
DISCUSSION PAPER SERIES

IZA DP No. 12177

Karen Clay
Joshua Lewis
Edson Severnini

What Explains Cross-City Variation in 
Mortality During the 1918 Influenza 
Pandemic? Evidence from 438 U.S. Cities

FEBRUARY 2019



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

ISSN: 2365-9793

IZA DP No. 12177

What Explains Cross-City Variation in 
Mortality During the 1918 Influenza 
Pandemic? Evidence from 438 U.S. Cities

FEBRUARY 2019

Karen Clay
Carnegie Mellon University

Joshua Lewis
University of Montreal

Edson Severnini
Carnegie Mellon University and IZA



ABSTRACT

IZA DP No. 12177 FEBRUARY 2019

What Explains Cross-City Variation in 
Mortality During the 1918 Influenza 
Pandemic? Evidence from 438 U.S. Cities

Disparities in cross-city pandemic severity during the 1918 Influenza Pandemic remain 

poorly understood. This paper uses newly assembled historical data on annual mortality 

across 438 U.S. cities to explore the determinants of pandemic mortality. We assess the 

role of three broad factors: i) pre-pandemic population health and poverty, ii) air pollution, 

and iii) the timing of onset and proximity to military bases. Using regression analysis, we 

find that cities in the top tercile of the distribution of pre-pandemic infant mortality had 21 

excess deaths per 10,000 residents in 1918 relative to cities in the bottom tercile. Similarly, 

cities in the top tercile of the distribution of proportion of illiterate residents had 21.3 excess 

deaths per 10,000 residents during the pandemic relative to cities in the bottom tercile. 

Cities in the top tercile of the distribution of coal-fired electricity generating capacity, an 

important source of urban air pollution, had 9.1 excess deaths per 10,000 residents in 

1918 relative to cities in the bottom tercile. There was no statistically significant relationship 

between excess mortality and city proximity to World War I bases or the timing of onset. 

Together the three statistically significant factors accounted for 50 percent of cross-city 

variation in excess mortality in 1918.
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Introduction 

 

The 1918-1919 Influenza Pandemic was a global health catastrophe that is estimated to have 

killed 50 million people worldwide. The pandemic spread rapidly across the United States during 

the fall of 1918, killing more Americans than all wars in the twentieth century. In the U.S. and 

elsewhere there were significant cross-city differences in pandemic severity. Although there has 

been considerable speculation regarding the factors that contributed to pandemic severity, only a 

small number of studies have examined the determinants of cross-city severity.  Acuna-Soto et 

al. (2011) combine data for 66 cities to investigate the ability of pre-pandemic pneumonia and 

influenza mortality, city size, longitude, and latitude to explain pandemic pneumonia and 

influenza mortality in 1918.  Bootsma and Ferguson (2007) and Markel et al (2007) examine the 

effects of public health measures on pandemic severity drawing on data for the 43 cities for 

which weekly influenza and pneumonia mortality data is available. Grantz et al. (2016) and 

Tuckel et al. (2006) detail temporal and spatial data from Chicago and Hartford to examine 

within city variation in mortality. Their analysis points to the importance of poverty-related 

factors as contributing to pandemic severity.  

 

We investigate the determinants of cross-city differences in pandemic severity. The paper relies 

on a new dataset of annual mortality in 438 U.S. cities that represent two-thirds of the urban 

population for the period 1915 to 1925. The panel structure of the dataset allows us to construct a 

measure of pandemic severity for a large sample of cities. The empirical analysis involves two 

steps. First, we estimate excess pandemic mortality in every city as the difference between 

observed and predicted mortality in 1918. Second, we estimate cross-sectional regressions to 
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assess the importance of three broad determinants of excess pandemic mortality across cities: i) 

measures of pre-pandemic health and poverty, ii) the timing of onset and proximity to military 

bases, and iii) air pollution. The first two factors have been discussed in the historical and 

medical literatures. The third has received far less attention, although there is growing biological 

(e.g., Jakab 1993; Jaspers et al., 2005), animal (e.g., Hahon et al., 1985; Harrod et al., 2003; Lee 

et al., 2014), and epidemiological evidence that air pollution can increase susceptibility to 

influenza (e.g., Ciencewicki and Jaspers 2007). Recent empirical evidence suggests that air 

pollution interacts with infectious disease. Hanlon (2018) finds that the higher underlying rates 

of measles and tuberculosis (TB) increased the mortality effects of pollution episodes in London 

from 1866 to 1965. Similarly, Clay, Lewis, and Severnini (2018) show that coal-fired generating 

capacity led to significantly higher mortality rates during the pandemic.1  

 

This study builds on and complements previous statistical analyses of the factors influencing 

cross-city variation in mortality in 1918. The dataset includes a much larger sample of cities than 

has been previous studied, allowing us to examine multiple factors simultaneously to determine 

their relative importance. Motivated by the existing historical and medical literatures, our 

analysis focuses on three broad categories that may have influenced pandemic severity across 

cities: underlying population health and poverty, the timing of onset, and air pollution, although 

we also explore the role of additional factors related to trade, religious homogeneity, and public 

health infrastructure. By quantifying the influence of several distinct sociodemographic and 

																																																								
1	Whereas Clay, Lewis, and Severnini (2018) focus more narrowly on the impact of coal 
capacity, this paper explores the role of multiple underlying determinants of cross-city pandemic 
mortality, and seeks to quantify their respective influence on excess mortality in 1918. 
Additionally, our expanded sample of 438 cities (versus 180 cities) allows us to assess these 
relationships over a much broader population.     	
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environmental factors on pandemic mortality, our analysis sheds new light on the disparities in 

death rates across U.S. cities during pandemic, and may offer insights into how policymakers 

should allocate resources in response to future pandemics.  

 

Methods  

 

Data 

 

Data on all-cause deaths for the years 1915 to 1925 were assembled from the Mortality Statistics 

for the 438 cities with at least 10,000 residents in 1920 mapped in Figure S1. We combined these 

data with city population in 1920 to construct the mortality rate per 10,000 city residents. Cities 

are linked to county-level pre-pandemic demographic and economic characteristics from the 

1910 census of population and manufacturing (Haines and ICPSR, 2010). We assembled the 

following variables: percent urban residents, percent illiterate, percent foreign born, percent 

homeowner, and percent of employment in manufacturing. Information on the week of pandemic 

onset was obtained from Sydenstricker (1918). City proximity to military bases was obtained 

from the U.S. War Department (1919). Data on coal-fired generating capacity were obtained 

from the U.S. Department of Agriculture (1916). We collected information on all coal-fired 

power stations with at least 5 megawatts of installed capacity, and calculated total coal-fired 
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capacity within a 30-mile radius of each city-centroid.2,3 Figure S1 also displays coal power 

plants and hydroelectric dams in 1915 by terciles of electricity generating capacity. 

 

Regression Analysis 

 

We use annual data on all-cause mortality for the years 1915 to 1925 to derive an estimate of 

excess mortality in 1918 for the sample of cities. Excess mortality is calculated based on the 

difference between observed mortality in 1918 and an expected baseline mortality level (absent 

the pandemic). This approach has been widely used to estimate the impact of influenza 

epidemics (e.g., Serfling, 1963; Housworth and Langmuir, 1974; Vibroud et al., 2004; Olson et 

al., 2005). First, we construct a measure of predicted 1918 mortality (absent the pandemic), 

based on a city-specific linear trend for the period 1915 to 1925. We exclude the year 1918 from 

the analysis, and estimate the following regression model: 

 

𝑀"# = 𝛼" + 𝛽"𝑡 + 𝑒"#, 

 

where 𝑀"# denotes all-cause mortality in city c in year t, the variable t represents year, and 𝑒"# 

denotes an error term.4 The coefficient 𝛼" is a city-specific intercept that allows for different 

																																																								
2 This distance was chosen to capture the fact that the majority of power plant emissions were 
dispersed locally (Levy et al., 2012; Seinfeld and Pandis, 2012). Qualitatively similar results 
were found when the analysis was run with a 50-mile radius. Regressions estimates available 
upon request. 
3 We do not consider interventions during the pandemic, because data on these interventions are 
only available for a small number of cities (e.g., Bootsma and Ferguson, 2007; Markel et al., 
2007).	
4 The year 1918 is excluded from the analysis to ensure that mortality during the pandemic does 
not influence the estimation of the city trend in mortality. We also explore the sensitivity of the 
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baseline mortality rates across cities, and the coefficient 𝛽" allows for different trends in 

mortality across cities. The slope and intercept estimates are used to predict 1918 mortality by 

city. Excess mortality in 1918 is constructed as the difference between actual and predicted 

mortality in city c in 1918.  

 

We estimate multivariate regressions that relate excess mortality to pre-pandemic infant 

mortality, measures of city poverty, timing of pandemic onset, and air pollution. Controls for 

percent urban are included in all specifications. All explanatory variables included in the main 

regression model were selected by F-test and partial R-squared, as reported in Tables S3, S5, and 

S7. For each broad category of predictors, the two variables with the strongest explanatory power 

were kept in the model. They had large F-statistic, p-value for the F-test smaller than 0.05, and 

non-negligible partial R-squared. All explanatory variables are included in a tercile specification 

(high vs. low, middle vs. low). This specification is more flexible than using the variables 

continuously as it allows for nonlinear relationships, and the regression coefficients for each 

explanatory variable are easier to interpret, since the coefficients for high (middle) reflect the 

difference in pandemic mortality for cities in the high (middle) tercile relative to cities in the low 

tercile.5 All estimated standard errors are robust to heteroscedasticity.6     

 

																																																								
results to alternative measures of excess pandemic mortality, which do not depend on post-1918 
mortality rates.    
5 Qualitatively similar results were found when the analysis was run with continuous explanatory 
variables. Regressions estimates available upon request. 
6 Conley standard errors are also reported in Table 1. The Conley method allows for outcomes to 
be correlated among nearby cities, with the degree of correlation declining linearly until some 
cutoff distance (Conley 1999). We allow for spatial correlation up to 200 miles. Because the 
Conley standard errors are generally smaller than the robust standard errors, we report the more 
conservative robust standard errors throughout the analysis. 
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Results 

 

Figure 1a shows mortality in our 438 sample cities. Mortality rates rose sharply in 1918, 

exceeding their pre-pandemic level by 35 percent. Figure 1b shows cross-city variation in excess 

mortality in 1918. Again, excess mortality is calculated as the difference between observed all-

cause mortality in 1918 and predicted all-cause mortality in 1918, based on a city-specific linear 

trend. This variable reflects the extent to which city mortality rates in 1918 differed from their 

predicted values.7 The median city experienced excess mortality of 57.7 per 10,000 residents. 

Applying the estimates of excess mortality across the entire U.S. population, we calculate that 

the pandemic was responsible for 615,000 American deaths, similar to previous estimates of 

pandemic severity (Crosby, 1989, p. 206). There was wide variation in pandemic mortality 

across cities. The inter-quartile range for excess mortality is 38.5 - 78.0.  

 

Pre-pandemic Health and Poverty 

Our analysis examines the relationship between pre-pandemic health and poverty and excess 

mortality in 1918 across the sample of U.S. cities. Previous authors have used different measures 

of population health to predict mortality in 1918. Acuna-Soto et al. (2011) examine the 

relationship between pre-pandemic influenza and pneumonia mortality and pandemic influenza 

and pneumonia mortality, finding that pre-pandemic and pandemic pneumonia mortality are 

highly correlated. Bootsma and Ferguson (2007) show that 1918 mortality is correlated with 

1917 mortality. Other researchers have explored the relationship between poverty markers and 

																																																								
7 This measure of excess mortality will not be affected by misclassification in the cause of death 
records (see Vital Statistics 1957, pp. 18-26). 
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pandemic severity. Grantz et al. (2016) examine the ability of percent illiterate, percent 

homeowners, percent unemployed and population density to predict pandemic influenza 

mortality across census tracts in Chicago. Tuckel et al. (2006) explore the relationship between 

the percent foreign born and ward-level influenza mortality in Hartford.  

 

Our analysis builds on the previous research, examining the relationship between a number of 

socioeconomic variables – percent foreign born, percent illiterate, percent homeowners, and 

percent urban – and excess 1918 mortality across a much larger sample of cities. In addition, we 

include the infant mortality rate in the years 1915 and 1916 as an explanatory variable. The 

infant mortality rate is widely used as a measure of population health, since the link between 

infant deaths and contemporaneous health conditions – including disease, pollution, and nutrition 

– is immediate, whereas adult mortality reflects an accumulation of lifetime exposure (Chay and 

Greenstone, 2003; Currie and Neidell, 2005).  

 

Table S1 shows the correlation among selected pre-pandemic measures of health and poverty. 

There is a strong correlation across many of the explanatory variables, suggesting that they are 

all capturing factors related to health and poverty. For example, the infant mortality rate was 

elevated in cities with a higher percent of foreign residents, lower rates of home ownership, and 

higher rates of illiteracy. The results also show that percent urban is correlated with percent 

foreign born and percent homeowner, although baseline infant mortality is largely unrelated to 

city size.  
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Table S2 reports the multivariate regression estimates. All models include controls for percent 

urban. Consistent with Acuna-Soto et al (2011), cities in more urban counties had statistically 

significantly lower mortality rates. This may have occurred for a number of reasons. More urban 

areas may have greater exposure to the milder spring wave of influenza and so have greater 

immunity. More urban areas also may have been more able to implement non-pharmaceutical 

interventions such as isolation and quarantine of victims, school closure, and cancelation of 

public gatherings (e.g., Bootsma and Ferguson, 2007; Markel et al., 2007). Pre-pandemic infant 

mortality rates are positively and statistically significantly related to excess 1918 mortality. 

Markers for city poverty are generally associated with higher pandemic mortality (cols 2, 4, and 

6), although once we control for baseline infant mortality, the estimates on the various markers 

of city poverty decrease in magnitude (cols 3, 5, and 7). Together, the results suggest that 

baseline population health had an impact on pandemic severity independent of other poverty 

markers. In contrast, it appears that much of the relationship between poverty and pandemic 

mortality can be explained by the poor health in low-income populations. These findings suggest 

that other characteristics associated with urban poverty, such as the higher rates of disease 

transmission in crowded neighborhoods, may have been less important determinants of mortality 

during the pandemic. Guided by these results, we include percent urban, infant mortality in 

1915-1916, and percent illiterate in the main specification in Table 1, discussed below.  

 

Timing of Pandemic  

The timing of pandemic onset is thought to be an important predictor of mortality, because the 

virulence may have declined over time (Crosby, 1989; Barry, 2004). The movement of military 

personnel is also believed to have influenced severity through its role in spreading the virus 
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across the country (see Crosby, 1989; Kolata, 2001; Barry, 2004; and Byerly, 2010 for accounts 

of the pandemic in the military).  

 

We assess the impact of the timing of onset and city proximity World War I military bases on 

pandemic severity. Consistent with the historical narrative, the pandemic arrived earlier to cities 

near a military base (Table S1). Table S4 shows the relationship between the two explanatory 

variables and excess mortality in 1918. We find some evidence that proximity to World War I 

bases affected pandemic severity. The coefficient estimates for cities in the high tercile are 

positive and generally statistically significant. In contrast, there is no consistent relationship 

between the week of pandemic onset and excess mortality. Given these results, we focus on 

proximity to the World War I base as the main explanatory variable in the regressions in Table 1 

below. 

 

Coal-Fired Electricity Capacity 

We assess the impact of city-level air pollution on pandemic severity. Our analysis is motivated 

by an emerging body of evidence suggesting that air pollution may exacerbate pandemic 

mortality. In randomized control trials, mice exposed to higher levels of particulate matter (PM) 

experienced increased mortality when infected with a common strain of the influenza virus 

(Hahon et al., 1985; Harrod et al., 2003; Lee et al., 2014). Microbiology studies of respiratory 

cells also identify a link between pollution exposure and respiratory infection (Jakab 1993; 

Jaspers et al., 2005).  Ciencewicki and Jaspers (2007) review a number of epidemiological 

studies showing associations between exposure to air pollutants and increased risk for respiratory 

virus infections. Similarly, both Hanlon (2018) and Clay, Lewis, and Severnini (2018) find 
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evidence that pollution interacts with infectious disease to affect mortality, both in London and 

during the 1918 pandemic.   

 

Historical evidence suggests that air pollution was severe and varied widely across cities (Flagg, 

1912; Ives et al., 1936; Stern, 1982). Average levels of total suspended particulates (TSP) across 

a sample of 15 large American cities was seven times higher than the annual thresholds initially 

set under the Clean Air Act Amendments of 1970. Electricity generation was a significant 

contributor to urban air pollution.  A 1912 study of Chicago found that electricity-generating 

plants accounted for 44 percent of visible smoke (Goss, 1915). In addition, there was wide 

variation in coal-fired generating capacity across cities depending on local availability of coal 

and the proximity to hydroelectric power.  

 

We use coal-fired capacity and percent of employment in manufacturing as two different proxies 

for city air pollution.8 These two variables are positively related (Table S1), since locations with 

more abundant coal resources tended to have larger manufacturing sectors. There is a positive 

relationship between coal-fired capacity and excess pandemic mortality, and the coefficient 

estimates on the high tercile are statistically significant and stable across the different 

specifications (Table S6). The coefficients are only modestly reduced once pre-pandemic infant 

mortality is included as a control (col. 1 and 2), indicating that effects arose primarily through a 

direct contemporaneous link rather than through the indirect impact of coal capacity on baseline 

health. There is some evidence that the manufacturing employment share was related to 

																																																								
8 Coal was often burned as part of the manufacturing process. Manufacturing may also have 
impacted pandemic severity through the close working conditions. 
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pandemic severity, although this relationship weakens once infant mortality is included as a 

control. Given these findings, we include coal-fired generating capacity as our preferred measure 

of air pollution in the main regressions in Table 1 below. 

 

Multiple Determinants of Pandemic Mortality 

We take advantage of the large sample of cities to explore the joint influence of pre-pandemic 

health and poverty, pandemic timing, and pollution on excess mortality in 1918 in a multivariate 

regression framework. The estimates are presented in Table 1. For reference, columns 1-4 report 

the individual estimates for each variable, controlling for percent urban. Column 5 reports the 

results from the multi-factor model. When all of the covariates are included, the coefficients on 

the top and middle terciles of proximity to World War I bases are statistically insignificant. 

Although the point estimates are reduced, high coal cities experienced statistically significantly 

higher mortality rates in 1918. Meanwhile, the estimated effects for pre-pandemic infant 

mortality and percent illiterate are large and statistically significant for both the high and medium 

terciles.  

 

Pre-pandemic health and poverty and coal capacity appear to have been significant determinants 

of mortality during the pandemic. Figure 2 reports the corresponding magnitudes for the main 

explanatory variables from Table 1, column 5. The R-squared from the regression model implies 

that the three factors accounted for 25 percent of the total cross-city variation in excess pandemic 

mortality. This is despite the fact that the tercile specification limits the explanatory power of the 

model, since the framework does not exploit the substantial within-tercile variation in each 

explanatory variable.  
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To quantify the role of pre-pandemic health, air pollution, and proximity to World War I bases 

on pandemic severity, we re-estimate the distribution of excess mortality across cities under 

several alternative counterfactual scenarios. In particular, we use regression coefficients (Table 

1, col. 5) to ask the following question: what is the counterfactual distribution of excess 

pandemic mortality if the explanatory variables for cities in the high and middle terciles are each 

reduced to the low tercile. This counterfactual exercise would probably have been infeasible. For 

example, cities with high pre-pandemic infant mortality may have lacked access to the public 

health and medical resources necessary to improve public health. Nevertheless, the analysis 

allows us to quantitative assess the importance of the various determinants of pandemic 

mortality, and may provide insight into the benefits of investments – such as poverty reduction 

campaigns or air pollution abatement – that could be made in modern developing countries to 

mitigate the harm from future pandemics.  

 

We simulate the counterfactual excess mortality distribution under four scenarios: a) reducing 

pre-pandemic infant mortality in all cities to the low tercile, b) reducing coal capacity in all cities 

to the low tercile, c) decreasing World War I base proximity to the low tercile, and d) policies a) 

through c) and decreasing the percent illiterate to the low tercile. Figure 3a reports the effects for 

the reduction in pre-pandemic infant mortality. This change would have led to a 17 percent 

decrease in average excess mortality in 1918 across the sample. The magnitude of this decrease 

is striking given that mortality in one third of cities – those in the lowest tercile of pre-pandemic 

infant mortality – remains unchanged under the policy change. The counterfactual mortality 

distribution is compressed, indicating that this scenario would have resulted in a decrease in 
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pandemic mortality disparities across cities. Figure 3b shows the counterfactual distribution for 

coal-fired capacity. This policy change is associated with an 8 percent reduction in excess 

mortality, although the shape of the mortality distribution remains similar. Meanwhile, a 

decrease in city proximity to World War I bases is associated with a modest 5 percent decrease 

in average pandemic mortality and has little impact on the shape of the mortality distribution 

(Figure 3c). Figure 3d reports the distribution under the fourth counterfactual in which all factors 

are reduced to the low tercile. This policy would have resulted in a 50 percent decrease in 

pandemic mortality and substantial narrowing of the cross-city distribution. The magnitude of 

the mortality decrease demonstrates the importance of pre-pandemic mortality, 

sociodemographic factors captured by the percent illiterate, and to a lesser extent the influence of 

coal capacity, in influencing the severity of the pandemic. The results also highlight the 

independent influence of each of these factors. The broad leftward shift of the mortality 

distribution shows that the three factors affected pandemic severity across a large segment of the 

urban population, and that the relationship was not confined to a handful of heavily polluted 

cities with high pre-pandemic mortality and low literacy rates. In fact, less than 9 percent of 

cities fell into the lowest tercile for all three explanatory variables, indicating that there was 

scope to mitigate pandemic mortality across the vast majority of American cities. 

 

Robustness Checks and Alternative Determinants of Pandemic Mortality 

Table 2 reports the results from a series of robustness exercises. Columns 1 and 2 report 

the results from principal component analysis for each of the three broad categories: health and 
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poverty, coal, and pandemic timing.9 Consistent with the baseline findings, factors related to 

both health and poverty and coal are associated with significantly higher rates of pandemic 

mortality, whereas there are no significant differences based on the timing of onset. Figure S2 

shows that the relative coefficient magnitudes mirror those from baseline findings: the estimates 

for health and poverty exceed those for coal, which exceed those for timing.   

 Columns 4-7 explore the sensitivity of the results to alternate measures of excess 

mortality in 1918 (for reference, column 3 reports the baseline estimates). We find similar effects 

for mortality rates derived based on 1910 city population (col. 4).  

One concern is that the pandemic influenced post-1918 mortality trends through selective 

mortality, by killing less-healthy individuals who would have died in subsequent years. This 

hypothesis is supported by Noymer and Garenne (2000) and Noymer (2011), who find that the 

pandemic led to decreases in TB mortality in post-1918 years. We take several steps to address 

this concern. First, we re-estimate excess mortality in 1918, excluding the years 1918-1920 from 

the trend calculation; second, we calculate excess mortality as the deviation from the average 

morality rates pre-pandemic (1915-1917); third, we recalculate excess mortality as the deviation 

from the predicted mortality trend based solely on the period 1915-1917.10 The coefficient 

estimates based on these alternative measures are similar to the original estimates (cols. 5-7).  

																																																								
9 For each category we calculate the principal component – the latent variable that accounts for 
the largest variance – based on a linear combination of variables included in Tables S.2, S.4, and 
S.6. We then estimate the role of each of these three factors in explaining excess mortality in 
1918. The estimates in column (1) are based on factor components constructed based on a linear 
specification of the underlying explanatory variables; the estimates in column (2) are based on 
factor components derived from the middle and high tercile specification of the independent 
variables.  
10 All three measures are highly correlated with the original measure of excess mortality (Figure 
S2), although given the limited number of years over which the pre-trend is calculated, estimates 
based on the third approach are significantly noisier.  
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 Our analysis has focused on the role of factors related to health and poverty, air pollution, 

and the timing of onset in explaining the wide variation in cross-city mortality during the 1918 

pandemic. The focus is motivated by the historical and medical literature, and these factors 

account for a significant fraction of the cross-city variation in mortality. Notwithstanding these 

results, half of the cross-city differences in excess mortality remain unexplained.  

To conclude the empirical analysis, we explore the other potential sources of cross-city 

differences in pandemic severity (Table 3). In columns 1 and 2, we explore the role of religiosity 

and religious homogeneity in influencing pandemic severity.11 We find no significant differences 

according to church membership, although there is some evidence that greater religious 

fractionalization is associated with higher pandemic mortality. These results could suggest that 

higher levels of population homogeneity may have aided the local response to the pandemic or 

that concentrated leadership of religious officials mitigated its impacts. In contrast, we find no 

evidence that pre-pandemic local public health infrastructure had any impact on pandemic 

mortality (cols. 5-7), consistent with local public health response having been overwhelmed by 

the magnitude of the pandemic (Crosby, 1989). Finally, we find some evidence that greater 

access to trade, as measured by total miles of railway in 1911, is associated with increased 

pandemic severity, consistent with recent evidence on the role of transportation in accelerating 

the spread of influenza (Adda, 2016). While not exhaustive, this evidence points to potentially 

fruitful new areas of scholarship on the 1918 pandemic.  

 

																																																								
11 Data on religious membership come from the 1916 Census of Religion. To measure religiosity, 
we calculate fraction of individuals who belong to a religious organization. We measure religious 
fractionalization as one minus the square of the shares of each of the ten major religious 
denominations (Alesina et al., 2003).   
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Discussion 

 

This study examined the determinants of excess mortality during the 1918 Influenza pandemic 

across a large sample of U.S. cities. We found that cities with higher pre-pandemic infant 

mortality rates and more illiterate residents had statistically significantly higher mortality rates in 

1918, suggesting that low levels of health and poverty contributed to pandemic severity. These 

results correspond with Grantz et al.’s (2016) findings for Chicago, and Noymer (2011), who 

found that the pandemic disproportionately affected individuals with tuberculosis, who were 

disproportionately poor. In contrast, there is little evidence that the timing of pandemic onset 

influenced excess mortality in 1918. Lastly, we found that cities with high levels of air pollution, 

as measured by coal-fired capacity, experienced significant higher mortality rates during the 

pandemic.  

 

These findings not only improve our understanding of the disparities in cross-city pandemic 

severity during the 1918 Spanish Influenza Pandemic, but also shed light on factors that might 

have mediated the long-run effects of that pandemic found by Almond (2006), Beach, Ferrie, and 

Saavedra (2018), Fletcher (2018), and Ogasawara (2018), and the long-term impacts of the 1889 

Russian Influenza Pandemic found by Riggs and Cuff (2013). 

 

This study has several limitations.  First, although we have done considerable exploration of 

alternative factors, this study does not definitely demonstrate causality of any of the factors.  It 

may be possible to establish a causal relationship in the context of later pandemics or annual 

influenza in later periods, but this analysis is limited by data availability and the uniquely severe 
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nature of the 1918 pandemic. Second, because excess mortality may capture several causes of 

death, one should use caution in interpreting our findings. That measure could include mortality 

due to influenza, or a combination of influenza and other diseases such as tuberculosis (e.g., 

Noymer 2009, 2011). Unfortunately, data (un)availability precludes us to estimate effects on 

different causes of death. Third, our measure of air pollution, coal-fired electricity generation is 

limited by data availability.  Systematic air pollution monitor data did not become available in 

the U.S. until the 1950s and coverage is sparse until the 1970s. Finally, while we have tried to 

address a range of factors identified as important in a variety of context, our analysis may not 

capture all of the factors that contributed to excess mortality for cities in our sample. In 

particular, our analysis does not account for local public interventions in response to the 

pandemic that could have influenced the variation in excess mortality across cities. 

 

Understanding the social and environmental determinants of mortality during the 1918 Influenza 

Pandemic can provide useful insights for the policy response to future pandemics. In particular, 

our findings on the relationship between pre-pandemic health, poverty and pandemic mortality 

may have implications for the distribution of scarce medical resources across locations during a 

future outbreak. The relationship between coal capacity and pandemic mortality may be 

particularly relevant in modern developing countries, where urban pollution is severe and 

comparable to the levels in the early 20th century America. Despite dramatic improvements in the 

quality of medical care and public health infrastructure in the hundred years since the pandemic, 

the risks of a future outbreak are significant and are unlikely to be met by existing medical 

infrastructure. As Taubenberger and Morens (2006, p. 77) note: “Even with modern antiviral and 

antibacterial drugs, vaccines, and prevention knowledge, the return of a pandemic virus 
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equivalent in pathogenicity to the virus of 1918 would likely kill >100 million people worldwide. 

A pandemic virus with the (alleged) pathogenic potential of some recent H5N1 outbreaks could 

cause substantially more deaths.”  
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Figure 1: All-age Mortality
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(b) Excess Mortality in 1918

Notes: Panel (a) reports the all-age mortality rate per 10,000 city residents. Panel (b) reports the dis-
tribution of excess all-age mortality in 1918 across cities. Excess mortality is calculated as the di↵erence
between observed mortality and predicted mortality in 1918, where predicted mortality is calculated
based on a linear city-specific trend. The solid and dotted lines denote the mean and interquartile range
of excess mortality in the sample.
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Figure 2: Determinants of Excess Mortality in 1918
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and predicted mortality in 1918, where predicted mortality is calculated
based on a linear city-specific trend.
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Figure 3: Excess Mortality and Counterfactual Excess Mortality in 1918
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Notes: This figures reports the distribution of excess mortality and counterfactual excess mortality in
1918 across the sample of 438 cities. Panel (a) assumes that baseline infant mortality was reduced to
the lowest tercile. Panel (b) assumes that coal-fired capacity was reduced to the lowest tercile. Panel (c)
assumes that proximity to World War I bases was reduced to the lowest tercile. Panel (d) combines (a)
through (c) and assumes that fraction illiterate was reduced to the lowest tercile. Vertical lines denote
mean excess mortality rates.
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Tables 
 

Table 1: Determinants of Excess Mortality in 1918 

  
Notes: The dependent variable is calculated as the difference between observed and predicted all-age 
mortality in 1918, where predicted mortality is calculated based in a linear city-specific trend for the period 
1915 to 1925. The coefficient estimates report difference for the middle and high tercile of each explanatory 
variable, relative to the lowest tercile. Columns 1-4 report the individual estimates for each variable, 
controlling for percent urban. Column 5 reports the results from the multi-factor model. Robust standard 
errors are reported in brackets. *** represents statistical significance at 1 percent level, ** 5 percent level, 
and * 10 percent level. (For comparison, Conley standard errors are reported in parentheses (in italic). The 
Conley method allows for outcomes to be correlated among nearby cities, with the degree of correlation 
declining linearly until some cutoff distance, 200 miles in this case.) 
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Table 2: Alternative Specifications  

 
Notes: The dependent variable is calculated as the difference between observed and predicted all-age mortality in 
1918. Columns 1 and 2 report the estimates for explanatory variables constructed from principal components analyses 
of the underlying explanatory variables in Tables S2, S4, and S6. The main component from each group of variables 
is included in the regression. Columns 4-7 report the results based on alternative measures of excess mortality. In 
column 4, mortality rates are constructed based on 1910 city population; in column 5, predicted 1918 mortality is 
constructed based on a linear city-specific trend from 1915-1925 (excluding years 1918-1920); in column 6, predicted 
1918 mortality is calculated as average city-level mortality for the years 1915-1917; in column 7, predicted 1918 
mortality is extrapolated from a linear city-specific trend for the years 1915-1917. Robust standard errors are reported 
in brackets. *** represents statistical significance at 1 percent level, ** 5 percent level, and * 10 percent level. 
 
 

 

Dependent variable: Excess Mortality in 1918
Principal component Alternate measures of

analysis excess mortality
Baseline 1910 city Construct mort Construct mort Construct mort
estimates pop counterfactual counterfactual counterfactual

denom without years from 1915-1917 from 1915-1917
1918-1920 mean trend

(1) (2) (3) (4) (5) (6) (7)
Health & poverty 9.404***

[1.079]
High vs. low 11.09***

[1.185]
Middle vs. low 3.128**

[1.357]
Coal 2.384*

[1.428]
High vs. low 2.913*

[1.667]
Middle vs. low 1.624

[1.502]
Pandemic timing 0.999

[1.469]
High vs. low -0.682

[1.642]
Middle vs. low 1.857

[1.647]
Infant mortality, 1915-1916
High vs. low 20.96*** 17.26*** 19.27*** 10.77*** 13.77***

[4.033] [5.275] [4.033] [3.975] [4.418]
Middle vs. low 7.782** 5.457 6.666** 2.219 0.534

[3.156] [4.469] [3.173] [3.114] [3.363]
% illiterate in 1910
High vs. low 21.26*** 29.93*** 21.91*** 21.43*** 19.58***

[3.993] [5.359] [4.003] [3.966] [4.599]
Middle vs. low 11.41*** 16.29*** 11.61*** 10.82*** 7.239*

[3.693] [5.116] [3.705] [3.618] [3.948]
Proximity to WWI base
High vs. low 5.225 5.129 4.073 3.418 9.174**

[3.825] [5.047] [3.893] [3.815] [4.044]
Middle vs. low 1.012 -2.501 0.729 0.770 7.200*

[3.456] [5.121] [3.509] [3.448] [3.767]
Coal capacity
High vs. low 9.116** 16.21** 9.177** 9.936** 8.950*

[4.472] [6.322] [4.504] [4.499] [4.715]
Middle vs. low 3.778 7.149 3.873 4.665 4.499

[3.428] [4.650] [3.474] [3.388] [3.665]
Observations 438 438 438 435 438 438 438
R-squared 0.148 0.212 0.253 0.200 0.238 0.181 0.180

1
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Table 3: Additional Determinants of Excess Mortality in 1918 

 
Notes: The dependent variable is calculated as the difference between observed and predicted all-age mortality in 
1918, where predicted mortality is calculated based in a linear city-specific trend for the period 1915 to 1925.  Columns 
1 and 2 include controls for the percent of population that belonged to a religious organization and religious 
fractionalization in 1916. Column 3 controls for total miles of railway within the county in 1911. Columns 5-7 control 
for average per capita city expenditure on health, sanitation, and hospitals and charities for the years 1915-1917. 
Robust standard errors are reported in brackets. *** represents statistical significance at 1 percent level, ** 5 percent 
level, and * 10 percent level. 

  
 
 
 
 
 

Dependent variable: Excess Mortality in 1918
Religion Trade City expenditure

(1) (2) (3) (4) (5) (6) (7)

Infant mortality, 1915-1916
High vs. low 21.10*** 21.37*** 20.16*** 15.91** 16.41** 15.92** 14.91**

[4.157] [4.205] [4.014] [6.488] [6.514] [6.528] [7.014]
Middle vs. low 7.720** 7.295** 6.670** 5.886 5.917 5.887 5.440

[3.179] [3.197] [3.151] [4.844] [4.854] [4.865] [5.293]
% illiterate in 1910
High vs. low 21.53*** 24.51*** 20.90*** 14.72** 15.14*** 14.72** 15.55**

[4.226] [4.448] [3.966] [5.824] [5.744] [5.798] [6.080]
Middle vs. low 11.46*** 14.03*** 11.04*** 9.373* 10.05* 9.397* 10.61*

[3.892] [4.030] [3.691] [5.574] [5.666] [5.593] [5.742]
Proximity to WWI base
High vs. low 5.126 6.024 5.057 6.613 7.389 6.652 8.234*

[3.861] [3.829] [3.771] [4.352] [4.483] [4.632] [4.799]
Middle vs. low 0.915 2.423 0.721 4.431 4.536 4.428 4.752

[3.476] [3.461] [3.406] [4.995] [4.980] [4.973] [4.987]
Coal capacity
High vs. low 9.327** 10.36** 9.418** 10.75* 10.69* 10.76* 9.689*

[4.533] [4.449] [4.399] [5.604] [5.557] [5.718] [5.622]
Middle vs. low 3.752 3.406 4.386 6.896 6.759 6.909 6.430

[3.450] [3.448] [3.395] [4.702] [4.689] [4.756] [4.859]

% congregation members -2.645 13.29
[15.11] [17.42]

Religious fractionalization 36.60***
[12.96]

Log(miles of rail) 2.148**
[0.871]

Expend on health p.c. -8.962
[6.477]

Expend on sanitation p.c. -0.147
[4.560]

Expend on hospitals & charities -1.907
[3.182]

Observations 437 437 435 157 157 157 152
R-squared 0.253 0.270 0.264 0.295 0.301 0.295 0.296

2



	 33	

Supporting Information (Appendix) 
 
 

Figure S1: Sample Cities and Power Plants in 1915 

 
Notes:  This figure maps the 438 cities in our sample (small black asterisks) as well as the coal-fired power plants 
(red squares) and hydroelectric dams (blue circles) in 1915 by terciles of electricity generating capacity (larger 
symbols represent higher terciles of capacity). 
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Figure S2: Determinants of Excess Mortality, Principal Components Analysis 

 
Notes:  This figure reports the coefficient estimates from Table 2, col. 2.  
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Figure S3: Alternate Measures of Excess Mortality in 1918 

 
Notes:  This figure reports the relationship between alternate measures of excess mortality in 1918 and the 
original estimates. In panel (a), predicted 1918 mortality is constructed based on a linear city-specific trend 
from 1915-1925 (excluding years 1918-1920); in panel (b), predicted 1918 mortality is calculated as average 
city-level mortality for the years 1915-1917; in panel (c), predicted 1918 mortality is extrapolated from a 
linear city-specific trend for the years 1915-1917; in panel (d) mortality rates are constructed based on 1910 
city population. 

 
 
 
 
 
 
 
 
 

(a) Baseline excludes years 1918-1920 (b) Baseline from 1915-1917 avg. mortality

(c) Baseline from 1915-1917 mortality trend (d) Use 1910 population denominator
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Table S1: Correlation Between Explanatory Variables

Health and poverty Pandemic timing Coal
% Infant % % % Timing Prox. Coal %

urban mortality foreign own illiterate of WWI capacity mfg
home onset base emp.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
% urban 1
Infant mortality 0.09 1
% foreign 0.57 0.17 1
% own home -0.63 -0.26 -0.48 1
% illiterate 0.23 0.49 0.41 -0.49 1
Timing of onset -0.41 -0.18 -0.43 0.40 -0.26 1
Proximity WWI base 0.34 -0.02 0.18 -0.40 0.15 -0.51 1
Coal capacity 0.58 0.13 0.50 -0.56 0.24 -0.46 0.43 1
% mfg employment 0.33 0.24 0.38 -0.30 0.15 -0.37 0.24 0.44 1

Notes: The table reports the correlation coe�cient between each independent variable. All variables are mea-
sured in terciles.
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Table S2: Health, Poverty, and Excess Mortality in 1918 
 

 
Notes: The dependent variable is calculated as the difference between observed and predicted all-age mortality in 
1918, where predicted mortality is calculated based in a linear city-specific trend for the period 1915 to 1925. The 
coefficient estimates report difference for the middle and high tercile of each explanatory variable, relative to the 
lowest tercile. Columns 1-7 report the estimates for each variable, or subset of variables, controlling for percent 
urban. Column 8 reports the results from the multi-factor model.  Robust standard errors are reported in brackets. 
*** represents statistical significance at 1 percent level, ** 5 percent level, and * 10 percent level. 
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Table S3: Health, Poverty, and Excess Mortality in 1918 – Diagnostics 
 

 
Notes: The diagnostic tests reported in this table refer to the corresponding regression specifications from the 
previous table. The dependent variable in each regression is calculated as the difference between observed and 
predicted all-age mortality in 1918, where predicted mortality is calculated based in a linear city-specific trend for 
the period 1915 to 1925. Controls for the high and medium terciles of percent urban are included in all models. Each 
F-statistic refers to the hypothesis test for the joint significance of the coefficients of the medium and high terciles 
(relative to the low tercile) of each explanatory variable. Each partial R-squared refers to the proportion of the 
variation in excess mortality in 1918 explained by the high and medium terciles (relative to the low tercile) of each 
explanatory variable. 
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Table S4: Pandemic Timing and Excess Mortality in 1918 
 

 
Notes: The dependent variable is calculated as the difference between observed and predicted all-age mortality in 
1918, where predicted mortality is calculated based in a linear city-specific trend for the period 1915 to 1925. The 
coefficient estimates report difference for the middle and high tercile of each explanatory variable, relative to the 
lowest tercile. Columns 1-5 report the estimates for each variable, or subset of variables, controlling for percent 
urban. Column 6 reports the results from the multi-factor model. Robust standard errors are reported in brackets. *** 
represents statistical significance at 1 percent level, ** 5 percent level, and * 10 percent level. 
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Table S5: Pandemic Timing and Excess Mortality in 1918 – Diagnostics 
 

 
Notes: The diagnostic tests reported in this table refer to the corresponding regression specifications from the 
previous table. The dependent variable in each regression is calculated as the difference between observed and 
predicted all-age mortality in 1918, where predicted mortality is calculated based in a linear city-specific trend for 
the period 1915 to 1925. Controls for the high and medium terciles of percent urban are included in all models. Each 
F-statistic refers to the hypothesis test for the joint significance of the coefficients of the medium and high terciles 
(relative to the low tercile) of each explanatory variable. Each partial R-squared refers to the proportion of the 
variation in excess mortality in 1918 explained by the high and medium terciles (relative to the low tercile) of each 
explanatory variable. 
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Table S6: Coal and Excess Mortality in 1918 
 

 
Notes: The dependent variable is calculated as the difference between observed and predicted all-age mortality in 
1918, where predicted mortality is calculated based in a linear city-specific trend for the period 1915 to 1925. The 
coefficient estimates report difference for the middle and high tercile of each explanatory variable, relative to the 
lowest tercile. Columns 1-5 report the estimates for each variable, or subset of variables, controlling for percent 
urban. Column 6 reports the results from the multi-factor model. Robust standard errors are reported in brackets. *** 
represents statistical significance at 1 percent level, ** 5 percent level, and * 10 percent level. 
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Table S7: Coal and Excess Mortality in 1918 – Diagnostics 
 

 
Notes: The diagnostic tests reported in this table refer to the corresponding regression specifications from the 
previous table. The dependent variable in each regression is calculated as the difference between observed and 
predicted all-age mortality in 1918, where predicted mortality is calculated based in a linear city-specific trend for 
the period 1915 to 1925. Controls for the high and medium terciles of percent urban are included in all models. Each 
F-statistic refers to the hypothesis test for the joint significance of the coefficients of the medium and high terciles 
(relative to the low tercile) of each explanatory variable. Each partial R-squared refers to the proportion of the 
variation in excess mortality in 1918 explained by the high and medium terciles (relative to the low tercile) of each 
explanatory variable. 
 
 




