eq. (4) implies a proportionality of ߚ௜𝑠 and the term ௜ܶ ∙ ∑ 𝑛௜௝𝑠௝ /𝜇௜, which measures the time a representative patient with residence ݅ wastes in receiving 

required medical care in specialty ݏ. The factor ∑ 𝑛௜௝𝑠௝  is individuals’ demand and ∑ 𝑛௜௝𝑠௝ /𝜇௜ patients’ 

need of medical care. The latter has to be multiplied with ௜ܶ as this index measures wasted time per unit 

of demand. The concept of access to care is central to the FCA literature and was introduced by Joseph 

and Bantock (1982) using ad-hoc reasoning. The demand-oriented approach, in contrast, allows 

interpreting ߚ௜𝑠 as a metric of wasted time. 

 

Remark 1: The demand-oriented approach suggests measuring access to care by the time patients 

waste seeking treatment. 

 

Next we set  

 𝐷௜𝑠 = 𝐷௜𝑠ሺ𝜏. ሻ ≡ ∑ ௜௝𝑠௝ݔ = 𝜗𝑠𝜎 ∙ 𝐼௜ ∙ ௜𝑠   with   𝐼௜ߚ = 𝐼௜ሺ𝜏∙ሻ ≡  𝜇೔௬்೔ሺ𝜏.ሻ 𝐼௜   (9) 

and interpret 𝐷௜𝑠 as the spatially aggregated demand for treatment in specialization ݏ at location ݅. It 
obviously increases proportionally with the product of 𝐼௜ and the index of access to care, ߚ௜𝑠. The 

structure of the equation is as in Bikker and de Vos (1992) except for the factor 𝐼௜/𝐼௜ = 𝜇௜ݕ/ ௜ܶ, which 

can be interpreted as a population adjustment with no direct analogue in their approach. The adjustment 

is made with regard to the need for health care, 𝜇௜, and the index of wasted time, ௜ܶ. Let us call 𝐼௜ the 
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adjusted number of individuals with residence ݅ . In the literature on FCA, 𝐷௜𝑠/ߚ௜𝑠 = 𝜗𝑠𝜎 ∙ 𝐼௜ is interpreted 

as (access-independent) demand potential (Delamater, 2013). Combining equations (4), (8), and (9), we 

obtain 

 𝜙௜௝𝑠 = 𝜙௜௝𝑠ሺτ. ሻ ≡ ௫೔ೕ𝑠஽೔𝑠 = 𝜏ೕ𝑠−𝜔𝑠 ∙௙೔ೕ𝑠−𝜔𝑠ఉ೔𝑠  .       (10) 

In the literature, 𝜙௜௝𝑠 is interpreted as a cross-border demand ratio (Czihal et al., 2012). It measures the 

proportion of ݅’s aggregate demand for treatment in ݏ to be supplied from ݆. 

Finally, we set  

௝𝑠ߙ  = .௝𝑠ሺ𝜏ߙ ሻ ≡ 𝜗𝑠𝜎 ∙ ∑ 𝐼௜ሺ𝜏∙ሻ ∙ ௜݂௝𝑠−𝜔𝑠௜        (11) 

so that the supply of treatment time in speciality ݏ at location ݆ can be written as 

 ௝ܵ𝑠 = ௝ܵ𝑠ሺ𝜏. ሻ = ∑ ௜௝𝑠௜ݔ =  𝜗𝑠𝜎 ∙ 𝜏௝𝑠−𝜔𝑠 ∙ ∑ 𝐼௜ ∙ ௜݂௝𝑠−𝜔𝑠௜ = 𝜏௝𝑠−𝜔𝑠 ∙  ௝𝑠 .    (12)ߙ

From this equation it can be seen that ߙ௝𝑠 measures the number of treatments carried out in speciality ݏ 

at location ݆. In the literature on FCA, ߙ௝𝑠 is interpreted as the population’s care potential and ௝ܵ𝑠/ߙ௝𝑠 

as the supply ratio (Delamater, 2013). 

 

Remark 2: In equilibrium, the aggregate supply of treatment time, ܵݏ ≡ ∑ ݆ݏ݆ܵ , is allocated to the 

places of residence in proportion to the product of the adjusted number of individuals, 𝐼̃݅, and the metric of access to care, ݏ݅ߚ,  

  𝐷௜𝑠 = 𝐼೔∙ఉ೔𝑠∑ 𝐼೔′∙ఉ೔′𝑠೔′ ∙ ܵ𝑠 .       (13) 

 

The proof is straightforward. From the equations (12) and (8) we obtain 

ݏܵ  = ∑ ݆ݏ݆ܵ =  𝜗ݏ𝜎 ∙ ∑ 𝐼̃݅ ∙ ∑ 𝜏݆ݏ−𝜔ݏ ∙ ݆݅ݏ𝜔−ݏ݆݂݅ =  𝜗ݏ𝜎 ∙ ∑ 𝐼̃݅݅ ∙  (14)     .ݏ݅ߚ

Eq. (13) follows when dividing eq. (9) by eq. (14).□ 

 

Proposition 1: The demand of individuals with residence ݅ for treatment in speciality ݏ at location ݆, ݔ௜௝𝑠, is proportional to the demand potential, the supply ratio, and an indicator of 

distance  

௜௝𝑠ݔ   = ቀ஽೔𝑠ఉ೔𝑠ቁ ∙ (ௌೕ𝑠ఈೕ𝑠) ∙ ௜݂௝𝑠−𝜔𝑠.       (15) 
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Eq. (15) follows from equations (10) and (12). By interpreting the terms in brackets as “masses”, the 

equation gets a gravity-theoretical meaning. 

When relying on the definition (10) of the cross-border demand ratios eq. (15) can be written as  

௜𝑠ߚ  = 𝜙௜௝𝑠−ଵ ∙ ௜݂௝𝑠−𝜔𝑠 ∙ ௌೕ𝑠ఈೕ𝑠 .         (16) 

By setting ݇𝑠 ≡ [∏ ሺ ௝ܵ𝑠/ߙ௝𝑠ሻ௝ ] భ#ೕ and taking geometric means of both sides with respect to ݆ we obtain 

the noteworthy equation 

௜𝑠ߚ  = ݇𝑠 ∙ [ሺ∏ 𝜙௜௝𝑠௝ ሻ భ#ೕ ∙ ሺ∏ ௜݂௝𝑠௝ ሻ𝜔𝑠#ೕ ]−ଵ.       (17) 

 

Proposition 2: The demand-oriented access metric is inversely proportional to the product of the 

geometric means of cross-border demand ratios and distances. 

 

Unsurprisingly, access to care is negatively affected by high cross-border demand ratios and long 

distances. Furthermore, each geometric mean can be substituted by the other at constant elasticity. 

 

3.4 A comparison of the gravity model with competing approaches 

As has been mentioned, the idea of predicting health care utilisation by deriving the gravity equation 

(15) from a supply-demand relationship goes back to Bikker and de Vos (1992). The difference to the 

present approach comes from the derivation of supply and demand for health care. Bikker and de Vos 

simply postulate the existence of such functions. They focus on a particular medical speciality and 

analyse supply and demand in partial equilibrium. The present approach is one of full equilibrium 

analysis. Individuals must divide their time budget between the different health services, and demands 

have to be balanced by supplies. The difference is reflected in the index of wasted time, ௜ܶ, which has 

no analogue in the approach taken by Bikker and de Vos. The index varies with waiting times and 

individuals’ willingness to substitute between specialities and locations. Thus, it indicates the strength 

of competition of demand for supply. Such an indicator should play a key role in health capacity 

planning. 

In the literature, the dominant approaches to measuring access to care build on the FCA metric. In its 

base version, this metric, ߚ௜,ி஼𝐴, is defined in a two–step procedure. In a first step, the population is 

aggregated to a demand potential using a geographical weighting scheme, ݃ሺ݀௜௝ሻ. In a second, the ratio 

of supply (often approximated by the number of service providers) to the demand potential is calculated 
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using the geographical weighting scheme to create the index (Delamater, 2013). If we suppress ݏ and 

equate ݃ሺ݀௜௝ሻ with ௜݂௝−𝜔 the metric can be written as  

௜,ி஼𝐴ߚ = ∑  ௌೕ∙௚ሺ𝑑೔ೕሻ∑ 𝐼೔′∙௚ሺ𝑑೔′ೕሻ೔′௝ = ∑ ௌೕ∙௙೔ೕ−𝜔∑ 𝐼೔′ ∙௙೔ೕ−𝜔೔′௝  .       (18) 

A structurally similar formula can be derived from the gravity model by relying on equations (8), (11), 

and (12): 

௜,஽ߚ = ∑ 𝜏௝−𝜔 ∙ ௜݂௝−𝜔௝ = ∑ ௌೕఈೕ ∙ ௜݂௝−𝜔௝ = 𝜗−𝜎 ∙ ∑ ௌೕ∙௙೔ೕ−𝜔∑ 𝐼೔′ ∙௙೔ೕ−𝜔೔′௝      (19) 

For simplicity, let us call ߚ௜,஽ the demand-oriented metric of access to care. It is a function of the 

adjusted number of individuals, 𝐼௜ = 𝜇೔௬்೔ 𝐼௜, whereas ߚ௜,ி஼𝐴 is one of the unadjusted number, 𝐼௜. This 

difference does not matter if the adjustment factor, 𝜇௜ݕ/ ௜ܶ, is constant in ݅. This is clearly the case if 

both 𝜇௜ and ௜ܶ are constant in ݅. Constancy of ௜ܶ is ensured if individuals’ preferences are of the Cobb-

Douglas type. The metrics, ߚ௜,ி஼𝐴 and ߚ௜,஽, are then equal up to a constant factor, as is easily seen when 

comparing the equations (18) and (19). This is at odds with empirical visualizations of ߚ௜,ி஼𝐴 and ߚ௜,஽, 

which differ considerably (see Section 6.2). 

 

Proposition 3: The FCA metric is equal to the demand-oriented metric if the need to adjust the 

population for health care need, distances, and waiting times is ignored. In that case, the 

demand potential is proportional to the population size, 𝐷௜/ߚ௜ = ݇ ∙ 𝐼௜. 
 

However, it should not go unmentioned that the literature no longer regards the FCA metric as state of 

the art. Wan et al. (2012), for example, find it likely that it overestimates the demand for health care. 

Criticism of this kind has led to efforts to develop more refined metrics. Examples that deserve special 

mention are the three step (3S-) and the integrated (i-) FCA metrics proposed by Wan et al. (2012) and 

Luo (2014), respectively: 

௜,ଷௌி஼𝐴ߚ  = ∑  ௌೕ∙௚ሺ𝑑೔ೕሻ∙ீయ𝑆𝐹𝐶𝐴ሺ𝑑೔ೕሻ∑ 𝐼೔′∙௚ሺ𝑑೔′ೕሻ∙ீయ𝑆𝐹𝐶𝐴ሺ𝑑೔′ೕሻ೔′௝   with 𝐺ଷௌி஼𝐴(݀௜௝) = ௚ሺ𝑑೔ೕሻ∑   ௚ሺ𝑑೔ೕ′ሻೕ′: 𝑑೔ೕ′ < 𝑑̅    (20), 

௜,௜ி஼𝐴ߚ  = ∑  ௌೕ∙௚ሺ𝑑೔ೕሻ∙ீ೔𝐹𝐶𝐴ሺௌೕ,𝑑೔′ೕሻ∑ 𝐼೔′∙௚ሺ𝑑೔′ೕሻ∙ீ೔𝐹𝐶𝐴ሺௌೕ,𝑑೔′ೕሻ೔′௝   with 𝐺௜ி஼𝐴( ௝ܵ, ݀௜௝) = ௌೕ∙௚ሺ𝑑೔ೕሻ∑   ௌೕ′∙௚ሺ𝑑೔ೕ′ሻೕ′: 𝑑೔ೕ′ < 𝑑̅  (21) 

where  ݀̅ denotes some threshold distance defining a catchment. The obvious difference to the FCA 

metric comes from the factor 𝐺∗ி஼𝐴. It has been added to the 3SFCA metric to incorporate the potential 

for competition among service providers when more than just one provider is located within i’s 

catchment area (Delamater, 2013, p. 31). By contrast, Luo (2014) proposes the iFCA metric to 
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“moderate the over- or under-estimating of population demand that occurred with previous methods”. 

To this end, the demand for health care is “adjusted by a Huff Model-based selection probability that 

reflects the impacts of both distance impedance and service site capacity”. After running simulations, 

Paez et al. (2019) conclude that access to health care is best measured by the iFCA metric. However, all 

FCA-based metrics are open to the same kind of criticism. First, they are supply-biased which is not 

appropriate for demand-oriented resource planning. Secondly, competition among service providers is 

modelled by functional ad-hoc specifications. All this is different in the demand-oriented model. 

Demand is derived from utility maximization and the effect of competition is captured by the length of 

waiting times,  𝜏௝𝑠, which are endogenously determined by the balancing of demand and supply. 

 

4 Planning an equal access to care 

Health equity is of paramount importance in any conception of social justice (Sen, 2002). This is 

recognized in most countries and the reason why health authorities pay the greatest attention to health 

care capacity planning and resource allocation (Ono et al., 2013). In the following, we interpret the 

equity objective as a mandate to establish equal access to care, 

𝑠ߚ̅  ≡ ௜𝑠ߚ̅ = ∑ 𝜏̅௝𝑠−𝜔𝑠 ∙ ௜݂௝𝑠−𝜔𝑠௝   for all ݅(22)     .ݏ 

In other words, the time patients waste seeking treatment should not depend on their residence (Remark 

1). Just to avoid misunderstandings: This does not mean an equalisation of the indices of wasted times, ௜ܶ. The metric of access to care, ߚ௜𝑠, takes into account not only waiting times and distances, but also 

the need for medical treatment which ௜ܶ does not. In this section, we show how to determine the spatial 

allocation of capacities, which is compatible with an equal access to care. 

 

4.1 Planning the spatial allocation of capacities  

Distances are difficult to shorten in practice. For this reason, distances are assumed fixed and 

unalterable. The only way to vary ̅ߚ௜𝑠 then is to control waiting times, 𝜏̅௝𝑠. Eq. (22) defines a system of 

equations which under conditions of regularity can be used to determine the matrix 𝜏̅∙−𝜔𝑠 ≡ ሺ𝜏௝̅𝑠−𝜔𝑠ሻ௝𝑠 =ሺ𝜏̅௝𝑠−𝜔𝑠ሺ̅ߚ𝑠ሻሻ௝𝑠 as a function of ̅ߚ𝑠.3 By the system’s linear structure, 𝜏̅௝𝑠−𝜔𝑠(̅ߚ𝑠) = 𝑠ߚ̅ ∙ 𝜏̅௝𝑠−𝜔𝑠ሺͳሻ must hold. 

Associated with ̅ߚ∙ = ሺ̅ߚ𝑠ሻ𝑠, there is the index of wasted time, 

 ܶ̅௜(̅ߚ∙) ≡ ௜ܶ ቀ𝜏̅. ቁ(∙ߚ̅) = ∑ 𝜗𝑠𝜎 ∙ 𝜏̅௝𝑠ଵ−𝜔𝑠(̅ߚ𝑠) ∙ ௜݂௝𝑠ଵ−𝜔𝑠௝𝑠  

 
3 Solvability requires invertible matrices ሺ݂݆݅ݏ−𝜔𝑠ሻ௜௝  for all ݏ and a fortiori equality of #݆ and #݅ (Gentle, 2007, p. 

211). 
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            = ∑ 𝜗𝑠𝜎 ∙ 𝑠ଵ−ଵ/𝜔𝑠ߚ̅ ∙ 𝜏̅௝𝑠ଵ−𝜔𝑠ሺͳሻ ∙ ௜݂௝𝑠ଵ−𝜔𝑠௝𝑠 .        (23) 

Let 𝐼௜̅ ≡ 𝐼௜(̅ߚ∙) = 𝜇೔௬்̅೔(ఉ̅∙) 𝐼௜ denote the adjusted number of individuals associated with ̅ߚ∙ Furthermore, let 𝐷̅௜𝑠 = 𝐷௜𝑠ሺ𝜏̅∙ሺ̅ߚ𝑠ሻሻ and ܵ𝑠̅ = ∑ ܵ௝̅𝑠௝ = ∑ ௝ܵ𝑠ሺ𝜏̅∙ሺ̅ߚ𝑠ሻሻ௝  denote the associated demand and aggregate 

supply, respectively. For an equal access to health care, eq. (13) takes the particularly simple form of  

 𝐷̅௜𝑠 = 𝐼೔̅∑ 𝐼೔̅′೔′ ∙ ܵ𝑠̅.         (24) 

Adjusting waiting times requires rebalancing supply and demand. Of the two sides, only supply can be 

the direct object of planning. By contrast, demand at location ݅, 𝐷̅௜𝑠, will respond endogenously to any 

changes in supplies and waiting times. The variables that allow planners to control the supply of health 

care are the number and location of service providers, ̅ܣ௝𝑠, and the hours worked by doctors, 𝐿௝𝑠(ℎ̅௝𝑠), 

as functions of real fees, ℎ̅௝𝑠. In the short term, it makes sense to assume fixed and location-independent 

hours of working. This can mean, for example, that doctors work five days at 8 hours a week, while 

hospitals are open around the clock (24/7). Thus assuming 𝐿̅𝑠 ≡ 𝐿௝𝑠(ℎ̅௝𝑠) to be fixed for all ݆  the locally ,ݏ

required number of service providers is obtained by dividing planned capacity ݆ܵ̅ݏ by 𝐿̅ݏ: 

௝𝑠ܣ̅  = ௌ̅ೕ𝑠𝐿̅𝑠            (25) 

Hence, the primary task of planning is to compute the allocation of local capacities, ݆ܵ̅ݏ, sustaining an 

equal access to care. We solve this computation by first deriving values of ݆ܵ̅ݏ as functions of ̅ߚଵ, ,𝑠ߚ̅ … 

We then show how to determine the values of ̅ߚଵ, ,𝑠ߚ̅ … We start with the first step. 

Equations (14) and (22) imply  

 
ௌ̅𝑠ௌ̅భ = 𝜗𝑠𝜎𝜗భ𝜎 ఉ̅𝑠ఉ̅భ ,          (26) 

i.e. planned relative supplies need to equate the product of planned relative accesses to care, ̅ߚ𝑠/̅ߚଵ, and 

the ratio of preference weights, 𝜗𝑠𝜎/𝜗ଵ𝜎 ≡ 𝜌𝑠. 

By combining equations (12), (23), and (26) we are able to determine planned local supplies, ݆ܵ̅ݏ, as 

functions of planned aggregate supplies, ܵ̅ଵ, ,ݏ̅ܵ …, and target metrics of access to care, ̅ߚଵ, ,𝑠ߚ̅ …: 

ݏ݆̅ܵ  = 𝜗ݏ𝜎 ∙ 𝜏݆̅ݏ−𝜔ݏ ∙ ∑ 𝐼̃ ̅݅ ∙ ݅ݏ𝜔−ݏ݆݂݅ = 𝜗ݏ𝜎 ∙ ݏߚ̅ ∙ 𝜏݆̅ݏ−𝜔ݏሺͳሻ ∙ ∑ 𝜇݅ݕ∑ 𝜗ݏ′𝜎 ′ݏͳ−ͳ/𝜔′ݏߚ̅∙ ∙𝜏݆̅′ݏ′ͳ−𝜔ݏ′ሺͳሻ∙݂݆݅′ݏ′ͳ−𝜔ݏ′݆′ݏ′ 𝐼݅ ∙ ݅ ݏ𝜔−ݏ݆݂݅  

       = ܵ𝑠̅ ∙ ∑ 𝜇೔௬∙𝐼೔∙𝜏̅ೕ𝑠−𝜔𝑠ሺଵሻ∙௙೔ೕ𝑠−𝜔𝑠∑ ௌ̅𝑠′∙ఉ̅𝑠′−భ/𝜔𝑠′ ∙𝜏̅ೕ′𝑠′భ−𝜔𝑠′ሺଵሻ∙௙೔ೕ′𝑠′భ−𝜔𝑠′ೕ′𝑠′  ௜       (27) 
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4.2 Determining target metrics of access to care 

In order to determine the unknown target values ̅ߚଵ, ,𝑠ߚ̅ …, we add up the equations (27) over ݆, rely on 

eq. (22), and reduce: 

 ͳ = ∑ 𝜇೔௬∙𝐼೔∙∑ 𝜏̅ೕ𝑠−𝜔𝑠ሺଵሻ∙௙೔ೕ𝑠−𝜔𝑠ೕ∑ ௌ𝑠̅′∙ఉ̅𝑠′−భ/𝜔𝑠′ ∙𝜏̅ೕ′𝑠′భ−𝜔𝑠′ሺଵሻ∙௙೔ೕ′𝑠′భ−𝜔𝑠′ೕ′𝑠′  ௜ = ∑ 𝜇೔௬∙𝐼೔∑ ௌ̅𝑠′∙ఉ̅𝑠′−భ/𝜔𝑠′ ∙𝜏̅ೕ′𝑠′భ−𝜔𝑠′ሺଵሻ∙௙೔ೕ′𝑠′భ−𝜔𝑠′ೕ′𝑠′  ௜    (28) 

By again relying on eq. (26) we end up with 

 ͳ = ∑ 𝜇݅ݕ ∙ 𝐼݅ ∙ ሺ∑ ′ݏͳ−ͳ/𝜔ߚ̅ ∙ 𝜌ݏ′ͳ/𝜔ݏ′ ∙ ′ݏͳ−ͳ/𝜔′ݏ̅ܵ ∙ ∑ 𝜏݆̅′ݏ′ͳ−𝜔ݏ′ሺͳሻ ∙ ′ݏ′݆′ݏͳ−𝜔′ݏ′݆݂݅ ሻ−ͳ௜    (29) 

Hence, we obtain ̅ߚͳ as an implicit function of ܵ𝑠̅, 𝜇௜, 𝐼௜, 𝜔𝑠, ௜݂௝𝑠, and 𝜗𝑠𝜎/𝜗ଵ𝜎 = 𝜌𝑠 (all ݆݅ݏ). The 

remaining target values of access to care, ̅ߚ𝑠 (ݏ > ͳ), are finally obtained from eq. (26). 

To summarize, the following data allow us computing the planned number of local service providers, ̅ܣ௝𝑠: (i) the need for health care, 𝜇௜, (ii) the number of individuals 𝐼௜ with residence ݅, (iii) the time 

patients need to visit doctors’ locations, ௜݂௝𝑠, (iv) the elasticity of spatial substitution, 𝜔𝑠, (v) the ratios 

of preference weights, 𝜌𝑠, (vi) standard working times, 𝐿̅ݏ, and (vii) planned aggregate supplies, ܵ̅ݏ. 

 

5 Parameterization 

In this section, we propose an estimation strategy for the demand-oriented planning model and a test 

strategy for making an informed choice between the demand-oriented and the FCA-based metrics. By 

applying our approach to Germany, its practicality is demonstrated in Section 6. 

 

5.1 Estimating distance decay functions 

The use of eq. (22) for planning an equal access requires estimating the distance decay function ௜݂௝𝑠−𝜔𝑠 𝑝ݔ݁≡ 𝑠݂ ሺ݀௜௝ሻ. Functional specifications for 𝑠݂ found in the literature are among others: logarithmic (Huff, 

1963), linear (Fülöp et al., (2011), and quadratic (Luo and Qi, 2009). The latter is related to the Gaussian 

variogram model (Chilès and Delfiner, 1999). Gravity models are found to fit best when using the 

squared root of the travel time (Lowe and Sen, 1996), we therefore follow Luo and Qi and set 

ሺ݆݀݅ሻݏ݂  ≡  𝜃ݏ ∙ ݆݀݅ʹ  with  𝜃𝑠 ≡ − ଷ𝜔𝑠𝜑𝑠మ  .       (30) 

The parameter 𝜃ݏ is estimated by relying on eq. (15): 

௜௝𝑠ݔ  = 𝑝ݔ݁  (𝜃௜𝑠 + 𝜃௝𝑠 + 𝜃𝑠 ∙ ݀௜௝ଶ )         (31) 
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The identification of 𝜃ݏ takes advantage of the fact that the remaining factors on the right-hand side of 

eq. (15) vary with either ݅ or ݆, but never with both indices simultaneously. This allows assuming that 

fixed effects capture all unobserved locational characteristics. Assuming the dependent variable to be 

Poisson distributed, a conditional Poisson regression can be used to derive an estimate for 𝜃𝑠. However, 

note that such an estimate does not allow quantifying the elasticity of spatial substitution, 𝜔𝑠. 
In the variogram model, the estimated value of √− ଷ𝜃̂𝑠 = 𝜑𝑠√𝜔𝑠𝑠 is called range (Chilès and Delfiner, 1999). 

It measures the distance, below which 95 percent of all observable physician-patient contacts occur. The 

parameter determines the size of doctors’ catchment area. By contrast, 𝜑𝑠 measures patients’ 

willingness to cover distance to the place of service provision. For 𝜔𝑠 = ͳ, the range equals the 

catchment area. For 𝜔𝑠 > ͳ observed distances are smaller than patients’ willingness to travel. This 

typically applies to emergency treatment mainly provided by hospitals and in less severe cases by 

general practitioners or paediatricians. The alternative case with 𝜔𝑠 < ͳ is more likely for elective 

services when patients value proximity of treatment less than other characteristics such as service 

quality. In that case, observed distances are larger than patients’ willingness to travel, yet spatial 

conditions are at odds.  

The willingness of patients to travel is a property that has to be determined by survey technique. An 

example is provided by Sundmacher et al. (2018).  

 

5.2 Estimating access to care 

One notable advantage of the demand-oriented planning model stems from the fact that it allows for 

speciality dependent elasticities of spatial substitution, 𝜔𝑠. However, this flexibility in the modelling of 

demand comes at a price. The measurement of access to care is considerably complicated if 𝜔𝑠 is 

allowed to deviate from one (Cobb-Douglas). Therefore, it is appropriate to show that the data speak 

against the simplifying assumption of 𝜔𝑠 = ͳ for all ݏ. For this purpose, we compute values of ߚ௜𝑠 in 

two competing ways. One uses eq. (18) and reflects the assumption of 𝜔ݏ = ͳ (Proposition 3). The 

other uses the formula 

௜𝑠ߚ  = √∏ √∏ ௫೔′ೕ𝑠∙௙೔′ೕ𝑠𝜔𝑠೔′  #೔
௫೔ೕ𝑠∙௙೔ೕ𝑠𝜔𝑠  √∏ ஽೔′𝑠೔′  #೔௝  #ೕ ∙ 𝐷௜𝑠       (32) 

and exploits the available data without relying on any a priori constraint on 𝜔𝑠. Eq. (32) is derived from 

eq. (15) by relying on the observation that ߚ௜𝑠 and ߙ௝𝑠 can be replaced in eq. (15) with ܿ 𝑠 ∙  ,௝𝑠/ܿ𝑠ߙ ௜𝑠 andߚ

respectively, without changing anything else. Hence, one can set the constant ܿ𝑠 at a value satisfying the 

constraint of √∏ ௜𝑠௜#೔ߚ = ͳ. By taking a geometric mean of eq. (15) with respect to ݅ we obtain the 
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equation 
ௌೕ𝑠ఈೕ𝑠 = √∏ ௫೔ೕ𝑠∙௙೔ೕ𝑠𝜔𝑠஽೔𝑠௜#೔

. By inserting this equation into eq. (15) and taking a further geometric mean 

with respect to ݆ eq. (32) is obtained. 

 

5.3 Planning the numbers of service providers 

The task of capacity planning is to determine the numbers of service providers, ̅ܣ௝𝑠, needed for all ݆ݏ. 

The method proposed builds on the equations (26), (27), and (29). The necessary data are obtained as 

follows. Population and morbidity data, 𝐼௜ and 𝜇௜ݕ, can be assumed to be known. Planned aggregate 

supplies, ܵ̅ݏ, have to be set by the planning authority. The parameter 𝜃ݏ is estimated by relying on eq. 

(15). Patients’ willingness to cover distance, 𝜑𝑠, has to be determined by surveys. The equation 𝜔𝑠 =−𝜃𝑠 ∙ 𝜑𝑠ଶ/͵ then allows computing the elasticity of spatial substitution. As we see no way to determine 

the ratios of preference weights, 𝜌𝑠, empirically, we set these parameters equal to one. With this 

simplifying assumption, all the quantities one needs to determine ̅ܣ௝𝑠 are given. 

 

6 The case of Germany 

Germany lends itself to a study of health care capacity planning because the concept of "equal living 

standards" across the whole country has constitutional status. There is a free choice of doctors (no strict 

gatekeeping) and in the almost complete assumption of costs for all services offered by the statutory 

health insurance (SHI) system. It has to be noted, however, that there is a strict separation between 

ambulatory and hospital care in Germany. Ambulatory capacity planning is carried out nationally, but 

at a small-scale level, on the basis of the so-called Capacity Planning Guideline (Bedarfsplanungs-

Richtlinie). The reference values against which current doctor-density ratios are measured are the ratios 

of doctors to population in 23 different medical specialities determined on a certain date in the past. 

They constitute the policy target for the number of ambulatory physicians in a full-time position to be 

financed by the SHI system. 

In contrast, hospital capacities are planned at the level of Germany’s sixteen federal states. The provision 

of hospital beds is planned politically usually using the Hill-Burton formula. This means that the target 

number of beds is derived from updating current values. This method is known to have the effect that 

the greatest capacity need is assessed where the existing capacity is highest. 

The strict separation between ambulatory and hospital care is a characteristic feature of the German 

health care system and means that specialist capacities are available in both sectors. In practice, there is 

much overlap that is only partially taken into account in planning and ultimately leads to efficiency 

losses (Büyükdurmus et al., 2017). The separation of ambulatory and hospital capacity planning causes 
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particular problems for rural areas, as hospital planning aims at exploiting economies of scale and thus 

gives priority to urban areas. 

For illustrating our method, we use data on the ambulatory sector provided by the National Association 

of Statutory Health Insurance Physicians (Kassenärztliche Bundesvereinigung, KBV) for the years 2015 

and 2016. For hospital care, we use the hospitals’ quality reports and an analysis of hospital billing 

(DRGs) provided by the Federal Statistical Office (Destatis). From the above sources we receive 

information about the number of treatment cases whose costs have been reimbursed by the SHI. We 

interpret those numbers as patients’ take up, ݔ௜௝𝑠. We determine the distance between service providers 

and patients' home addresses, ݀௜௝, by means of postcode-to-postcode routing, using OpenStreetMap 

data. Values of planned aggregate supplies, ܵ̅ݏ, are taken from the target values reported by the German 

Capacity Planning Guideline. As no target value is published for hospital care, the missing value is 

approximated by the current take-up, ∑ 𝐷௜𝑠௜ . Population and morbidity data, 𝐼௜ and 𝜇௜ݕ, are taken from 

Capacity Planning Guideline reference values.4 See appendix for a detailed description of data. 

 

6.1 Estimating the size of catchment areas 

Table 1 shows regression results for catchment areas. At roughly 24 minutes, the measured catchment 

area is smallest for GPs, followed by gynaecologists with 30 minutes, paediatricians with 36, and 

ophthalmologists with 37 minutes. At 56 minutes the measured catchment area is largest for 

psychotherapists, followed by urologists (49 minutes). With a 95% bound applied to distance weighting, 

the measured size of catchment areas largely confirms the values in Fülöp et al. (2011). Significant 

differences only exist for urologists - 49 here vs. 31 minutes in Fülöp et al., (2011) - and psychotherapists 

(56 vs. 62 minutes)5.  

Patients’ willingness to travel is taken from Sundmacher et al. (2018). Catchment area sizes turn out to 

be smaller than patients’ willingness to travel, which means an elasticity of spatial substitution larger 

than one. Due to lack of estimates for hospitals, catchment areas are set at 60 minutes and the elasticity 𝜔𝑠 at ͳ.ͷ. Robustness checks reveal that projected capacity imbalances are not insignificantly dependent 

on the choice of 𝜔𝑠. We justify our choice of ͳ.ͷ as follows. 

The spatial elasticities of substitution range from ͳ.Ͳͷ to ͳ.ͻͻ for outpatient doctors, with an average 

value of ͳ.Ͷͷ. A value smaller than ͳ.Ͳͷ seems implausible for hospitals, because it would mean that 

treatments can be planned better by hospitals than by outpatient doctors. Such an assumption is not 

compatible with the emergency function of hospitals. Rather, it speaks for a higher elasticity. However, 

 
4 Values taken from the German Capacity Planning Guideline (17.12.2020): https://www.g-ba.de/richtlinien/4/. 
5 The differences have an explanation. Fülöp et al. (2011) base their analysis on selected German states and on 

data from 2010 counting multiple visits as one. As to psychotherapists, the difference could also result from an 

increase in their number. 

https://www.g-ba.de/richtlinien/4/
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the elasticity should also not significantly exceed the maximum value of ͳ.ͻͻ for outpatient doctors. In 

our opinion, a value of ͳ.ͷ is an appropriate compromise. For the sake of comparison, the supplement 

shows projected capacity imbalances for 𝜔𝑠 = ͳ.Ͳ and ʹ.Ͳ. The results show that with increasing 

elasticity, more capacities are allocated from urban to rural areas, both in inpatient and outpatient health 

care. This is an implication of the objective of sustaining an equal access to health care and the fact that 

individuals respond more strongly to distances when the spatial elasticity of substitution increases. The 

changes in the projected capacity imbalances also tend to decrease with increasing elasticity values. The 

difference from ͳ.Ͳ to ͳ.ͷ is more pronounced than from ͳ.ͷ to ʹ.Ͳ. The explanation is that an elasticity 

of ͳ.Ͳ is a rather extreme assumption which, according to eq. (5), implies a location-independent index 

of wasted time. Only when the elasticity of spatial substitution with respect to hospitals deviates from ͳ.Ͳ do hospitals influence the spatial allocation of total wasted time and a fortiori the spatial allocation 

of the required capacities in all specialities. Loosely speaking, the outpatient doctors have to follow the 

hospitals. 

Table 1: Regression results for catchment areas 

 Distance decay 

parameter  
Size of catchment area in minutes  

Patients’ willingness 

to travel  

Elasticity of spatial 

substitution  

 𝜽̂𝒔 √ ͳ𝜔𝑠 𝜑𝑠̂
 Confidence interval 𝜑𝑠 𝜔𝑠 

General 

Practitioners -0,005 23.64 23.62 – 23.66 32.16 1,85 

Ophthalmologists -0,002 36.89 36.55 – 37.24 40.21 1,19 

Surgeons -0,002 39.91 39.40 – 40.44 51.27* 1,65 

Gynaecologists -0,003 30.12 30.08 – 30.16 42.50 1,99 

ENT-specialists -0,002 37.28 36.98 – 37.59 41.29 1,23 

Dermatologists -0,001 47.45 47.03 – 47.89 51.27* 1,17 

Paediatricians -0,002 35.99 35.71 – 36.27 46.70 1,68 

Neurologists -0,002 43.77 42.96 – 44.63 44.89 1,05 

Orthopaedic 

specialists -0,002 38.11 37.75 – 38.49 51.27* 1,81 

Psychotherapists -0,001 56.46 55.03 – 58.00 62.31 1,22 

Urologists -0,001 49.09 48.39 – 49.82 51.27* 1,09 

Hospitals  60.00+   1,50 

Note: + The size of hospitals’ catchment area is simply set at 60 minutes. An empirical estimate fails due to missing data. * The entry is the 

one reported for "other physicians”. 

 

6.2 Estimating access to care 

With the following visualizations of the German situation, we want to contrast the demand-oriented with 

the FCA-based measurement of access to care. For the purpose of illustration, we focus on general 

practitioners (GPs). The supplement provides visualizations of further specializations. 
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Figure 1: Access to General Practitioners  

(top left: demand-oriented metric; top right: FCA metric; bottom left: iFCA metric; bottom right: 

3SFCA metric) 

 

The top left of Figure 1 relates to the demand-oriented access metric and the top right to the FCA metric. 

iFCA is visualized by bottom left and 3SFCA by bottom right. Green stands for oversupply and brown 

for undersupply. The first striking impression is the strong differences in the colouring. The regional 
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identification of under- and oversupply is almost opposing between top left and top right. The 

visualizations of iFCA and 3SFCA are closer to the demand-oriented access metric. However, iFCA has 

significantly more extreme values whereas 3SFCA draws a more disrupted and paler picture. It is worth 

mentioning that the results relating to iFCA confirm earlier ones of Bauer et al. (2018). Due to the same 

methodology and comparable data, this is hardly surprising. 

According to the demand-oriented access metric, iFCA, and 3SFCA, larger cities tend to enjoy better 

access to GPs just as one would expect. Metropolises such as Hamburg, Munich, Stuttgart as well as the 

agglomerations of the Rhine-Main6 and Rhine-Ruhr7 areas are shown to enjoy particularly high levels 

of access. According to the FCA metric, the exact opposite is supposed to apply. The Rhine-Ruhr area 

and larger cities like Berlin, Munich and Hamburg are allegedly regions of more or less severe 

undersupply. This is not plausible and can only be explained by the FCA’s missing sense of spatial 

directions in the exchange of services (Bauer et al., 2018). The mentioned cities and regions are known 

for their high capacities serving as medical care centres for their surroundings. The FCA's symmetrical 

distancing function does not do justice to the different roles of cities and environs. Unlike 3SFCA, iFCA 

increases not only the weight of distances, but also that of local supply. This apparently has the effect 

that the difference in access to care between sparsely populated regions and nearby agglomerations 

appears stronger. Examples of such spatial relationships are Brandenburg with Berlin, East Saxony with 

Dresden and Leipzig and Rothaar Mountains with Frankfurt and the Ruhr area. 

In order to work out the differences in the competing access metrices quantitatively, Table 2 presents 

Spearman’s rank correlations.  

Table 2: Rank correlations between common measurements of access to care and demand-oriented 

measurement 

 FCA iFCA 3SFCA 

General Practitioners 8,6% 56,3% 55,2% 

Ophthalmologists 23,1% 49,6% 53,7% 

Surgeons 30,3% 53,5% 52,3% 

Gynaecologists 21,2% 57,0% 66,1% 

ENT-specialists 25,2% 52,2% 55,7% 

Dermatologists 8,2% 61,8% 66,1% 

Paediatricians 27,4% 55,4% 61,7% 

Neurologists 21,2% 58,7% 55,0% 

Orthopaedic specialists 24,4% 54,6% 64,2% 

Psychotherapists 23,2% 62,3% 64,7% 

Urologists 35,0% 69,4% 69,4% 

Hospitals 21,0% 41,2% 26,0% 

 

 
6 Metropolitan area around the city of Frankfurt including Mayence, Wiesbaden, Worms, Darmstadt, 

Aschaffenburg. 
7 Ruhr area plus the cities of Düsseldorf, Cologne, and Bonn. The Ruhr area is marked in Figures 2-4 by gridlines. 
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The correlation coefficients are relatively small indicating significant differences in detail. This speaks 

against the use of FCA-based metrics when measuring and planning access to care. This result is best 

explained by looking at the stylized model of two geographical entities. One of these, denoted by ܣ, has 

all the features of a large city, i.e. a high supply of services and a population which can satisfy its demand 

locally. The second, denoted by ܤ, has a small population, a low supply of services and many people 

demanding medical treatment in ܣ. Because of the spatial symmetry, an unadjusted FCA-based 

measurement would indicate an equal level of access to care at both places. According to the competing 

measurements, the large city A would have to be considered the one with better access. This result is 

obtained for 3SFCA because distances are short in cities whereas it is obtained for iFCA because cities 

are also better served. The demand-oriented access metric additionally takes into account the important 

aspect that a larger share of demand is satisfied locally which helps to reduce wasted time. 

 

6.3 Planning the number of health care providers 

Table 3 compares available capacities of health care with those considered necessary when calculated 

using eq. (29). Across the country, there is overcapacity in all specialties ranging from 3.6% for general 

practitioners to almost 40% for psychotherapists.8 This result, however, cannot surprise the experts and 

is consistent with the known fact that official planning figures are lower than the current numbers of 

active physicians (Kopetsch and Schmitz, 2014). A closer look at the data offers a more differentiated 

picture: First, capacity deficits are typical for rural areas, but overcompensated by overhangs in urban 

areas. Secondly and a bit surprising, even in rural areas there are too many surgeons rather than too few. 

About every 20th surgeon there seems dispensable. Thirdly, in urban areas, there is a marked oversupply 

in all specialities. The largest oversupply of about 60% concerns psychotherapists, orthopaedists, 

dermatologists and ENT specialists. The smallest oversupply seems to be for general practitioners and 

hospital beds, at around 25%. Fourthly, in smaller towns, the supply is more balanced. This is especially 

true for ophthalmologists, paediatricians, neurologists and general practitioners. Overcapacity of about 

20% and more is found among surgeons, orthopaedists and dermatologists whereas undersupply holds 

for hospital beds and general practitioners. 

- Table 3 about here - 

The demand-oriented results of Table 3 suggest that a targeted reallocation of capacities could 

considerably improve equality in the access to health care. There are two possible counterarguments to 

this conclusion. First, health care facilities are not easily set up or closed, investments are largely 

irreversible, and due account must be taken of the proximity of other facilities and institutions such as 

universities. Secondly, the advantage of easy access has to be traded off against the economies to be 

achieved by centralisation. Indeed, many specialized treatments can only be safely performed if they are 

 
8 Hospitals are excluded here because of the assumption that all available beds are required. 
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conducted frequently enough for the staff involved to acquire and maintain sufficient experience.9 

Nevertheless, demand-oriented planning should help to identify imbalances in the spatial allocation of 

health care capacities. 

 

7. Conclusions 

The model presented in this paper is designed to improve health care capacity planning. It combines the 

trade model developed by Anderson and van Wincoop (2003) with the approach developed by Bikker 

and de Vos (1992) for modelling the demand for inpatient care. The advantage is practical as well as 

methodological. It is methodological because the demand for medical services and the competition for 

capacities of supply are endogenously determined in a general equilibrium framework. This advantage 

has a practical dimension because endogenous modelling is an important prerequisite for consistently 

predicting the impact of changed supply capacities on the demand and competition for them. In detail, 

we obtain the following results. 

First, our demand-oriented approach suggests measuring access to health care by the time patients waste 

seeking treatment. The derived index is shown to be inversely proportional to the product of two 

geometric means. One is taken of cross-border demand ratios and the other of distances (Proposition 2). 

The most common approaches to measuring access to care build on the FCA metric. The shortcomings 

of the FCA metric have been a frequent topic in the literature and a number of attempts have been made 

to correct them (e.g. Delamater, 2013). Our metric generalizes the FCA by allowing adjustments of the 

population for morbidity and time wasted on waiting for medical treatment (Proposition 3). The need to 

adjust for waiting time is less obvious than that for morbidity. However, waiting time reflects 

competition for supply capacities. The insight into the need to consider such competition drives the 

proposal of the 3SFCA metric. While this refinement of the FCA metric emerged from an ad-hoc 

consideration, adjusting the population for waiting time is a consistently modelled improvement. 

Secondly, the presented approach allows characterizing the demand for health care in the form of a 

gravity equation (Proposition 1). This equation is the empirical basis for measuring access to health care 

as well as for planning health care capacities.  

Thirdly, we propose a test strategy for making an informed choice between the demand-oriented and the 

FCA-based metrics. 

Fourthly, we demonstrate that our approach is well suited to improve practical capacity planning. Thus, 

we show that the gravity equation derived from our model can be used for estimating the size of 

catchment areas. While the literature mostly postulates ad-hoc values (e.g. 30 minutes), we determine 

 
9 The reimbursement of certain treatments by the SHI system requires hospitals to perform a minimum number of 

such interventions per year. 
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plausible values that are consistently estimated from our model. We finally point out how to compute 

the number of service providers needed to ensure an equal access to care.  

The merits of our approach are illustrated by applying it to the German health system. Confirming 

findings in the literature, we show that there is a clear urban-rural divide. Rural areas suffer from 

undersupply whereas urban areas enjoy considerable oversupply. Aggregating deficits and overhangs, 

overcapacities are shown to exist in all specialities. A closer look at the data reveals a more differentiated 

picture. 

No study of this kind would be complete without mentioning caveats. We do not include quality of care 

aspects in the model although quality differences definitely affect patient choices. However, we believe 

that quality cannot be the primary concern of capacity planning. There exist better-targeted instruments, 

such as pay-for-performance. Our empirical analysis also excludes individuals who did not consult an 

SHI doctor in the years 2015/16. This may bias the results, especially in regions with a high proportion 

of patients with private, rather than statutory, health insurance. A final caveat concerns the size of 

catchment areas, which may well be underestimated. The reason is that journey times are computed by 

using the postal codes of billing addresses. As a result, the travel time within the same postal code area 

is zero, a technical simplification which obviously underestimates some actual travel times. Spatial 

substitutability will equally be underestimated as a result. 

Despite all these limitations, however, we strongly believe that our choice-theoretic grounding of the 

gravity equation and the empirical analysis of the German situation based on this equation make a 

significant contribution towards bringing health care planning more in line with patients’ needs. 
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Table 3: Predicted demand and projected capacity imbalances 

Speciality Capacities in urban areas Capacities in minor towns Capacities in rural areas Overall capacities 

 
Required ሺͳሻ 

Available ሺʹሻ 

ሺͳሻ − ሺʹሻሺʹሻ  
Required ሺ͵ሻ 

Available ሺͶሻ 

ሺ͵ሻ − ሺͶሻሺͶሻ  
Required ሺͷሻ 

Available ሺ͸ሻ 

ሺͷሻ − ሺ͸ሻሺ͸ሻ  
Required ሺ͹ሻ 

Available ሺͺሻ 

ሺ͹ሻ − ሺͺሻሺͺሻ  

General 

Practitioners 
18194 24520 -25,8% 16976 15817 7,3% 14601 11291 29,3% 49771 51628 -3,6% 

Ophthalmologists 1514 2696 -43,8% 1499 1535 -2,3% 1313 1048 25,3% 4326 5279 -18,1% 

Surgeons 883 1872 -52,8% 883 1195 -26,1% 768 813 -5,5% 2534 3880 -34,7% 

Gynaecologists 2433 5143 -52,7% 2347 2803 -16,3% 2058 1802 14,2% 6838 9748 -29,9% 

ENT-specialists 931 2115 -56,0% 924 1069 -13,6% 809 726 11,4% 2664 3910 -31,9% 

Dermatologists 741 1728 -57,1% 747 932 -19,8% 637 549 16,0% 2125 3209 -33,8% 

Paediatricians 1675 2845 -41,1% 1653 1693 -2,4% 1450 1075 34,9% 4778 5613 -14,9% 

Neurologists 1314 2575 -49,0% 1309 1374 -4,7% 1105 878 25,9% 3728 4827 -22,8% 

Orthopaedic 

specialists 
1190 2812 -57,7% 1184 1552 -23,7% 1035 1006 2,9% 3409 5370 -36,5% 

Psychotherapists 5038 13720 -63,3% 5080 6202 -18,1% 4346 3342 30,0% 14464 23264 -37,8% 

Urologists 669 1336 -49,9% 673 791 -14,9% 572 516 10,9% 1914 2643 -27,6% 

Hospitals 221399 307828 -28,1% 223280 192688 15,9% 191727 135890 41,1% 636406 636406 0,0% 

Note: Capacities are measured by the number of doctors in full-time equivalents with the exception of hospitals, which are measured by the number of beds.  

 


