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1 Introduction

Many firms use rank-order tournaments to motivate, assess, and compensate their workers.

Rank-order tournaments are advantageous when it is costly to evaluate individual perfor-

mance in absolute term and when such measure, even if it is affordable, is likely to be

contaminated by common shock (Prendergast 1999). Examples are the competition among

vice presidents for promotion (Main et al. 1993) and rank-based contracts with suppliers

(Knoeber and Thurman 1994). Lazear and Rosen (1982) show that firms can induce the first

best level of effort by using a tournament.

On the other hand risk-taking incentives are intrinsic in rank-order tournaments. Trailers

have an incentive to take high-risk actions during the course of competitions, in particular near

the end, because the prize is the same whether they lose by a little or a lot as long as ranking

does not change. Many examples can be found in business contexts, such as risk taking by

mutual funds and broiler chicken farmers (Chevalier and Ellison 1997, Knoeber and Thurman

1994) as well as in professional sports (Bronars 1987, Becker and Huselid 1992, Bronars

and Oettinger 2001). In sports, risky behaviors are not troublesome, but rather enjoyable.

Spectators enjoy uncertain results and are excited at upsets by underdogs. On the other hand,

in business organizations, risky behaviors and uncertain outcomes could hurt profitability.

They might increase the variability of year-to-year performance, make evaluation and future

planning difficult, and finally destroy investors’ confidence in the market.

In this study I exploit the popular television game show “World Poker Tour” on Travel

Channel in the United States as a natural experiment for examining risk-taking behaviors

in rank-order tournaments. Poker tournaments are suitable for the purpose of this study

since risk taking, such as bluffing and “all-in,” is the most essential component of the game

strategy, while the problem of effort choice is quite trivial. They also provide a unique

opportunity to evaluate risk taking behavior under well-defined rules in the face of high

monetary incentives, which is not affordable in a lab experiment. Furthermore I expect that

unobserved heterogeneity in preferences should be minimal since most players are homogenous

in quality. Lastly it is unlikely that professional players make systematic mistakes in statistical

calculation.

I examine whether professional players strategically choose the degree of risk taking in
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response to the prize incentives they face. I exploit variation in risk-taking incentives both

within a tournament and across tournaments. The incentives would change for each individual

player within a tournament depending on his or her current position on prize structure. Some

players face relatively large expected gains and small expected losses in prize from a risk-

taking strategy than others. Also the incentives would be different across tournaments since

prize structures, such as total prize and its distribution, significantly differ tournament by

tournament. Poker tournaments should provide a clear view of how people respond to risk-

taking incentives in rank-order tournaments.

2 A Simple Model of Risk Taking Strategy

In a poker game called No Limit Texas Hold’em, each player is given a pair of cards (the

so-called “hole cards”). There are five “community cards” in the end, and the player with

the best seven-card poker wins al the money wagered. As community cards are revealed in

three stages–“Flop” (three cards), “Turn” (one), and “River” (one), players choose whether

to check, fold, or call and how much to raise without knowing other players’ hole cards.

Suppose that there are six players on table. Consider a player i with ci number of chips

at a moment. Subscript i also denotes the current rank. Let wj denote the prize for final

rank j. So wj > wk if j < k. Let pj(ci) denote the subjective probability of player i that

he will end up with final rank j, where j = 1, 2, ..., 6. It is reasonable to assume that the

probability distribution has a mode at wi, that is pi(ci) ≥ pj(ci) for all j 6= i.

For simplicity assume that players choose only whether to call or fold for a certain amount

of bet. In other words my model does not consider how much to bet; players can bet more

chips only by participating more frequently. Suppose that there are n players who calls a

bet, x chips. If player i participates and wins, total chips increase by (n − 1)x, but if he

loses, total chips decrease by x. Of course, x is smaller than or equal to ci because players

cannot bet more chips than what they have. The probability distribution of final ranks will

accordingly change to pj(ci + (n− 1)x) or pj(ci − x), respectively.

First consider a middle-ranked player, that is i 6= 1 or 6.1 Let πi represent his luck (good
1I assume that there are always six players. In reality it is possible that a player of i 6= 6 is not middle

ranked as some players are eliminated by bankruptcy.
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or bad hands). That is, it represents the probability of winning. The probability distribution

of final ranks will be that of a “compound lottery” of pj(ci + (n − 1)x) and pj(ci − x) with

weight π. Let pj(ci, x) denote the new probability distribution.2 It is reasonable to assume

that the distribution of pj(ci, x)’s is more spread out than that of pj(ci)’s because betting

always entails some risk taking. Player i participates if and only if:

Σ6
j=1pj(ci, x)U(wj) ≥ Σ6

j=1pj(ci)U(wj). (1)

The participation constraint can be rewritten to:

Σj 6=i
pj(ci, x)− pj(ci)

Σk 6=i[pk(ci, x)− pk(ci)]
U(wj) ≥ U(wi). (2)

Alternatively,

Σj<i
pj(ci, x)− pj(ci)

Σk 6=i[pk(ci, x)− pk(ci)]
U(wi + gij) + Σj>i

pj(ci, x)− pj(ci)
Σk 6=i[pk(ci, x)− pk(ci)]

U(wi − lij) ≥ U(wi),

where gij represents the gain in prize and lij the loss in prize when ranking changes from i to

j. Notice that pj(ci, x
∗)− pj(ci) > 0 because the distribution is more spread out by betting.3

Therefore the left-hand side of the inequality is sort of a weighted sum of gains and losses.

The participation constraint clearly shows that if other things are equal, the larger g

increases the incentive to take risk. On the other hand, the larger l decreases the incentive

for risk taking. Notice that g’s and l’s are different across individual players depending on

their relative position on the prize structure. In the sample of poker tournaments I will use

later, when we consider only gains and losses from one-rank change, that is gi,i−1 and li,i+1,

the average gain is $282,356 for the second rank and $35,772 for the fifth rank. And the

average loss is $151,173 for the second rank and $22,064 for the fifth rank. They also differ

significantly across tournaments because each tournament has different prize structure. It is

therefore testable whether individual players’ risk taking behaviors (betting more frequently
2I omit π because it does not play a significant role for empirical purpose. I assume that it is statistically

identical for all players. In other words the probability that a player has good or bad hands is same across
individuals by the law of large number.

3I assume that pj(ci) = pj(ci, x = 0). That is, the probability distribution does not change much when the
player does not bet. Note that the assumption is not always true because the distribution could change by
changes in other players’ chips even though the player does not participate.
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and probably more chips) are affected by expected gains and losses they face.

The result here explains why prize structures are usually convex in poker games or sports

events where spectators enjoy uncertainty, suspense, and upsets. The convexity implies that

g’s are larger than l’s regardless of ranking. It increases risk-taking incentives overall.

Risk-taking strategy is relatively trivial for top-ranked and bottom-ranked players. Top-

ranked player face no expected gains from a risky strategy and so should try to lock in

the current ranking. They would participate only when they have good hands. Top-ranked

players’ incentives should be minimal among players. On the other hand, bottom-ranked

players would have relatively stronger incentives for risk taking than others because they

have nothing to lose. For these players the current position is a guaranteed place no matter

what they do.

Lastly, the participation constraint also depends on marginal changes in probability dis-

tribution by risk-taking strategy. For example, if pj(ci, x)−pj(ci) is small for j < i, it is likely

that the player will not participate. This suggests that when the player follows the leaders

very closely, risk taking strategy does not improve the probability of advancing significantly

and so risk taking is not so attractive. Instead he might prefer more prudential plays to wait

for the best chance. On the other hand, if pj(ci, x) − pj(ci) is small for j > i, the player is

likely to fold his cards. That implies that if the player leads the followers by relatively large

gaps, it is more attractive to take risk. Even if he loses some chips, it is not likely that the

followers catch up with him. Risk-taking incentives depend on chip spreads among players

as well as prize structure.

3 Data from World Poker Tour

The data I use in this study are about individual players’ performance, ranking, and money

prize in different tournaments. Information at the tournament level, such as total prize and

variance, is collected from the official website of “World Poker Tour” (www.worldpokertour.com).

The data are available for 27 tournaments in season one (2002-2003) and season two (2003-

2004). For these tournaments we can observe predetermined prize structures, six players at

the final table, their initial chips, and final ranking. Each player starts with different number

of starting chips, which are cumulated through preliminary rounds. There is no information
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on preliminary rounds.4 The final round is an elimination tournament in which one is out of

the table if and only if he or she is bankrupt. All chips will be eventually concentrated to

the final winner’s hands.

Table 1 presents prize structures for 27 tournaments. Total money prize is huge; it is on

average 1.4 million dollars. Total prize varies significantly across tournaments. The biggest

tournament is WPT Championship, 5.4 million dollars. The distribution of prize over ranking

is very unequal and convex. The final winner takes almost a half of total prize. Top three

players take 81 percent of total money. Compared to the last-place prize, the first prize is 11

times larger, the second prize is 5.4 times larger. But the fourth prize is 1.9 times larger, and

the fifth prize is only 1.3 times larger. As with total prize, the distribution is also significantly

different across tournaments.

As mentioned, it is possible to identify individual players’ initial and final rank. The

extent to which players’ ranks change during a tournament is informative in the sense that

there are more changes if more players take high-risk strategies. For the purpose of this

study it would be interesting to examine if there is any systematic relationship between prize

structure and ranking changes. I examine two features of prize structure; dispersion and

total prize. If ranking changed only by luck, they should be independent of rank changes.

By regression I find [Changes in Rank ] = 6.28−1.72×[Prize Dispersion]−0.34×[Total Prize]

where N = 27 and R2 = 0.18.5 The estimates for prize structure are statistically significant at

10% and 1% significance level, respectively. Figure 2 shows that there is a small but negative

relationship between changes in rank and prize dispersion. It also shows the relationship

between changes in rank and total prize. The result for prize dispersion is consistent with the

standard expectation that higher dispersion should decrease changes in rank after controlling

for mean as long as players are risk averse. The result for total prize is consistent with

the experimental finding of Kachelmeier and Shehata (1992) that people become more risk

averse at higher stake. This simple look at the data already confirms that players’ risk-taking

behaviors depend on prize structure.
4There are 80-150 entrants in a tournament. The buy-in dollars (minimum entry fee) are significantly

different, ranging from 300 to 25,000.
5I measure changes in rank by number of players whose final rank is different from initial rank. Prize

dispersion is measured by coefficient of variation (standard deviation divided by mean). The unit of total
prize is 1 million dollars.
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The more detailed data at the individual-player level can be collected for only 12 tour-

naments from the World Poker Tour DVD collection (season one).6 The data contain more

information since we can actually watch each episode and follow individual players’ perfor-

mance (chips) and ranking within a tournament. I keep record of chip counts whenever they

are shown to viewers. It is not possible to construct the complete history of changes in chips

because chip counts are not displayed on the play-by-play basis. I collect the data on indi-

vidual holding of chips only until there remain at least three players, first, because I focus on

middle-ranked players and, second, because chip counts are not usually available after only

two players remain.

Table 2 shows some descriptive statistics. There are 286 observations for middle-ranked

players and additional 106 observations for bottom-ranked players. Players are categorized

as bottom-ranked players when they are ranked the last among surviving players. The first

thing to be noted in Table 2 is that bottom-ranked players are riskier than middle-ranked

players in terms of the amount of chips they bet. Bottom-ranked players bet 60 percent on

average while middle-ranked players bet about 30 percent of their chips. This is because

bottom-ranked players bet almost same amount of chips as middle-ranked players do even

though they hold only a half of chips. By the convexity of prize structure, the expected gain

in prize by one-rank advancement is much larger than the expected loss by one-rank retreat.

The expected gain in prize by advancing a rank is much smaller in size for bottom-ranked

players ($27,022) than for middle-ranked players ($100,192). However the expected loss by a

risk-taking strategy is zero for bottom-ranked players, which explains higher risk taking by

bottom-ranked players.

4 Empirical Analysis

4.1 Measure of Risk Taking

The model shows that players take risk by participating and betting more frequently when

there exists a stronger incentive for risk taking. So I measure the degree of risk taking for an

individual player’s strategy by the absolute value of variation in chips over the tournament.

This is in the same spirit of Knoeber and Thurman (1994) in which they measure the degree
6I dropped one tournament, Aruba Poker Classic, since its game format is very different from the others.
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of risk taking in production by a measure of variability in output.7 Specifically my measure

of risk taking is ∆cink = |c·,n,k − ci,n−1,k| where | · | means absolute value. ci,n,k represents

the amount of chips of the i-th ranked player at the n-th chip count display in tournament k.

It measures the change in chips between the (n-1)-th and n-th chip count. Only the absolute

value of chip change is considered because we are interested in the degree of risk taking itself,

not actual outcomes (success or failure) of risk-taking strategy.

It should be kept in mind that ∆cink is likely to underestimate a player’s actual willingness

to take risk. Poker game is an interactive game. A player cannot raise money unless at least

one other player call his bet. The optimal bet is somewhere between the amount of chips a

player likes to bet and the amount of bet he thinks other players will call.

The chip change in absolute value, ∆cink, might be mechanically positively correlated

with the amount of chips that the player initially holds at the (n-1)-th chip count. In other

words ∆cink could simply reflect the fact that players with more chips bet more and have

more changes in absolute value. This suggests that we need to control for the amount of

chips at the previous chip count, ci,n−1,k.8 For robustness check I also experiment with an

alternative variable (%∆cink), which measures the percentage change in chips between two

chip count displays.

4.2 Broadcasting Bias

I can observe individual players’ chips only when a tabulated report of individual chip counts

is shown to viewers. The editors of the TV show determine how many times and when to

show chip counts. As a result, the measure of ∆cink does not represent actual fluctuation in

individual holding of chips and actual degree of risk taking. My findings in this paper should

be taken with a grain of salt in this aspect.

However it seems reasonable to assume that ∆cink approximates quite well actual changes

in chips. I assume that the editors of the TV show would want to maximize the excitement of

viewers. Then they should inform viewers of changes in chips whenever there are significant
7However the variability in output might not represent risk taking strategy in the case of agricultural

production. The variability could reflect mismanagement or technological defects. If so, the correlation
between output variability and ranking could reflect simply heterogeneous managerial capabilities or differences
in technology.

8Instead we could control for total number of chips. But it does not change the results.
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changes in chip spread or ranking. It is not likely that chip counts are shown when chips

change little. Chip counts are almost always shown when a player is bankrupt and eliminated

from the tournament. So we can identify at least to which players the chips that the eliminated

player held are redistributed.

Also it should be noted that changes in chips between chip counts are likely to underesti-

mate actual degree of risk taking because the measure of ∆cink omits some minor fluctuations.

If so, my estimate of the incentive effect on risk taking strategy would be a lower bound.

4.3 Specification and Results

The basic estimation equation is:

∆cink = α1gink + α2link + β1σ
−(cink) + β2σ

+(cink) + Xinkγ + εink, (3)

where n increases within a tournament and n = 1, 2, . . . , Nk. Explanatory variables g and

l are crucial for the purpose of this paper. gi is the gain in money prize by advancing one

rank.9 It is the prize gap between wi and wi−1. And li is the marginal loss in money prize

by one rank. It is the prize gap between wi and wi+1. Formally I specify that gi = wi−1−wi

and li = wi − wi+1. The model predicts that α1 is positive and α2 is negative.

Individuals’ risk incentives depend not only on neighboring prizes, but generally the whole

prize structure, {w1, ..., wi, ..., w6}, as shown in the model. Including the detailed information

on risk incentives, such as wi−2 − wi and wi − wi+2, reduces the sample size. Thus gi is a

proxy for incentives from higher prizes and li represents incentives from lower prizes.

One might wonder whether risk-taking incentives could change between chip counts be-

cause individual plays between chip counts are omitted and unobservable. Then g and l

constructed based on the ranking at the (n-1)-th chip count would not measure risk-taking

incentives that can explain changes in chips between chip counts. Table 3 addresses the

issue; it shows that ranking changes little between chip counts, even though chips change

a lot as seen in Table 2. About 50 percent of players do not change ranking at all, and

35 percent change only one rank. It is reasonable to assume that risk-taking incentives are

rather constant between chip counts.
9For simplicity I will omit subscripts unless necessary.
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σ−(cink) and σ+(cink) represent chip spreads from the nearest leader and follower, re-

spectively. Formally, σ−(cink) = (ci−1 − ci) and σ−(cink) = (ci − ci+1). For example, as a

player leads the nearest follower by a relatively large gap, it is likely that his current ranking

is guaranteed. Then, risk taking is more attractive. On the other hand, as he is trailed by

the nearest leader by a small gap, it is likely that he can catch up by normal plays. Risk

taking is then not necessary. The coefficients for both variables are expected to be positive.

However, unlike g and l, chip spreads might change much between chip count displays. So the

measures of chip spreads at the (n-1)-th display could only weakly represent actual concerns

about leaders and followers.

Xink is a vector of a constant and control variables, including ci,n−1,k, wnk, Nk, and n. The

minimum prize (wnk) at the n-th chip count is included. Note that it is not constant within

a tournament because it increases as players are eliminated. It is a guaranteed amount of

prize at the moment of the tournament. The coefficient is therefore expected to be positive.10

I also control for the number of chip counts in the tournament (Nk) because I expect that

more frequent chip counts should capture more fluctuations in chips. The maximum number

of chip counts differ across tournaments by the editorial decision. The smallest Nk is 3 and

the largest one is 16 in the sample. n is included since variation in chips would be higher as

a tournament approaches the end and smaller number of players remain.

Lastly εink is the error term. I assume it is independent of explanatory variables, but

allow for correlation across individual players for a pair of n and k. Since poker game is

a zero-sum game, there are always winners and losers. Even if we consider the absolute

values of chip changes, they are likely to be negatively correlated among players.11 I correct

standard errors by clustering for a pair of n and k.

Table 4 shows the results for the sample of middle-ranked players. As expected, the

degree of risk taking depends on the incentives that individual players face. An increase in

the gain in prize increases risk taking. An decrease in the loss also increases risk taking. The

average holding of chips is 242,760. The estimates in column (4) suggest that an average

player with 242,760 chips would put on risk about 6.1 percent of chips in response to one
10It should be kept in mind that wnk is strongly and positively correlated with total prize. The correlation

coefficient is over 0.9. The coefficient for minimum prize could capture any effect of total prize.
11Consider that two players who win some chips from others play each other. If a player wins, then his

chips in absolute vale increase, while the loser’s chips in absolute value decrease.
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standard deviation increase in g ($101,059). On the other hand, he would reduce his bet by

about 14.2 percent in response to one standard deviation increase in l ($48,455). The finding

that players are more sensitive to losses than to gains is consistent with the hypothesis of loss

aversion (Kahneman and Tversky 1979). The hypothesis that |α1| = |α2| is rejected except

column (1).

The results show that the more chips a player holds, the more chips he bets. An extra

chip increases the absolute value of chip change by about 0.1, much less than one chip.12 As

expected, I find that as a player is trailed by the nearest leader by a larger gap or as he leads

the nearest follower by a larger gap, he would bet more. The effect of chip spread from the

nearest follower is however statistically and economically insignificant. This result suggests

that risk taking is more dependent on chip spread from the leader.

In column (5) I include players’ age and its squared term. Mostly some background

information about players, such as age, career, and residence, are introduced for viewers in

the beginning of show. But I cannot identify age for some players, which reduces the sample

size. Figure 3 is a motivation, which suggests a U-shaped relationship between age and risk

taking. Below average age 46, as players are younger, they are more aggressive; their chips

fluctuate more in absolute value. For older players the relationship is not significant. I find

the same results about age from regression in column (5).

Other results are also consistent with expectation. The minimum prize significantly in-

creases the absolute value of chip change. The more frequently chip counts are displayed to

viewers, the more variation in chips players have. Lastly, as tournament approaches the end,

players bet more chips and the absolute value of chip fluctuation increases significantly.

Table 5 presents the results for the sample of middle-ranked and bottom-ranked players.

For bottom-ranked players l is zero since there is nothing to lose. The chip spread from the

nearest follower is not available for bottom-ranked players, so I have to interact (σ+(c)) with

the indicator for middle-ranked players (Middle Rank). The results are overall very similar to

those in Table 4. The effect of l is larger in absolute value. This implies that bottom-ranked

players would take more risk because they have nothing to lose in rank-order tournaments.

Again the hypothesis that |α1| = |α2| is strongly rejected across the board.13

12I include the quadratic term of cn−1 for the case of nonlinearity, but find it insignificant.
13I also run regressions with interacted terms between risk-taking incentives and chip spreads because, for
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Table 6 and 7 presents the results for different specifications for robustness check. In

Table 6 I use percentage change in chips (%∆cink) as an alternative dependent variable. The

results are virtually equivalent to the previous ones. For middle-ranked players one standard

deviation increase in g would increase the absolute value of percentage change in chips by

2 to 5 percent. On the other hand, one standard deviation increase in l should decrease it

by 8.6 to 11.4 percent. As with the previous results, the effects are significantly asymmetric

in size. The results do not change qualitatively when we include bottom-ranked players.

Most of other variables except Nk and n become statistically insignificant. Table 7 shows the

results when some additional control variables are included. I include rank-specific dummy

variables for the case that there is any direct effect of ranking. I also include tournament

characteristics of prize structure (total prize and prize dispersion). The results do not change

much. Additional variables are not statistically significant.

5 Conclusion

This study examines whether people optimally respond to risk-taking incentives in rank-order

tournaments at high stake. I exploit professional poker tournament as a natural experiment.

I find that professional players choose the degree of risk taking depending on monetary

incentives, i.e. expected gains and losses implied from their relative position on the prize

structure. Holding other things equal, a larger expected gain or smaller expected loss would

strengthen the incentive for risk taking. I also find that the effects of expected gains and

losses are highly asymmetric. Players are significantly more responsive to expected losses

that gains.
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Table 1: Prize Structure for 27 Tournaments1

Mean Median SD Min Max
First Prize (w1) 606,151 500,000 502,048 100,000 2,278,356
Second Prize (w2) 323,795 278,240 291,146 38,000 1,372,223
Third Prize (w3) 172,622 139,120 153,198 18,000 706,903
Fourth Prize (w4) 118,725 83,472 106,854 10,000 457,406
Fifth Prize (w5) 82,953 62,604 73,105 7,000 332,660
Last Prize (w6) 60,889 46,715 51,645 6,000 232,862
Total Prize 1,365,135 1,091,430 1,165,011 183,000 5,380,410
1 Prizes are denominated in the US dollars.

14



Table 2: Descriptive Statistics of Crucial Variables1

Variable Mean SD Min Max
Middle-Ranked Players (N = 286)
Absolute Variation in Chips ∆c 62,235 92,881 0 798,000
Current Chips cn−1 242,760 204,839 26,000 1,239,000
Percentage Variation in Chips %∆c 30.0% 33.3% 0% 173.1%
Chip Spread from Nearest Leader σ−(c) 156,997 226,275 0 1,813,000
Chip Spread from Nearest Follower σ+(c) 73,200 79,653 0 511,000
Gain in Prize by One-Rank Change g 100,192 101,059 3,000 505,261
Loss in Prize by One-Rank Change l 47,108 48,455 1,000 253,312
Bottom-Ranked Players (N = 106)
Absolute Variation in Chips ∆c 60,890 79,607 0 391,000
Current Chips cn−1 111,716 107,271 5,000 666,000
Percentage Variation in Chips %∆c 60.3 55.2 0 246.9
Chip Spread from Nearest Leader σ−(c) 65,829 72,081 500 371,000
Chip Spread from Nearest Follower σ+(c) – – – –
Gain in Prize by One-Rank Change g 27,022 31,464 1,000 153,135
Loss in Prize by One-Rank Change l 0 0 0 0
1 Prizes are denominated in the US dollars.
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Table 3: Changes in Rank between Chip Count Displays

Middle-Ranked Players
Rank Change Frequency Percent (%)

0 140 48.95
1 115 40.21
2 24 8.39
3 6 2.10
4 1 0.35

All Players except Top Rank
Rank Change Frequency Percent (%)

0 204 52.04
1 140 35.71
2 35 8.93
3 12 3.06
4 1 0.26
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Table 4: Middle-Ranked Players1

(1) (2) (3) (4) (5)
gi .164 .241 .192 .178 .181

(.076) (.076) (.074) (.075) (.096)
li -.396 -.870 -.792 -.797 -.746

(.209) (.286) (.270) (.267) (.246)
cn−1 .184 .116 .113 .118 .070

(.060) (.059) (.060) (.057) (.058)
σ−(c) .119 .117 .101 .119

(.054) (.055) (.054) (.058)
σ+(c) -.002 .010 -.038 .010

(.108) (.107) (.105) (.101)
w .787 .673 .801 .722

(.443) (.408) (.413) (.336)
Nk -3439 -5795 -5301

(1688) (1697) (2371)
n 5837 6269

(1775) (1940)
Age -5825

(2760)
Age Squared 62.5

(35.3)
Constant 19724 4759 44762 43457 163722

(8992) (14095) (20004) (19389) (53561)
R2 = .153 .213 .228 .257 .280
F-test for |α1| = |α2| [.175] [.008] [.009] [.001] [.004]
Number of Observations 286 255
1 Robust standard errors in parentheses are calculated by clustering. p-values are in

brackets.
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Table 5: Middle-Ranked and Bottom-Ranked Players1

(1) (2) (3) (4) (5)
gi .232 .228 .201 .135 .141

(.076) (.072) (.074) (.073) (.087)
li -.729 -.964 -.920 -.796 -.793

(.175) (.256) (.249) (.242) (.243)
cn−1 .184 .184 .179 .174 .139

(.054) (.053) (.055) (.051) (.047)
σ−(c) .112 .111 .091 .109

(.051) (.051) (.051) (.055)
σ+(c)×Middle Rank -.081 -.070 -.105 -.079

(.100) (.098) (.096) (.093)
Middle Rank -681 58.5 -9492 -3785

(8588) (8494) (8280) (8841)
w .718 .638 .775 .719

(.363) (.335) (.330) (.320)
Nk -2610 -5270 -5052

(1435) (1457) (1858)
n 5967 6461

(1643) (1765)
Age -4694

(2148)
Age Squared 48.3

(26.0)
Constant 20119 3026 33263 35632 138114

(7088) (11974) (17488) (16575) (43169)
R2 = .189 .248 .257 .292 .307
F-test for |α1| = |α2| [.001] [.001] [.001] [.001] [.001]
Number of Observations 392 349
1 Robust standard errors in parentheses are calculated by clustering. p-values are in

brackets. Middle Rank is an indicator of middle-ranked players.
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Table 6: Percentage Change in Chips1

(1) (2) (3) (4)
gi .000050 .000020 .000053 .000032

(.000029) (.000033) (.000038) (.000042)
li -.000235 -.000178 -.000242 -.000154

(.000067) (.000078) (.000088) (.000090)
R2 = .041 .121 .120 .161
F-test for |α1| = |α2| [.0001] [.0072] [.0012] [.0427]
Number of Observations 286 392
1 Robust standard errors in parentheses are calculated by clustering. p-values are in

brackets. Other variables included are σ−(c) and σ+(c) in column (1), σ−(c), σ+(c)

cn−1, w, Nk, and n in column (2). Included are σ−(c), σ+(c)×Middle Rank, and

Middle Rank in column (3), σ−(c), σ+(c)×Middle Rank, Middle Rank, cn−1, w, Nk,

and n in column (4).
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Table 7: Robustness Checks1

Sample gi li Controls |α1| = |α2|
Middle .144 -.638 Basic, Dummies for Rank [.077]

(.073) (.313)
Middle .146 -.652 Basic, Dummies for Rank, [.086]

(.083) (.298) Tournament Characteristics
Middle & Bottom .109 -.695 Basic, Dummies for Rank [.010]

(.074) (.260)
Middle & Bottom .092 -.676 Basic, Dummies for Rank, [.014]

(.090) (.253) Tournament Characteristics
1 Robust standard errors in parentheses are calculated by clustering. p-values are in brack-

ets. For the sample of middle-ranked players, basic control variables include cn−1, σ−(c),

σ+(c), w, Nk, and n. For the sample of middle-ranked and bottom-ranked players, basic

control variables include cn−1, σ−(c), σ+(c)×Middle Rank, Middle Rank, w, Nk, and n.

Tournament characteristics include total prize and coefficient of variation in prize.
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Figure 1: Convex Prize Structures
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Figure 2: Prize Structure and Rank Change
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Figure 3: Age Profile of Risk Taking
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Note: The predictions are based on polynomial regression with 95% confidence interval.
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