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1 Introduction

Most economic decisions involve an appraisal of future outcomes. The standard model

used to deal with this issue is the exponential discounting model (EDM), according to

which1 an outcome x available at time t is evaluated as δtu (x), with δ a constant discount

factor and u the instantaneous utility of x. However, in the last decade evidence has

accumulated contradicting the predictions of the EDM. In particular, it is clear that

individuals often exhibit the so-called preference reversal phenomenon, whereby an initial

preference between an earlier outcome and a later one is reversed once both outcomes are

delayed by the same amount of time.

In the last decade an alternative model, which is consistent with this type of evidence,

has enjoyed considerable prominence and success in the literature. This is the model

of hyperbolic discounting (HDM)2, in which the discount factor is a hyperbolic function

of time. The central point of this approach is that the rate of time preference between

alternatives is not constant but varies, and in particular decreases, with the passage of

time. The simplest and most popular form of hyperbolic discounting occurs in a two-

parameter model which may be termed the β − δ model. In this model, the rate of

time preference between a present alternative and a future one is βδ, whereas the rate

of time preference between two future alternatives is δ. So we may have for example

u (x) > βδu (y) and δt+1u (y) > δtu (x), ‘rationalising’ a preference reversal. The HDM

approach is extremely fruitful in addressing some of the issues raised by the experimental

evidence, so much so that it has almost become a new consensus.

Yet we believe that some closer scrutiny, and an appraisal of the cognitive sources of

the ‘anomalies’ is needed. For example Rubinstein ([25] and [26]) shows experimentally

that precisely the same type of decision situations that may create a difficulty for the

EDM may also be problematic for the HDM. Similarly, Frederick et al. [8] doubt that

the change from a constant to hyperbolic functional form to discount future utility is

‘radical’ enough. Furthermore, Read [21] shows that the existing experimental evidence

is consistent with other explanations, most notably subadditivity of discounting.

There is also evidence that human decision-makers depart in an even more fundamental

way from standard models: they may make intransitive choices. Although most data in

this direction come from choices under risk, what evidence is available for time preferences

suggests that violations of transitivity are even more frequent in this domain. Tversky et

al. [34] show that a substantial 15% of subjects exhibited cyclical patterns of choice that

1See Fishburn and Rubinstein [7].
2See for instance Phelps and Pollack [18], Loewenstein and Prelec [13], Laibson [12], Frederick et al.

[8], O’Donoghue and Rabin [15], [16].
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could not be explained by ‘framing effects’. Roelofsma and Read’s [22] experiment is even

more striking: they found that the majority of intertemporal choices were intransitive.

This type of evidence, which we consider crucial in guiding our intuition about time

preferences, has been somewhat downplayed in the mainstream economic literature on

time preferences. This contrasts with the theory of choice under risk, where at least two

main approaches (prospect theory and regret theory) explain cyclical choices. A notable

exception is the very general paper by Ok and Masatlioglu [17], who have axiomatised a

class of models of choice over time. These include as particular cases HDM, Rubinstein’s

([25], [26]) similarity theory and Read’s subadditive discounting among several others, and

some of the representations admitted by their axioms are compatible with intransitivities.

We view the body of evidence against the EDM as indicating that human agents use

heuristic procedures to make choices over time that differ fundamentally from the simple

maximisation of a complete preference ordering as assumed both in EDM and in HDM.

We suggest that at the root of ‘anomalies’ like preference reversals and intransitivities

is a basic cognitive shortcoming, noted by several thinkers on the topic and in popular

wisdom: the perception of events that will occur in the future is ‘blurred’, and possibly it

becomes increasingly blurred as the events are pushed farther in time34. As a consequence,

deciding between alternatives to be obtained in the distant future is intrinsically harder

than deciding between the same alternatives available earlier. For instance, an individual

may find 1000 euros now distinctly preferable to 1100 euros in one year time, but may

well hesitate when asked to decide between 1000 euros in ten years or 1100 euros in eleven

years. In our view, the evaluation of a time-dependent alternative has, on the one hand, a

pure time preference aspect: most people prefer alternatives to be available sooner rather

than later (this may be a ‘hard-wired’ feature of animal brains, see e.g. Ainslie [3]).

On the other hand, the farther two alternatives are in time, the more difficult it is to

distinguish between them on the basis of an explicit time-outcome trade-off: we refer to

this cognitive condition as vagueness. In our theory we propose that behaviour can be

rationalised by a combination of three factors:

3For example, according to Pigou [19] “our telescopic faculty is defective, and we, therefore, see future
pleasures, as it were, on a diminished scale”. Also, Böhm-Bawerk [4] stated that “..we limn a more or
less incomplete picture of our future wants and especially of the remotely distant ones.”

4These notions are well established in proverbs, from “we’ll cross that bridge when we come to it”
to “hindsight is better than foresight”, “it will all be the same in a hundred years” for the anglosaxon
tradition, to “En cien años todos calvos” and “Tra tre anni beato chi ha un occhio” from the Spanish
and Italian tradition, respectively (which translate as “In a hundred years we’ll all be bald” and “Blessed
he who still has got an eye left in three years”. Interestingly, for the latter proverb the user is free to
change the lenght of time as she sees fit). See for instance Taylor [31], Simpson and Speake [28], Rovira
[23], Pittano [20].
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• impatience;

• ‘vagueness’ in the perception of future alternatives; and

• a suitable heuristics to make a choice when vagueness is ‘high’.

The decision maker will initially attempt to express a preference between two alter-

natives based on an explicit trade-off between outcome and time (that is, between his

impatience and his desire to obtain more). When unable to do so, he will rely on a

‘vagueness-breaking criterion’. This criterion is based on a lexicographic consideration

of the two dimensions (time and outcome) involved in the comparison. That is to say,

the decision maker chooses the alternative that is better according to the dimension that

he regards as the most important. This is in accord with evidence and theory in the

psychology literature. As for example Tversky et al. [35] note,

‘Because it is often unclear how to trade one attribute against another, a

common procedure for resolving conflict in such situations is to select the

option that is superior on the more important attribute. This procedure,

which is essentially lexicographic, has two attractive features. First, it does

not require the decision maker to assess the trade-off between the attributes,

thereby reducing mental effort and cognitive strain. Second, it provides a

compelling argument for choice that can be used to justify the decision to

oneself as well as to others.’ (p. 505, our italics)

The economic literature on individual preferences traditionally looks for representation

results that ‘compress’ preferences within a single ‘indicator’, a utility function which

summarises the agent’s evaluation of all aspects of an alternative. On the contrary,

the psychological theories of choice tend to be completely heuristic based. We see our

theory as ‘spanning’ the gap between the two approaches since, although agents’ evaluate

alternatives ‘in their entirety’, they are not always able to tell two alternatives apart: it

is only in the presence of vagueness that they rely on heuristic procedures.

Among heuristics based theories the closest to our approach is Tversky’s [33] ‘lexico-

graphic semiorder ’, according to which agents rely on their ranking of the attributes of

a (time dependent) alternative in a lexicographic way when choosing between different

alternatives. The first attribute of each alternative is compared, and if the difference

exceeds some threshold value then a choice is made accordingly. If the threshold value is

not exceeded, then the agent compares the second attribute of each alternative, and so

on.
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Both this approach and our theory are close in spirit to Rubinstein’s [26] suggestion

to extend his own similarity-based approach from risk to time preferences. He argues

that, when evaluating alternatives, agents may perceive these alternatives to be ‘similar’

in either the time or the outcome dimension. At the formal level, this notion of simi-

larity is closely related to our notion of vagueness. The crucial difference is that in our

model vagueness applies to alternatives (i.e. outcome-dates pairs), not only to each date

or outcome dimension separately. There are two aspects to this. First, vagueness (or

similarity) in one dimension may not be defined independently of the other dimension.

For example, 1 Million today may be clearly distinct from 1.01 Million today; but from

today’s perspective the two amounts in thirty years time may well be considered similar5.

Second, ‘two-dimensional’ similarities between alternatives (outcome-date pairs) may be

independent of similarities along each dimension: you may be able to distinguish between

1 Million and 1.01 Million, and also between the dates ‘1 year from now’ now and ‘2 years

from now’, yet be unable to express a preference between 1.01 Million 2 years from now

and 1 Million 1 year from now. These differences are important. Indeed, Rubinstein [24]

shows that his similarity approach generates an essentially unique transitive preference

relation on alternatives6, and takes it as evidence that utility theory is hardly reconcilable

with experimental data. On the contrary, as observed above, our theory, though utility

based, can easily explain a range of both transitive and cyclical choices.

Our contribution is two-fold. First, we provide a class of parsimonious representations

of an individual’s basic time-outcome trade-off, in which a standard utility function (of

time and outcomes) is combined, in an additive way, with a ‘vagueness function’. At the

formal level, these representations take the form of interval orders or semiorders. Second,

we focus on a very simple such representation - which we dub the σ − δ model - and

combine it with the ‘vagueness-breaking’ criterion described above in order to examine

choice behaviour. Needless to say, heuristics by definition cannot be axiomatised; we

show how a simple ‘rule of thumb’ which has been widely studied in the psychological

literature can be used to complete the basic transitive partial order when the latter leaves

the decision maker ‘vague’. In this way we can explain for instance the phenomenon of

preference reversal with an interpretation that seems to us more adherent to the psycho-

logical basis for it. The model can also account for cyclical patterns of choice, which are

obviously incompatible with theories such as HDM and EDM, based as they are upon

the maximisation of a preference ordering. Moreover, our framework can address a type

5This aspect has been underlined and studied, in a risk context, by Aizpurúa et al. ([2] and [1]) and
Uriarte [36], who develop the concept of ‘correlated similarities’.

6Vilà [38] shows that with three dimensions Rubinstein’s similarity approach generates intransitivities.
See also Gilboa and Lapson [9].
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of time inconsistency that so far has not received attention, and which we dub the ‘now

or never fallacy’: an agent engages in some activity prematurely for fear that he will

keep delaying it to an undesirable extent. The now or never fallacy hinges directly on a

cyclical pattern of preference (as well as time-inconsistency). Although it accords with

introspection, neither HDM nor EDM could explain it.

The structure of the paper is as follows. We start by postulating a partial order

(the ‘primary criterion’) on the set of outcome-date pairs, together with a ‘secondary

criterion’ which embodies the vagueness-breaking heuristics (section 2). Next, we narrow

down further this partial order, and impose axioms which specialise it to an interval order

or a semiorder, which can be represented in a standard, additively separable, way (section

3). In section 4 we present our σ − δ model and consider preference reversal, cycles and

the now or never fallacy application. Section 5 concludes.

2 The Model

In this section we present a general model which includes, as a special case, the simple

σ−δ formulation studied later. LetX indicate a set of outcomes (e.g. money amounts) on

which there exists a reflexive, complete and transitive preference relation R. We denote

the symmetric and asymmetric components of R by I and P , respectively. Let T be the

set of dates. The set of alternatives is a set of outcome-date pairs A ⊆ X × T .
We imagine that the preference relation º∗ of the individual on A is constructed as

follows. There exists a primary criterion on the basis of which the individual makes

comparisons between alternatives. We interpret the primary criterion as resolving com-

parisons for which the trade-off between outcome and time involved in the comparison

yields, in the perception of the individual, a decisive advantage to one of the alternatives:

that is, for example, the loss in the time dimension of one alternative clearly outweighs its

advantage in the outcome dimension. We would also expect a primary criterion to operate

when there exists a clear relation of ‘dominance’ between alternatives, in the sense that

one offers a distinctly better outcome at an earlier date than the other. Because of the

cognitive limitations discussed in the introduction, however, there may be pairs of alter-

natives that cannot be ranked by the primary criterion alone: the outcome-time trade-off

does may not offer a basis for decision, and the individual has cognitive ‘holes’. In this

case, and only in this case, a secondary criterion is used. The relation º∗ is derived by a
combination of primary and secondary criteria.

More formally, let the primary criterion be a strict partial order Â on A (that is, an
irreflexive and transitive binary relation on A). When a pair of alternatives a, b ∈ A is
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not ordered by Â we denote this fact by a ∼ b, i.e.

(not a Â b, not b Â a)⇔ a ∼ b

and say that a and b are vague. Under our assumptions the relation ∼ may not be

transitive. As mentioned above, ∼ does not mean indifference between two alternatives,
but simply the inability to express a strict preference. We call this situation vagueness.

The secondary criterion is used to rank alternatives which are vague. As explained

in the introduction, there is psychological evidence that when individuals are unable to

compare alternatives on the basis of a trade-off between the various dimensions of those

alternatives, they rely on lexicographic-type comparisons, by focussing on the ‘dominant’

dimension7. In our model there are two dimensions, time and outcome. Thus, a natural

secondary criterion is to allow the individual to rank two alternatives which are vague

under Â first according to the preference ordering R over the (pure) outcomes, and if this
still does not result in a strict preference, according to time precedence. Formally, let º∗
denote a complete preference relation (not necessarily transitive) on A. So we consider

the following model:

Outcome Prominence Model (OPM): Let i = (xi, ti) ∈ A. Then:

1. a Â∗ b⇔

(a) a Â b (Primary Criterion), or
(b) (a ∼ b, xaPxb) or (a ∼ b, xaIxb, ta < tb) (Secondary Criterion)

2. a ∼∗ b⇔ (a ∼ b, xaIxb, ta = tb)
The other natural model in place of OPM is:

Time Prominence Model (TPM): Let i = (xi, ti) ∈ A. Then:

1. a Â∗ b⇔

(a) a Â b or
(b) (a ∼ b, ta < tb) or (a ∼ b, ta = tb, xaPxb)

2. a ∼∗ b⇔ (a ∼ b, xaIxb, ta = tb)
7See e.g. Slovic [29], Tversky et al. [35] and Shafir et al. [27].
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TPM would yield results which are qualitatively similar to the ones we derive in the

paper with OPM. However TPM - in our σ− δ specialization - would lead to a clash with

a large body of experimental evidence which on the contrary is compatible with OPM. In

particular, while we can explain ‘preference reversals’ with both models, those obtained

with TPM are in a direction opposite to the one which is normally observed in practice.

For this reason we will focus on OPM.

3 General representation results

In this section we provide a number of representation results for the primary ordering Â.
These are based on various assumptions on both the structure of the set of alternatives

and the cognitive abilities of the decision maker. All the results represent preferences by

means of two real valued functions u and σ on the set of alternatives.

The natural interpretation is that the u function expresses the ‘pure’ time preferences

of the individual. This function can be chosen to be monotonic in the natural direction in

both outcome and time. On the other hand σ is the ‘vagueness function’ which captures

the imaginative difficulty the individual faces when appraising outcomes in the future.

There are two notable aspects of the representations. First, the vagueness term enters

additively. Second, the vagueness when appraising whether a = (x, tx) is better than

b = (y, ty) is a function of the components of b alone; it does not depend on tx or x.

In what follows we say that a preference ordering Â is (u,σ)-representable if there

exist real valued functions u and σ on A such that

(x, tx) Â (y, ty)⇔ u (x, tx) > u (y, ty) + σ (y, ty)∀ (x, tx) , (y, ty) ∈ A

It is worth comparing our class of representations with that of Ok and Masatlioglu

[17]. They consider a complete binary preference relation B over a set of outcome-

date pairs and axiomatise the following representation class: (x, t)B (y, s) if and only

if U (x) ≥ U (y)+ϕ (s, t), where U is interpreted as an instantaneous utility function and

ϕ captures the effect of time delay. In this representation, which is not an interval order,

the ‘contributions’ of outcome and time to the agent’s utility are separated, unlike in our

model. Note that in Ok and Masatlioglu’s approach cycles can be accounted for without

resorting to a secondary criterion. Our view is different: the primary criterion represents

the ‘fully rational’ component of decision making, hence we assume it transitive. In our

approach intransitivities are the byproduct of resorting to the rule of thumb invoked when

‘full rationality’ is not decisive.
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3.1 Finite sets of alternatives

With vague time preferences, an individual is not always able to compare two alternatives

a and b. However we require that the individual has at least some discriminatory ability

regarding the sets of alternative dominated by a and b, respectively. Formally, let L (a)

denote the lower contour set of a ∈ A, that is L (a) = {b|a Â b}, and let V (a) denote the
vague set of a, that is V (a) = {b|a ∼ b}. Then we assume:

Discrimination: For every alternatives a, b ∈ A either L (a) ⊆ L (b) or L (b) ⊆ L (a).

Transitivity of Â ensures that L (b) ⊂ L (a) whenever a Â b, thus Discrimination has a
bite only in the case of vague alternatives. Two alternatives a and b may be so vague that

they also have the same set of worse alternatives. But suppose that the agent perceives

that alternatives that are not worse than a are worse than b. In this case, the agent

perceives some kind of improvement in moving from a to b (though not strong enough to

make b preferred to a). The property of Discrimination requires that after the ‘improving’

move to b no alternative that was dominated by a ceases to be dominated (and it poses

the converse requirement if the move to b was perceived to be negative). In other words,

moving from one alternative to the other may involve either an (weak) improvement or a

(weak) worsening in the above sense, but not both.8

Next, we consider some straightforward monotonicity properties:

Time Monotonicity (i): For every x ∈ X and t1, t2 ∈ T with t2 > t1: L (x, t2) ⊆
L (x, t1).

Time Monotonicity (ii): For every x, y ∈ X and t, t1, t2 ∈ T with t2 > t1: (x, t2) ∈
V (y, t) implies (x, t1) /∈ L (y, t).

The requirements of Time Monotonicity are that: first, anything which is dominated

by some alternative a must also be dominated by an alternative with the same outcome

as a but at an earlier time; and, second, that given a relationship of vagueness between

two contemporaneous alternatives, it cannot be that anticipating one of them makes it

dominated by the other one. Note that these allow for two alternatives with the same

outcome available at different times to be vague. Similar requirements can be imposed in

the outcome dimension:
8An alternative justification for Discrimination is the ‘sure-thing’ property if alternatives were allowed

to have a risk dimension as well, i.e. lotteries of the type
¡
1
2 , a;

1
2 , b
¢
over the riskless alternatives a and

b were included in the domain. Sure-thing implies that if a Â b and c Â d then ¡12 , a; 12 , c¢ Â ¡12 , b; 12 , d¢
and similarly for ∼. It is easily seen that Discrimination on the riskless alternative would follow.
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Outcome Monotonicity (i): For every x1, x2 ∈ X and t ∈ T with x2Px1: L (x1, t) ⊆
L (x2, t).

Outcome Monotonicity (ii): For every y, x1, x2 ∈ X and t, t0 ∈ T with x2Px1: (x1, t) ∈
V (y, t0) implies (x2, t) /∈ L (y, t0).

Our next representation result applies to the case where the number of alternatives is

arbitrarily large but finite.

Proposition 1 Let Discrimination, Time Monotonicity (i) and Outcome Monotonicity
(i) hold. Let L(a) be finite for all a ∈ A. Then Â is (u, σ)-representable with σ (a) > 0

for all a ∈ A and u non-decreasing in outcome and non-increasing in time.

Proof. For any a ∈ A, define u(a) = #L(a). By Time Monotonicity (i) and Outcome
Monotonicity (i), the function u is weakly monotonic in the desired direction with respect

to time and outcomes. Next, define σ (a) as follows. Choose

a∗ ∈ argmax
b∈V (a)

#L (b)

Then let

σ (a) = max

½
1

2
, u(a∗)− u (a)

¾
Observe that for any two alternatives c, d with c Â d it must be u (c) > u (d) (since

L (d) ⊆ L (c) by the transitivity of Â, and since d ∈ L(c) but c /∈ L (c), implying

#L (c) > #L (d)).

We show that u and σ as defined above represent Â.
Let a Â b. Then u (a) > u (b) by the above observation. Now suppose in negation

that

u (a) ≤ u (b) + σ (b)

By definition σ (b) = max
©
1
2
, u(b∗)− u (b)ª. If σ (b) = 1

2
we get an immediate contradic-

tion (since u (a)− u (b) > 1
2
). So let σ (b) = u(b∗)− u (b) and therefore

u (a) ≤ u (b) + σ (b) = u (b∗)

By the above inequality and the definition of u, #L (b∗) ≥ #L (a). Then by Discrimi-
nation L (b∗) ⊇ L (a) . By the fact that b ∈ L (a) this implies b ∈ L (b∗), contradicting
b ∈ V (b∗).
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Consider now a ∼ b. We need to show that both u (a) ≤ u (b) + σ (b) and u (b) ≤
u (a) + σ (a). If b = a∗ then u (b) = u (a∗) ≤ u (a) + σ (a), and if b 6= a∗ then, by the
definition of a∗, u (b) ≤ u (a∗) ≤ u (a) + σ (a). Therefore in all cases u (b) ≤ u (a) + σ (a).

The same argument applies interchanging a and b, so that u and σ as defined above

represent ∼.
Finally assume u (a) > u (b) + σ (b). Then by Discrimination L (a) ⊃ L (b). So it

cannot be b Â a, since then we would have a ∈ L (b) but a /∈ L (a), a contradiction. It
cannot be b ∈ V (a) either, since then u (a) ≤ u (b) + σ (b).

The case of a finite set of alternatives A is a natural setting for this result. Observe

however that all that is required is that L (a) is finite9.

The assumptions of Discrimination and Time and Outcome Monotonicity are too weak

to allow for a constant σ, even with simple finite sets of alternatives. We illustrate this

with an example (see figure 1, in which the arrows denote dominance and the dashed lines

denote vagueness).

• • •

• • •

timet=0 t=1 t=2

outcome

y

x

Figure 1: An illustration of example 3.

Example 2 X = {x, y} with xPy and T = {0, 1, 2}, A = X × T and (x, 0) Â (x, 1) Â
(x, 2), (x, 0) Â (y, 2) with all other relations not implied by the transitivity ofÂ being ones
of vagueness. So, L (x, 0) = {(x, 1) , (x, 2) , (y, 2)} , L (x, 1) = {(x, 2)} and for all other

9This result is related but not the same as Theorem 2.7 in Fishburn [6], who uses a different technique
of proof.
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a ∈ A, L (a) = ∅. Then it is easily checked that these preferences satisfy Discrimination,
Time Monotonicity and Outcome Monotonicity, so that there exists a u−σ representation.
However, if σ were constant we would have

u (x, 0) > u (x, 1) + σ

u (x, 1) > u (x, 2) + σ

u (y, 1) ≤ u (x, 2) + σ

u (x, 0) ≤ u (y, 1) + σ

From the last two inequality it follows that

u (x, 0)− σ ≤ u (x, 2) + σ

whereas from the first two inequalities we have

u (x, 0)− σ > u (x, 2) + σ

a contradiction.

3.2 Infinite sets of alternatives

Consider now the case where the set of alternatives is allowed to be infinite, and in

particular let X = T = [0, 1]. A technique similar to the one used for proposition 1 can

be applied, provided only that the sets L (a) are sufficiently regular as to be Lebesgue-

measurable (this will be the case in virtually every conceivable application), and that the

following hold:

Continuity: If a = (x, s) Â b = (y, t) then there exists ε > 0 such that (i) (x0, s0) Â b

for all x0, s0 ∈ [0, 1] with |x0 − x| < ε and |s0 − s| < ε, and (ii) a Â (y0, t0) for all
y0, t0 ∈ [0, 1] with |y0 − y| < ε and |t0 − t| < ε.

Betweenness: If a Â b then there exists (x, s) ∈ L(a)\L (b) and ε such that (x0, s0) ∈
L(a)\L (b) for all x0, s0 ∈ [0, 1] with |x0 − x| < ε and |s0 − s| < ε.

Continuity says that a strict preference between two alternatives should hold for all

other alternatives sufficiently close the original two. Betweenness says that there exists

a (non-negligible) set of alternatives which lies ‘between’ (in terms of preference) any

two strictly ranked alternatives. ‘Between’ in this context means: worse that the better

alternative and not worse than the worse alternative. Such assumptions would be satisfied,

for example, in a model with ‘thick’ vagueness curves through an alternative, that separate

the upper and lower contour sets. However, there may be other patterns of cognitive
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‘holes’, for example one where vagueness occurs very close to an alternative (because

the individual does not distinguish such close alternatives), it occurs again at far away

alternatives (for example because of the passage of time), and does not occur in the

intermediate region.

Proposition 3 Let X = T = [0, 1]. Let Discrimination, Time Monotonicity (i), Out-

come Monotonicity (i), Continuity and Betweenness hold. Then Â is (u, σ)-representable
with σ (a) ≥ 0 for all a ∈ A and u non-decreasing in outcome and non-increasing in time.

Proof. The proof follows the same steps as the proof of proposition 1, taking care of
some additional technical details. It is given for completeness in the Appendix.

We can obtain a similar representation in the case of a countable set of alternatives,

using an alternative notion of continuity:

Proposition 4 Let X and T be countable sets. Let Discrimination, Time Monotonicity

(i), Outcome Monotonicity (i) hold. Suppose that (lim {an}) ∈ V (a) for any sequence
{an} with an ∈ V (a). Then Â is (u, σ)-representable with σ (a) ≥ 0 for all a ∈ A and u
non-decreasing in outcome and non-increasing in time.

Proof. In the Appendix.
Finally, we provide a result which does not make any structural assumption on the set

of alternatives but is formulated directly in terms of a representation.

Proposition 5 Let Â be (u, σ)-representable with σ (a) ≥ 0 for all a ∈ A and let Time
Monotonicity (i) and (ii), and Outcome Monotonicity (i) and (ii) hold. If σ can be chosen

to be non-increasing in outcome, then u can be chosen to be non-decreasing in outcome at

an arbitrarily large number of alternatives, and if σ can be chosen to be non-decreasing in

time then u can be chosen to be non-increasing in time at an arbitrarily large number of

alternatives.

Proof. In the Appendix.
Proposition 5 shows that the utility function can be chosen to display the expected

monotonicity properties (on an arbitrarily large number of alternatives) with respect to

the passage of time and improvement of outcomes, provided that vagueness does not

increase as the outcome improves and it does not decrease as time passes. This latter

condition in particular accords well with our motivating intuition, that the passage of time

has a blurring effect on the comparisons between alternatives. Of course, this result is not

completely satisfactory because we would like to have an assumption on the primitives,

13



namely the preferences, implying the desired conditions on the function σ. In particular,

sufficient conditions for the constancy of σ would be of interest.

In the next section we concentrate on one element of the class of representations

obtained, which incorporates the feature of (relative) vagueness increasing with time.

4 The σ − δ model

From now on we consider X as a real interval, e.g. money amounts. For this setting we

propose our σ − δ model, a specialisation of OPM. In doing so we follow the hyperbolic

discounting tradition whereby out of the entire hyperbolic family attention has been

focused on the application friendly β − δ version. There are several motives for studying

our chosen specialisation. First, it constitutes in a sense the minimal possible departure

from the standard EDM; yet its implications are still widely different from that of the

EDM. Second, it is parsimonious, in that it depends only on two parameters, which can

be potentially estimated (see section 4.4). Third, it has a natural interpretation, and in

particular it incorporates the psychological feature at the root of our approach that as

choices are pushed further into the future the ‘vagueness’ associated with the outcomes

increases.

The σ − δ model is a representation of the individual’s (primary) preferences that

depends on a discount parameter δ ∈ (0, 1) and a vagueness parameter σ > 0. The

individual values alternatives using exponential discounting with factor δ and linear utility.

However, in order to regard an alternative better its discounted utility must exceed that

of a competing alternative by at least σ (Primary Criterion). That is, loosely speaking,

δ measures the way the individual trades off outcomes across time, while σ measures the

precision with which such trade-offs can be made (see section 4.4 below for a more precise

interpretation). When the individual cannot compare alternatives on the basis of present

discounted value, his preferences conform to the Secondary Criterion, that is: he prefers

the alternative corresponding to the higher amount of money; if the monetary amounts

are the same for both alternatives, then he prefers the alternative corresponding to the

earlier date. So in the σ − δ model (x, tx) is chosen over (y, ty) whenever either

xδtx > yδty + σ

or

xδtx ≤ yδty + σ and x > y

or

xδtx ≤ yδty + σ, x = y and tx < ty

14



4.1 Cycles

Several contributions in decision theory have pointed out on both normative and descrip-

tive grounds that human decision procedures may generate non transitivity in choice (see

e.g. Tversky [33]; Rubinstein [24]; Tversky et al. [34]; Vilà [38]; Roelofsma and Read’s

[22]; Read [21]; Ok and Masatlioglu [17]). To understand this phenomenon, consider the

following non time-related dietary example. You like your coffee sweet to the point of

neglecting dietary considerations, so that one sugar spoon is preferred to half a sugar-

spoon. However, the sweetening impact of a quarter spoon is negligible to your tongue:

in this case dietary considerations prevail and you prefer half a spoon to three quarters

and three quarters to one!10

With time preferences, we have argued for an analogous ‘switch of criterion’ when

vagueness occurs. So the preference relation º∗ generated by the OPM is not necessarily

transitive, and this is true for the σ − δ specialisation too. For a cycle to occur it is

sufficient that there are three alternatives (x, tx), (y, ty) and (z, tz) with x > z > y such

that

yδty > xδtx + σ

zδtz ≤ xδtx + σ

xδtx ≤ zδtz + σ

yδty ≤ zδtz + σ

zδtz ≤ yδty + σ

so that (y, ty) Â∗ (x, tx) but (x, tx) ∼ (z, tz) and (y, ty) ∼ (z, tz) by the Primary Criterion.
By the Secondary Criterion (x, tx) Â∗ (z, tz) and (z, tz) Â∗ (y, ty).
The inequalities above are possible whenever

yδty > σ + xδtx ≥ zδtz

4.2 Preference reversal

We now study under what conditions the σ − δ model generates preference reversals in a

discrete model. Recall that preference reversal at time t0 is the shorthand for the following
situation

(x, t) Â∗ (y, t0)
(y, t0 + t00) Â∗ (x, t+ t00)

10Similarly, our friend Faye likes a sweet at the end of a meal but nonetheless opts for a synthetic
sweetener with her coffee.
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where t0 ≥ t. Then if preferences can be u − σ represented, conditions for preference

reversal as expressed above are

u (x, t) > u (y, t0) + σ (y, t0)
u (x, t+ t00) ≤ u (y, t0 + t00) + σ (y, t0 + t00)

(1)

Turning to the case of exponential discounting and constant σ, let u (x, t) = δtx, with

δ ∈ (0, 1). System 1 above simplifies to

xδt > yδt
0
+ σ

xδt+t
00 ≤ yδt0+t00 + σ

or:

σ ∈
h³
xδt − yδt0

´
δt
00
, xδt − yδt0

´
≡ I (x, y, δ, t, t0, t00) (2)

So the vagueness factor σ must be sufficiently small to make the smaller amount initially

more attractive than the larger, later one; and sufficiently large so that the same com-

parison is resolved in the opposite direction when all alternatives are pushed forward by

t00. When σ lies in the interval I (x, y, δ, t, t0, t00) the present discounted value criterion is
not sufficiently precise to rank (x, t+ t00) and (y, t0 + t00). The individual resorts to the
Secondary Criterion, and prefers (y, t0 + t00).
Given σ and the preference at the initial date, preference reversal will eventually

occur after a sufficiently long time. This is due to the fact that although σ is constant

in absolute terms, the vagueness relative to the utilities involved is increasing with time,

as the discounted values of the two amounts (and so their difference) tends to 0 as time

tends to infinity. Note that in our setting preference reversal is possible whatever the date

for the earliest alternative, whereas the β − δ model can explain preference reversal only

if the earliest alternative occurs at time 0. Preference reversal may persist even when δ

tends to one.

Finally, although in our model the primary ordering is not assumed to be a ‘time

preference’ in the technical sense of Masatlioglu and Ok [17], our justification of preference

reversal is not due to this feature: preference reversal can occur even when within each

period primary preferences are complete, transitive and unchanging through time, and

satisfy additional continuity conditions as required in that paper.

4.3 The ‘now or never’ fallacy

In Giovanni Verga’s [37] short story ‘La roba’ (‘Property’), the peasant Mazzaró leads

a miserable life, supporting himself just on bread and onions while at the same time
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accumulating a vast wealth by working hard and abstaining from any ‘unnecessary’ con-

sumption. Approaching the end of his life, the realization that he cannot take ‘the stuff’

with him in afterlife drives him insane. We maintain that the ‘now or never’ argument

on which we base many consumption decisions is sometimes a fallacy motivated by the

fear of ending in a ‘Mazzaró trap’, even to the point of overdoing it, and regretting the

decision afterwards.

It is well known that when preferences fail to satisfy time-consistency they may produce

patterns of choice which are normatively disturbing though very familiar. The example

of Ulysses and the sirens is the most famous one in the literature on time-inconsistency,

originating with Strotz [30]: people with weaker foresight that the epic hero will make

intertemporal choice which they will later regret. Here we highlight a different type of

lack of foresight and ensuing regret.

The outcome produced by some acts depends on the time at which the act takes place,

and in particular the later the timing, the better the outcome.11 An obvious economic

example is the choice when to dissave an accumulating capital. Similarly, for consumption

goods think of any high-tech product, whose intrinsic qualities improve with technological

progress. The feature common to these situations is that there is a tension between the

improvement in the outcome (which gives an incentive to postpone the act), and the

suboptimality of delaying the act forever. A similar tension may occur even in situations

where the improvement of the outcome with the passage of time is not unbounded, but

there is a limited planning horizon. For example, there is a fairly precise moment in time

when a good cheese reaches the right level of maturity, or a vintage wine the fullness of

its flavour, but the decision maker may wish in any case to enjoy it before that moment,

so that over the planning horizon the quality of the good is increasing over time. There

will be some optimal timing at which this tension is resolved. Consequently, regret would

ensue for a decision maker who did take the relevant action (dissaving, purchasing the

computer, uncorking the bottle) before such optimal time. We show below how our σ− δ

model can generate this type of time inconsistency for ‘naive’ decision makers who fail to

take into account fully their future preferences.12

11Recall that by ‘outcome’ we mean an element of X, that is we are not referring to a date-outcome
pair.
12The impact of time inconsistent preferences on behaviour has been analysed in different contexts

by O’Donoghue and Rabin ([15] and [16]) and Carrillo and Mariotti [5]. The first two papers focus on
procrastination. Specifically [15] deals with the issue of the timing of a given task, while [16] considers the
additional problem of choosing which task to undertake, and when. [5] analyse a class of problems in the
same vein, where an agent’s consumption produces externalities on his future welfare, and the magnitude
of the externality is uncertain. Gul and Pesendorfer [10] explain phenomena such as temptation and
self-control without invoking the non-stationarity of preferences.
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In these cases preferences are such that agents would gladly forego some current util-

ity (delaying consumption/dissaving) in order to have a future higher enjoyment, but are

afraid that in the future they will simply repeat this behaviour, therefore delaying enjoy-

ment to an undesirable extent (from the point of view of the present). This tricks them

into a ‘now or never’ fallacy: what is the point of accumulating money just to end up like

Mazzaró?

We construct an example where some agents may be naive while others are more

sophisticated. While a naive person acts on the basis of the initial preferences and

opts for the ‘now’, a sophisticated person correctly anticipates his future ability to con-

sume/dissave at the optimal time, thus avoiding any regret.

The now or never fallacy is, in a sense, the mirror image of the standard ‘Ulysses and

the sirens’ kind of self-control problem. In that case, naive people lack the foresight to

anticipate their future inability to self-control, and engage in activities which they later

regret. In the now or never fallacy, conversely, naive people lack the foresight to anticipate

their future ability to self-control, and refrain from activities which ex-post they would

rather have engaged in.

OUT

IN

OUT

IN

x

y

z
t=0

t=1

t=2

Figure 2: The ‘now or never fallacy’ decision problem, with x > y > z.

Formally, the intuition of the examples above can be roughly captured by the descrip-

tion of figure 2, where x > y > z. By choosing IN at the outset, the agent foregoes

an immediate gratification z in favour of some higher future outcome (either x or y). In

the next period, choosing OUT ends the decision problem (uncork the bottle), whereas

choosing IN again implies a delayed but even higher utility in the future.
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Now suppose that for this agent preferences are such that the following holds:

• z > xδ2 + σ;

• xδ2 ≤ yδ + σ and yδ ≤ xδ2 + σ;

• yδ ≤ z + σ and z ≤ yδ + σ;

• y > xδ + σ.

We assume that our naive agents are still sophisticated enough that - given the pref-

erences they are using - they reason consistently in the sense of subgame perfection: they

behave optimally in the current period given the anticipated optimal behavior in the pros-

ecution of the decision problem as they perceive it now13. Then the above inequalities

imply that, in period 0, OUT at time 0 is preferred outright to IN all the way (first

condition); IN all the way is preferred to IN at zero followed by OUT in period 1 by

the Secondary criterion (second condition); IN at zero followed by OUT in period 1 is

preferred to OUT immediately by the Secondary criterion (third condition). Finally the

fourth inequality implies that in period 1 the agent prefers OUT to IN . A naive person

will simply assume that his future self will behave according to his current preferences,

thus ignoring the last condition. A sophisticated person is instead one who anticipates

his preference at 1 for OUT over IN . As a consequence, a naive person will practice

immediate restraint by choosing OUT at the outset, whereas a sophisticated agent will

exercise delayed restraint by first choosing IN and then OUT in period 1.

The ‘bite’ in discriminating between the behaviour of naive and sophisticated agents

originates from two facts: first, the initial ordering between (x, t) and (y, t− 1) is reversed
further down in time (i.e. preferences are non-stationary); second, the initial preferences

exhibit non transitivities: (z, 0) Â∗ (x, 2) Â∗ (y, 1) Â∗ (z, 0).
These two factors together generate with behavioural patterns which cannot be ac-

counted for by other present biased representations of preferences. To see this latter point,

contrast the example above with the prediction the β − δ model. The initial preferences

would be translated in the following requirements:

z > βδ2x

βδy > z

βδ2x > βδy ⇔ δx > y

13An alternative way of describing the decision tree is to consider the corresponding time dependent set
of alternatives. Initially (at time 0) the set of alternatives that can be ‘seen’ is A0 = {(z, 0) , (y, 1) , (x, 2)}.
Conditional upon (z, 0) being chosen, the problem is over. If instead the action leading to (y, 1) is selected,
then the set of alternatives which can be seen at time 1 is A1 = {(y, 1) , (x, 2)}. A naive person just does
not ponder about A1.
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Note that the first two conditions imply βδy > βδ2x ⇔ y > δx, which contradicts the

third one, so that regardless of whether an agent is naive or sophisticated, a person with

β − δ preferences could never find himself confronted with the kind of problems that a

σ − δ agent might face. While the β − δ model incorporates non-stationarity and thus

can easily explain preference reversal, it cannot generate cycles.

We are not claiming that the now or never fallacy is a universal feature of human

choices. However, we claim that it is introspectively a possible situation. Just as there

are people not as foresightful as Ulysses and engage in an activity wrongly believing they

will be able to restrain themselves, so it is plausible that there are naive individuals who

refrain from an activity wrongly believing they will not be able to restrain themselves.

This type of naivete may also be important in explaining low saving rates as well as

impulse spending.

4.4 Interpretation of δ as a SPOt ratio

We stated before that δ measures the way the individual trades off outcomes across time.

This can be made formally more precise in an idealised version of the model in which the

space of outcomes is a continuum. For any alternative (x, tx) we are not able to define

to define a ‘present value’ at time t < tx in the standard way, as an alternative at time

t which is indifferent to the later alternative (x, tx). This is because in our theory no

two alternatives are indifferent, as Â∗ is a strict order. However, we can define a closely
related concept, the Smallest Preferred Outcome at time t, or SPOt. This is the outcome

s (x, tx, t) which solves

δts (x, tx, t) = δtxx+ σ

Note that s (x, tx, t) is not exactly a present value in the sense of being indifferent to

(x, tx). However, s (x, tx, t) is the infimum of the outcomes available at time t which

are preferred to x. To see this, assume that σ is sufficiently small that s (x, tx, t) < x.

Then all outcomes at time t which are greater than s (x, tx, t) are preferred to (x, tx) by

the Primary Criterion, and (x, tx) is preferred to all outcomes at time t which are not

greater than s (x, tx, t) by either the Primary or the Secondary Criterion. So a SPOt

expresses an individual’s ’willingness to pay’ to anticipate an alternative to time t. Then

for 0 ≤ t− 1, t < tx we have δts (x, tx, t) = δtxx+ σ = δt−1s (x, tx, t− 1), so that δ can be
written as a ratio of SPOt’s:

δ =
s (x, tx, t− 1)
s (x, tx, t)

Therefore δ can be interpreted as the (subjective) price to anticipate a given alternative

(x, tx) by one additional period from t+ 1 to t.
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An analogous definition can be given if s (x, tx, t) > x.

These comments on interpretation are also useful for an empirical estimation of the

parameters δ and σ. What the above shows is that they can be elicited by asking subjects

questions about willingness to pay in a way similar to the standard procedures used to

elicit discount factors.

5 Discussion and concluding remarks

Recent evidence has posed a challenge to the traditional model of exponential discounting

used to formalise time preferences. With the few notable exceptions discussed earlier,

economists have mainly faced this challenge by modifying the exponential discounting

function to a hyperbolic one. We have proposed that, instead, the evidence calls for a

framework that is adherent to the cognitive procedures human decision makers adopt when

making choices involving time. We have highlighted one particular cognitive shortcoming

in evaluating future events (vagueness) and suggested one decision heuristics to resolve

situations of vagueness. Even focussing on the simplest possible model in the class of our

representations, and the one with the smallest departure from exponential discounting,

we can explain several apparent paradoxes of decision making. Our modelling approach

suggests in a sense a compromise between an ‘economic’ view based on rational orderings,

and a ‘psychological’ view, based on heuristics.

Our theory is different from the standard one not so much because of a functional

form change, but because it does not rely on the maximisation of a transitive ordering.

In the paper we have mainly focussed on the σ− δ specialisation of the theory because it

is the simplest departure from the standard exponential discounting model which is still

able to accommodate a host of anomalies. Clearly, however, any two-parameter model is

valid only in a restricted context14. For instance, the σ− δ model cannot account for ‘size

effects’ of the following type: suppose that δ = .7 and σ = 1, so that (9, 0) is preferred

to (10, 1) but (10, 3) is preferred to (9, 2), so that preference reversal occurs15. Suppose

now we double the stakes, and thus look at comparisons between (18, 0) and (20, 1), and

between (18, 2) and (20, 3). Now it is easy to verify that the σ − δ models predicts a

preference for the smaller, earlier amount in both comparisons, and preference reversal

no longer occurs16. To some this might appear contrary to introspection: if for small

14The same applies to the β − δ specialisation of the the hyperbolic model, which for instance can
account for preference reversal only when the initial time 0 is involved.
15Note that u (9, 0) = 9 > (.7) 10+1 = 8 = u (10, 1)+σ, while u (9, 2) = 9 (.7)2 = 4.41 < 10 (.7)3+1 =

4.43 = u (10, 3) + σ.
16Now u (18, 0) = 18 > (.7) 20 + 1 = 15 = u (20, 1) + σ, and also u (18, 2) = 18 (.7)2 = 8.82 >
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stakes one is willing to wait for a future monetary gain (so that (10, 3) is preferred to

(9, 2)), then he should be even more willing if this gain is doubled. First of all one could

argue that in the above example the misprediction is due to a misspecification of the taste

parameters δ and σ: preference reversal exhibited in both comparisons would for instance

be compatible17 with σ ∈ [1.96, 2). More importantly, the apparent misprediction of the
example is based on the implicit assumption that differences matter, and that some sort

of internal consistency based on similarity is relied upon, so that if a unitary gain calls

for preference reversal, so must a gain which is double in size18. Still, there is nothing

particularly unreasonable in finding it more difficult to make comparisons when high

stakes are involved. So for instance the vagueness term σ (y, t) can be modelled as a

proportion of the outcome, that is σ (y, t) = σy for some percentage σ. Then we have

that x > δty + σy if and only if λx > δt (λy) + σ (λy) for any positive scaling factor λ, so

that the ‘misprediction’ of the numerical example above disappears19.

Note that this specialisation belongs to our general class of representations. The crucial

aspect is that the vagueness term enters additively. Therefore any form of discounting

in the utility function u is compatible with increasing relative vagueness whenever the

vagueness term σ (y, t) is time-independent (or even when, if utility is discounted expo-

nentially, σ (y, t) increases less than exponentially with time). It is not necessary that

σ (y, t) is a constant, which is instead our assumption in the σ − δ model.

To sum up, our theory is more general than the σ− δ specialisation. The exponential

discounting part of it is not central - indeed, it may well be that hyperbolic discounting is

the ‘psychologically correct’ way of dealing with preference for anticipation. In this light,

our core ideas may be viewed as complementary, rather than in contrast, to the class

of hyperbolic discounting models. We believe they bring to the fore some fundamental

cognitive aspects of choice over time that the existing theories do not consider.

Our model is limited in that so far it does not deal with utility streams. Although the

existing models of discounting have been readily applied to streams, we believe that this

topic requires some special considerations. An important contribution in the same spirit as

ours is that by Jehiel and Lilico [11]. They model the decision maker’s bounded rationality

as limited foresight, so in this sense their agents are also ‘vague’ about the future. We

20 (.7)
3
+ 1 = 7.86 = u (20, 3) + σ.

17Now the required inequalities are 9 − (.7) 10 = 2 > σ and 9 (.7)2 − 10 (.7)3 = .98 ≤ σ for the ‘small
stakes’ comparison; and 18 − (.7) 20 = 4 > σ and 18 (.7)2 − 20 (.7)3 = 1.96 ≤ σ for the ‘high stakes’
comparison.
18Incidentally, this also seem to rely on a ‘similarity’ heuristic based on differences in one component

- our initial premise was the rejection of this assumption as a starting point.
19Preference reversal (between times 0 and k) is obtained when y > x and x > δty+ σy holds simulta-

neously with δkx ≤ δt+ky + σy, or σ + δt < x
y ≤ σ

δk + δt.
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leave the extension of our own framework to utility streams to future research.

6 Appendix

Proposition 3 Let X = T = [0, 1]. Let Discrimination, Time Monotonicity (i), Outcome

Monotonicity (i), Continuity and Betweenness hold. Then Â is (u, σ)-representable with

σ (a) ≥ 0 for all a ∈ A and u non-decreasing in outcome and non-increasing in time.
Proof. Define u(a) = λ (L(a)), where λ denotes the Lebesgue measure. By Time

Monotonicity (i) and Outcome Monotonicity (i), the function u is weakly monotonic in

the desired direction with respect to time and outcomes. Let

L∗ (a) = lim
b∈V (a)

L (b)

This limit is well defined since by Discrimination the sets L (b) in the formula are nested.

Denote λ∗ (a) = λ (L∗ (a)), and define

σ (a) = max {0,λ∗ (a)− u (a)}

We show that u and σ as defined above representÂ. Suppose a Â b. We have L (b) ⊂ L (a)
by the transitivity and irreflexivity of Â, and by Betweenness λ (L (a)) > λ (L (b)), that

is u (a) > u (b). Now suppose in negation that

u (a) ≤ u (b) + σ (b)

By construction σ (b) = max {0,λ∗(b)− u (b)}. If σ (b) = 0 we get an immediate contra-
diction with u (a) > u (b). So let instead σ (b) = λ∗(b)− u (b) and therefore

u (a) ≤ u (b) + σ (b) = λ∗(b)

Suppose there exists b∗ ∈ V (b) such that λ (L (b∗)) = λ∗ (b). Then we have u (a) ≤ u (b∗).
By Discrimination L (a) ⊆ L (b∗), so that b ∈ L (a) contradicts b ∈ V (b∗). We show
finally that such a b∗ exists. If not, then L∗ (b) /∈ {L (b0) |b0 ∈ V (b)} and there must exist
a sequence {bn}, with bn ∈ V (b) for all n, and with lim bn = b∗ /∈ V (b). If b∗ Â b then (i)
of Continuity is violated, and if b Â b∗ then (ii) of Continuity is violated.
The proof concludes as the proof of proposition 1.

Proposition 4 Let X and T be countable sets. Let Discrimination, Time Monotonicity

(i), Outcome Monotonicity (i) hold. Suppose that (lim {an}) ∈ V (a) for any sequence
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{an} with an ∈ V (a). Then Â is (u, σ)-representable with σ (a) ≥ 0 for all a ∈ A and u
non-decreasing in outcome and non-increasing in time.

Proof. The proof is the same as the proof of proposition 3, where λ (a) defines a

numerical representation of the partial order of strict set inclusion instead of the Lebesgue

measure (see e.g. Fishburn [6] for the existence of such a numerical representation). Note

that the limit property in the statement implies the existence of a b∗ ∈ V (b) such that
λ (L (b∗)) = λ∗ (b).
Proposition 5 Let Â be (u,σ)-representable with σ (a) ≥ 0 for all a ∈ A and let

Time Monotonicity (i) and (ii), and Outcome Monotonicity (i) and (ii) hold. If σ can

be chosen to be non-increasing in outcome, then u can be chosen to be non-decreasing

in outcome at an arbitrarily large number of alternatives, and if σ can be chosen to be

non-decreasing in time then u can be chosen to be non-increasing in time at an arbitrarily

large number of alternatives.

Proof. Fix a representation u and σ, and suppose that u is decreasing in outcome at

some point, that is there exist x2Px1 and t such that u (x1, t) > u (x2, t). Consider the

transformation v of u given by

v (x, t0) =


u (x2, t) if x = x1 and t0 = t

u (x, t0) otherwise

This represents the same preferences as u. To see this, note first that, for any (y, t0) Â
(x1, t), since u and σ represent Â we have u (y, t0) > u (x1, t) + σ (x1, t), and therefore

v (y, t0) = u (y, t0) > u (x1, t) + σ (x1, t) > u (x2, t) + σ (x1, t) = v (x1, t) + σ (x1, t)

so that v and σ still represent Â for all alternatives which are preferred to (x1, t).
Next consider (x1, t) Â (y, t0). Suppose by contradiction that v (x1, t) ≤ u (y, t0) +

σ (y, t0). Then by construction u (x2, t) ≤ u (y, t0) + σ (y, t0), so that (x2, t) ¨ (y, t0). This
together with (x1, t) Â (y, t0) contradicts part (i) of Outcome Monotonicity.
Consider now (x1, t) ∼ (y, t0). Suppose by contradiction that u (y, t0) > v (x1, t) +

σ (x1, t). Then by construction u (y, t0) > u (x2, t) + σ (x1, t) ≥ u (x2, t) + σ (x2, t), where

the second inequality follows form the monotonicity assumption on σ in the statement.

Then (y, t0) Â (x2, t), which together with (x1, t) ∼ (y, t0) contradicts part (ii) of Outcome
Monotonicity.

This procedure can be repeated for an arbitrarily large number of pairs of alternatives

where non-monotonicity occurs.

Finally, to prove that if σ can be chosen to be non-decreasing in time then u can

be chosen to be non-increasing in time arguments essentially identical to the ones above
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apply by using Time Monotonicity in place of Outcome Monotonicity and the following

transformation

v (x0, t) =


u (x, t1) if x0 = x and t = t2

u (x0, t) otherwise

at all points such that u(x, t2) > u (x, t1) with t2 > t1.
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