
IZA DP No. 1172

On the Optimality of Search Matching
Equilibrium When Workers Are Risk Averse

Etienne Lehmann
Bruno Van der Linden

D
I

S
C

U
S

S
I

O
N

 P
A

P
E

R
 S

E
R

I
E

S

Forschungsinstitut
zur Zukunft der Arbeit
Institute for the Study
of Labor

June 2004



 
On the Optimality of Search  
Matching Equilibrium When  

Workers Are Risk Averse 
 
 
 
 

Etienne Lehmann 
ERMES, University of Paris 2, EUREQua, University of Paris 1, 

and IRES, Catholic University of Louvain 
 

Bruno Van der Linden 
FRNS, IRES, Catholic University of Louvain 

and IZA Bonn 
 
 
 
 
 

Discussion Paper No. 1172 
June 2004 

 
 
 
 
 

IZA 
 

P.O. Box 7240   
53072 Bonn   

Germany   
 

Phone: +49-228-3894-0  
Fax: +49-228-3894-180   

Email: iza@iza.org 
 
 
 
 
 

Any opinions expressed here are those of the author(s) and not those of the institute. Research 
disseminated by IZA may include views on policy, but the institute itself takes no institutional policy 
positions. 
 
The Institute for the Study of Labor (IZA) in Bonn is a local and virtual international research center 
and a place of communication between science, politics and business. IZA is an independent nonprofit 
company supported by Deutsche Post World Net. The center is associated with the University of Bonn 
and offers a stimulating research environment through its research networks, research support, and 
visitors and doctoral programs. IZA engages in (i) original and internationally competitive research in 
all fields of labor economics, (ii) development of policy concepts, and (iii) dissemination of research 
results and concepts to the interested public.  
 
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. 
Citation of such a paper should account for its provisional character. A revised version may be 
available on the IZA website (www.iza.org) or directly from the author. 

mailto:iza@iza.org
http://www.iza.org/


IZA Discussion Paper No. 1172 
June 2004 
 
 
 
 
 
 

ABSTRACT 
 

On the Optimality of Search Matching Equilibrium  
When Workers Are Risk Averse∗  

 
This paper revisits the normative properties of search-matching economies when 
homogeneous workers have concave utility functions and wages are bargained over. The 
optimal allocation of resources is characterized first when information is perfect and second 
when search effort is not observable. To decentralize these optima, employees should be 
unable to extract a rent when information is perfect. An appropriate positive rent is however 
needed in the second case. To implement these optima, non-linear income taxation is a key 
complement to unemployment insurance. According to the level of the workers’ bargaining 
power, taxation has to be progressive or regressive. These properties are also studied 
through numerical simulations. 
 
 
 
JEL Classification: J64, J65, J68, H21, D82 
 
Keywords: unemployment, non-linear taxation, unemployment benefits, moral hazard, 

search, matching 
 
 
 
Corresponding author: 
 
Bruno Van der Linden 
IRES 
Université Catholique de Louvain 
3 place Montesquieu 
1348 Louvain-la-Neuve 
Belgium 
Email: vanderlinden@ires.ucl.ac.be  
 

                                                 
∗  This paper was written while Bruno Van der Linden was visiting EUREQua. Bruno Van der Linden 
thanks the French Ministère de la Recherche (EGIDE), the FNRS and Interuniversity Poles of 
Attraction Programmes PAI (Prime Minister’s Office - Federal Office for Scientific, Technical and 
Cultural Affairs). We thank participants to the séminaire d’économie du travail at EUREQua, the 
séminaire ROY, the economic seminar at the Katholieke Universiteit Leuven, the Université Catholique 
de Louvain, the CAM workshop on “Job search, Unemployment and the UI system” in Copenhagen, 
T2M 2002 and PET 2002 meetings, and the EALE 2002 annual conference for their comments. We 
thank in particular Antoine d’Autume, Pierre Cahuc, Melvin Cowles, Bruno Decreuse, Adrian Masters, 
Dale Mortensen, Eric Smith, Frans Spinnewyn, Jan van Ours, Etienne Wasmer and André Zylberberg. 
 

mailto:vanderlinden@ires.ucl.ac.be


I Introduction

The optimality of search-matching equilibria (Pissarides 2000) is a non-trivial

normative issue that has up to now only been studied under the assumption of

risk neutrality. The so-called ‘Hosios condition’ (Hosios 1990) is then sufficient

to guarantee that a laissez faire equilibrium is socially optimal. This condition

requires that workers’ bargaining power be equal to the elasticity of the match-

ing function with respect to unemployment. Employed workers should receive

a certain share of the rent generated by a match in order to compensate them

for the cost inherent to job search activities and to prevent the creation of too

many vacancies in equilibrium. When the bargaining power does not fulfill the

Hosios condition, Boone and Bovenberg (2002) show how non lump-sum in-

come taxation can be used to decentralize the optimum. Taxation can restore

efficiency because a positive marginal tax rate (resp. a negative one) decreases

(resp. increases) the share of the surplus that accrues to the workers. In the

policy debate however, unemployment is typically not only seen as a waste of

resources but also as a major source of risk for workers’ income. This motivates

our interest for revisiting the Hosios problem when workers are risk averse.

The social planner integrates endogenous job-search intensity, wage bar-

gaining and job creation. Two informational settings are contrasted. In the

first-best case, search intensity is observable while in the second-best it is not.

We show that, compared to the first-best optimum, the second-best one is char-

acterized by: i) lower search intensity and a tighter labor market to compensate

for the decrease in job search intensity; ii) higher (resp., typically lower) in-

come for employed (resp., unemployed) workers; iii) lower average and marginal

income-tax rates. In both settings the optimum requires an appropriate combi-

nation of non-linear income taxation and unemployment benefits. Furthermore,
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the Hosios condition is neither sufficient nor necessary to reach an optimum.

This paper also contributes to the literature about the desirability of pro-

gressive labor taxes. Malcomson and Sator (1987), Lockwood and Manning

(1993), Holmlund and Kolm (1995), Sorensen (1999) and Pissarides (1998 and

2000) among others emphasize that, for a given level of taxes, the negotiated

wage is a decreasing function of the marginal tax rate. Accordingly, a more

progressive labor tax schedule should reduce unemployment. However, the de-

sirability of progressive labor income taxes has been recently questioned by

papers that introduce in-work effort (Hansen 1999, Fuest and Huber 2000) or

training decisions (Boone and de Mooij 2003). A more progressive tax schedule

can reduce productivity per capita so that the total effect on output becomes

ambiguous. We put forward another unfavorable effect of tax progressivity.

Through a reduction in the rent extracted by employees, tax progressivity de-

creases the incentives unemployed people have to search.

We also contribute to the literature on optimal unemployment insurance

(see Holmlund 1998). The seminal articles of Baily (1977) formulates the search

for optimal unemployment insurance as a moral hazard problem. We extend

this partial equilibrium view by including firms behavior and the negotiation

of wages. We highlight that non linear taxation and unemployment insurance

are complementary instruments. The literature about optimal unemployment

insurance has already been extended in many directions that we do not consider.

On the one hand, Shavell and Weiss (1979) or Hopenhayn and Nicolini (1997)

show that unemployment benefits should decrease over the unemployment spell.

This result was confirmed by Fredriksson and Holmlund (2001) and was toned

down by Cahuc and Lehmann (2000) in general equilibrium search-matching

models that endogeneize firms behavior and wage formation. On the other

hand, sanctions (i.e. withdrawal of unemployment benefits if search effort is
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judged insufficient) are an alternative that allows to improve risk-sharing for

those who comply with the rules (Boadway and Cuff, 1999, Boone and van

Ours, 2000, Boone et al, 2001). This property is expected to hold as long as

search effort is observable at a reasonable cost without (too frequent) errors.

The paper is organized as follows. Section II describes the structure of the

economy. Section III is devoted to the equilibrium, Section IV to the first-best

optimum and its decentralization, Section V to the second best optimum and its

implementation. Section VI presents simulation results. Section VII concludes

the paper.

II Assumptions and Notations

We look at a segment of the labor market which is made of a continuum of

homogenous risk-averse workers. There are no financial markets. Workers can

either be employed or unemployed. Jobs can either be filled or vacant. We

assume infinitely-lived agents.

The model is based on the assumption that the matching between unem-

ployed workers and vacant jobs is a time-consuming and costly process due

to various frictions on the labor market. Assume a continuous-time setting.

The flow of hires M is a function M(S, υ) of the number of job-seekers mea-

sured in efficiency units S and of the number of vacancies υ. It is standard to

assume that this function is increasing and concave in both arguments (with

M (0,υ) =M (S, 0) = 0) and that returns to scale are constant (see e.g. Petron-

golo and Pissarides, 2001). Denoting by e the average search intensity and by

u the mass of unemployed workers, one has S = e · u. Let θ ≡ υ/S be tight-

ness on the labor market (measured in efficiency units). The rate at which a

vacant job is filled is m(θ) with m (θ) = M(S,υ)
υ = M (1/θ, 1), and m0 (.) < 0.

An unemployed with search intensity ei ≥ 0 flows out of unemployment at a
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rate ei · α (θ) = ei
e · M(e·u,υ)u , with α (θ) ≡ M (1, θ) = θ ·m (θ) and α0 (θ) > 0,

α00 (.) < 0. Job matches end at the exogenous rate q.

We normalize the size of the labor force to 1. In steady state, equality

between entries and exits yields the “Beveridge curve” equation:

e · α (θ) · u = q(1− u) ⇔ u =
q

q + e · α (θ) (1)

that negatively links the unemployment rate to tightness θ.

Let r be the discount rate common to workers and firms. An employed

worker has an instantaneous utility function v(ω), where ω denotes her after-

tax income. An unemployed worker has an instantaneous utility v(z − d(e))

where z denotes her untaxed unemployment benefits. We assume v0(.) > 0,

d(.) ≥ 0, d0 (.) > 0 and d00 (.) ≥ 0 (with lim
e→0d

0 (e) = 0 and lim
e→∞d

0 (e) = +∞).
The risk aversion assumption implies v00 (.) < 0. Function d(e) denotes the

monetary cost of job-search activities. It also includes the money value of home

production or of informal activities for which less time is available as e increases.

Then, z − d(e) stands for the net level of consumption of the unemployed.
The model is developed in steady state. Let V and V u denote the expected

lifetime utility of respectively an employed and an unemployed worker. V solves:

r · V = v (ω) + q (V u − V ) (2)

Two cases will be considered. The one where search intensity is observable

will be introduced later. When search cannot be observed, an unemployed

worker has to choose her search intensity at any point in time. With a search

intensity ei, her instantaneous utility is v (z − d (ei)) and her expected “capital

gain” is ei · α (θ) (V − V u). Hence, the effort level is the solution of:

r · V u = max
ei
{v (z − d (ei)) + ei · α (θ) (V − V u)} (3)
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Each firm is made of a unique filled or vacant job. Each filled job produces

a flow of y units of output, whereas each vacant job costs c per unit of time.

w denotes the gross wage (or equivalently the wage cost). Let J denote the

intertemporal expected value of a filled vacancy and Jυ the expected value of

an open vacancy. J and Jv solve:

r · J = y −w + q (Jυ − J) (4)

r · Jυ = −c+m (θ) (J − Jυ) (5)

A tax T is levied on each filled job: T = w − ω. According to the institu-

tional setting, T could also denote social security contributions. These taxes

are used to finance unemployed benefits z. Other public and social security

expenses are here left aside. At any point in time, the budgetary surplus of the

unemployment insurance system is defined as:

χ = T (1− u)− u · z (6)

Considering a given segment of the labor market, we will not impose that

χ = 0. One could for instance imagine that there is a deficit of the unemploy-

ment insurance system on some segments (say, those of the less-skilled workers)

and a surplus on others. The State is assumed to be indifferent between giving

an additional unit of expected utility and increasing the budget surplus by 1/η

Euros. η stands for the social value of budget surplus expressed in terms of

workers’ utility units. η is positive, exogenous and segment-specific.

As it is standard in the literature (see e.g. Fredriksson and Holmlund

(2001)), we ignore the transitional dynamics and henceforth assume that r→ 0.

The social planner therefore maximizes

Ω = (1− u) v (ω) + u · v (z − d (e)) + η · χ (7)
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III The Market equilibrium

III.1 Free entry and efficiency

Assuming free entry of vacancies, a steady-state equilibrium should be charac-

terized by Jυ = 0. Hence, in such an equilibrium:

J =
c

m (θ)
=
y −w
q

⇒ w = φ (θ) ≡ y − c · q
m (θ)

(8)

This relationship between the gross wage w and tightness θ is downward-

sloping. As w increases, the value of a filled job J declines and so do the number

of vacancies and tightness θ. Since θ is measured in efficiency units, one should

note that this relation does not depend on search intensity e.

The free entry condition (8) combined with the flow equality q (1− u) =

m (θ) · υ imply that aggregate profits Π = (1− u) (y −w) − c · υ equal zero.
Equation (6) can then be rewritten as:

(1− u)ω + u (z − d (e)) + χ = Y (9)

where Y ≡ (1− u) y − u · d (e)− c · υ stands for total output net of search and
vacancy costs. As it is often done in the equilibrium search-matching literature,

“efficiency” means here the maximization of Y .

III.2 Search Behavior

The search intensity solves (3) where V , V u and θ are taken as given. The

first-order condition of this problem is:

0 = α (θ) (V − V u)− d0 (e) · v0 (z − d (e)) (10)

Together with equations (2) and (3), equation (10) implicitly defines the optimal

search level e according to 0 = S (θ, w, e) with:

S (θ, w, e) ≡ α (θ) (v (w − T )− v (z − d (e)))− d0 (e) · v0 (z − d (e)) (q + e · α (θ))
(11)
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Appendix A.1 proves that 1: S0e < 0, S0w > 0, S0θ > 0. Therefore, the

optimal search intensity increases with w and θ. It can be checked that an

increase in T lowers search intensity (since S0T = −S0w < 0) while a rise in the
level of unemployment benefits has an ambiguous effect on e. With the chosen

instantaneous utility function, an increase in z reduces the marginal disutility of

search effort. It also decreases the marginal gain of search. Hence the ambiguous

net effect on e (see Mortensen 1977). Microeconometric estimations generally

lead to the conclusion that the individual exit rate out of unemployment is

negatively affected by the level of unemployment benefits. From this evidence,

the case where:

S0z < 0 (12)

is the most plausible one (see Layard et al , 1991, and Holmlund, 1998, among

others).

III.3 The Wage Bargain

A match generates a surplus that is shared between the worker and the firm-

owner. Let γ be the exogenous bargaining power of the worker, with 0 < γ < 1.

The gross wage rate maximizes the following Nash product:

max
w

(V − V u)γ (J − Jυ)1−γ

The level of taxes T is a function of the gross wage w. The wage setters

realize that a marginal rise of the gross wage of an amount ∆w changes the level

of taxes by Tm ·∆w, where Tm denotes the marginal tax rate. Taking this rela-
tionship and θ as given, the first-order condition of the previous maximization

can be written as :

V − V u = γ (1− Tm)
1− γ

· v0 (w− T ) · (J − Jυ) (13)

1For any function f (., ..., .), f 0x denotes the partial derivatives of f with respect to x.
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Let γ̂ be such that:

γ̂

1− γ̂
=

γ (1− Tm)
1− γ

(14)

γ̂ denotes the employees’ actual bargaining power taking into account the neg-

ative effect of the marginal tax rate on their effective bargaining strength. For

given tightness θ, search intensity e, bargaining power γ and level of taxes T ,

a higher marginal tax rate lowers the change in the after tax wage resulting

from a given increase in the negotiated gross wage. This lowers the employees’

rent V −V u and eventually leads to wage moderation (see e.g. Malcomson and
Sator (1987), Lockwood and Manning (1993)).2

Combining (13) with (2) and (3) and the free entry condition (8) yields at

a steady state WS (θ, w, e) = 0 with :

WS (θ, w, e) ≡ v (w − T )− v (z − d (e))− γ (1− Tm)
1− γ

· q + e · α (θ)
m (θ)

· c · v0 (w − T )
(15)

This equation defines the wage-setting curve. From Appendix A.1, one has:

WS0θ < 0, WS
0
w > 0, WS

0
e = − S(θ,w,e)

r+q+e·α(θ) , WS
0
T < 0, WS

0
Tm
> 0 and WS0z < 0.

Conditional on e, the wage-setting curve is therefore upward-sloping in a (θ, w)

space. If the marginal tax rate is fixed and θ and e are given, increasing the level

of taxes T raises the net wage rate. On the contrary, for given levels of taxes

T , tightness θ and search intensity e, a more progressive tax schedule will put

a downward pressure on the negotiated wage. More generous unemployment

benefits have the usual positive effect on wages.

2Proposition 6 of Manning (2004) also concludes that “a revenue neutral increase in tax
progressivity reduces the average wage" in his wage-posting framework.
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III.4 Equilibrium

Conditional on z, T , Tm, γ, a steady-state equilibrium (θ, w, e) is a solution of

the system:

w = φ (θ) S (θ, w, e) = 0 WS (θ, w, e) = 0 (16)

Equation (1) then gives the unemployment rate u and consequently the rate of

vacant jobs υ. Finally, equation (6) sets the level of the budget surplus χ.

Appendix A.2 proves the uniqueness of equilibrium conditional on the policy

parameters (z, T, Tm, γ). This property will be useful to decentralize social

optima. Furthermore, it is shown that dθ/dz < 0, dθ/dT < 0 and dθ/dTm > 0.

These properties are standard when workers are risk neutral (see e.g. Pissarides,

1998, 2000, Fredriksson and Holmlund, 2001 or Cahuc and Zylberberg, 2004)

but not under risk aversion. The direction in which the equilibrium values

of tightness and wage vary with the policy parameters is entirely determined

by the sign of their partial effects through the free-entry condition (8) and the

wage-setting curve (15). Finally, Appendix A.2 explains why the marginal effect

of T and Tm on e can only be signed if γ̂ is equal to the elasticity of the matching

function with respect to unemployment. General and partial equilibrium effects

on e then coincide. Otherwise, in general, we cannot conclude about the net

effects of these policy parameters on search intensity. In sum,

Proposition 1 There is (at most) a single steady-state equilibrium in this

economy. At the equilibrium, tightness θ (respectively, the gross wage w) de-

creases (resp. increases) with the levels of unemployment benefits z and tax T

and increases (resp. decreases) with the marginal tax rate Tm.
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IV The First-Best optimum

In this section, we first look at the optimal allocation of resources that a benev-

olent social planner would implement if he could perfectly control search inten-

sity. This section finally looks at the decentralization of the optimum.

IV.1 The central planner problem

In this subsection, the central planner controls tightness, the level of effort, the

unemployment rate, net income and the unemployment benefit. He maximizes

Ω subject to the resource constraint (9) and the flow equilibrium equation (1).

Remembering that υ = e · θ · u, the planner’s program then consists in 3:

max
θ,ω,u,z,e

(1− u) v (ω) + u · v (z − d (e)) + η [(1− u) (y − ω)− (z + c · e · θ)u](17)

0 = e · α (θ) · u− q (1− u)

Introducing subscript 1 to denote the first-best optimum, Appendix A.3

implies that:

v0 (ω1) = v0 (z1 − d (e1)) = η ⇔ ω1 = z1 − d (e1) =
¡
v0
¢−1

(η) (18)

Under perfect information, the social planner perfectly insures workers against

the unemployment risk. Appendix A.3 then shows that the first-best values of

θ1 and e1 solves G (θ1, e1) = H (θ1, e1) = 0, where

G (θ, e) ≡ α (θ) (y + d (e) + c · e · θ)− ¡c · θ + d0 (e)¢ (e · α (θ) + q)
H (θ, e) ≡ α0 (θ) (y + d (e) + c · e · θ)− c (e · α (θ) + q)

Function G (θ, e) defines the optimal level of search intensity as a function of

tightness. Function H (θ, e) defines the optimal level of tightness as a function

3Formally, one should maximize Ω with r > 0 under the dynamical constraint u̇ =
q (1− u) − e · α (θ) · u, derive the first-order and envelope conditions and take the limits
of those conditions for r → 0. It can be verified that this method and the maximization of
the following problem give the same results for r → 0.
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of search intensity. Notice that these functions, and hence θ1, e1 and u1, are

independent of the social value of budget surplus η. Appendix A.3 also shows

that G0e < 0, H 0
θ < 0 and that G (., .) and H (., .) can be represented as shown

in Figure 1.

θ

e
F

H

G

Ce1

θ1 θ2

e2 A

e B

G>0
G<0

H<0H>0

F>0
F<0

Figure 1: The first-best choice of (θ, e)

Finally, Appendix A.3 proves that (e1, θ1, u1) are the values of (e, θ, u) that

maximize output net of search cost Y subject to the flow equilibrium (1). Con-

sequently, in the first best, allocative efficiency is reached independently of the

social value of budget surplus and it is compatible with perfect insurance. In

sum,

Proposition 2 Under perfect information, the central planner is able to deal

separately with allocative efficiency and with the risk-sharing. The first-best

levels of search effort and tightness maximize total output net of costs. Given

these optimal levels, the first-best income levels guarantee a constant level of

utility whether workers are employed or not. This level is higher the lower the

social value of budget surplus.
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IV.2 Decentralization of the First-Best optimum

The first-best setting with perfect monitoring of job search intensity is clearly

a highly idealized case. However, looking briefly at the decentralization of this

optimum highlights the complementarity between non-linear taxation and un-

employment insurance. The State has to decentralize an equilibrium in which

workers are perfectly insured against the unemployment risk. According to

(15), this requires γ̂1 = 0. Such a low actual bargaining power is unavoidable

to prevent insiders from extracting a rent V − V u > 0 through wage bargain-
ing. Whenever the workers’ bargaining power γ is positive, this can only be

achieved with a marginal tax rate Tm,1 = 100% (see equation (14)). So, the

decentralization of the first-best optimum is impossible without an “extremely”

progressive income tax schedule:

Proposition 3 The first best is decentralized with either γ = 0 or Tm,1 = 100%

One may wonder why the decentralization with risk averse workers differ so

much from the one under “linear” preferences (i.e. with v00 (.) = 0 and v0 (.) ≡
η). In the latter case, the social planner is only concerned with total output

net of search costs Y , independently of the way this output is shared between

the employed, the unemployed and the budget surplus. There is therefore a

multiplicity of first-best optima. Any combination of ω, z and χ leading to the

same total output Y1 is actually a first-best optimum in this case. The laissez

faire economy under the Hosios (1990) condition only corresponds to one of

these optima. When preferences tends to the “linear” case, our decentralization

(with γ̂1 = 0) leads to another efficient optimum with perfect unemployment

insurance.
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V The second-Best optimum

V.1 The central planner problem

In this section, we consider the polar case where search intensity is not observed

by the State. As in the first best, the tax system and the level of unemployment

benefits are the instruments used to promote efficiency and to insure workers.

Since search effort is now chosen by the unemployed, the State faces a moral

hazard problem. The incentive constraint S (., ., .) = 0 (see equation 11) has

therefore to be included. The second-best problem is:

max
θ,ω,u,z,e

(1− u) · v (ω) + u · v (z − d (e)) + η [(1− u) (y − ω)− z · u− c · e · θ · u]
(19)

0 = e · α (θ) · u− q (1− u)

0 = α (θ) (v (ω)− v (z − d (e)))− d0 (e) · v0 (z − d (e)) (q + e · α (θ)) (20)

Let subscript 2 denote the second-best optimum. Under risk aversion 4, the

incentive constraint (20) implies that ω2 > z2−d (e2). Appendix A.4 shows that

G (θ2, e2) > 0 and H (θ2, e2) < 0. Remembering the properties of functions G

and H, these properties imply:

e2 < e1 and θ2 > θ1 (21)

To induce search effort, employed workers necessarily enjoy higher util-

ity levels than unemployed ones. Keeping search effort at its first-best level

would however require a difference in utilities between employed and unem-

ployed workers that would be too detrimental to the objective of insurance,

hence e2 < e1. This property is less standard than often believed (see e.g.

Mass-Colell et al, 1995, p 487, who provide a counter-example).

4Boone and Bovenberg (2002) show that first and second-best outcomes coincide when
workers are risk neutral.
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Compared to the first-best optimum, the social planner integrates the ben-

eficial effect of a tighter labor market on search effort. An increase in tightness

allows to relax the incentive constraint. This intuitively explains why θ2 > θ1.

This property echoes similar results in Rosen (1985) where labor demand is

above its efficient level when unemployment insurance is imperfect. Properties

(21) have no clear implications on the comparison between V-U ratios (υ2/u2

vs υ1/u1) and between unemployment rates (u2 vs u1).

Appendix A.4 also proves that ω2 > ω1. In the most plausible case where

higher unemployment benefits have a negative impact on search effort, i.e. when

S0z < 0, we also get z2 − d (e2) < z1 − d (e1). Since, e2 < e1, these results imply
z2 < z1. The intuition behind z2 − d (e2) < z1 − d (e1) and ω2 > ω1 is similar

to the one underlying θ2 > θ1. Compared to the first best, the social planner

integrates the beneficial effect of a higher (respectively, a lower) utility level for

employed (respectively, unemployed) workers on incentives to search.

One can compare total net output Y at the first-best and at the second-

best optima. We have shown that the first-best levels of tightness and search

intensity θ1, e1 maximize Y . Search intensity and tightness differ at the second-

best compared to their first-best optima. Hence one has Y2 < Y1.

The following proposition summarizes our main results.

Proposition 4 When search effort in unobservable, there is a trade-off between

maximizing net output Y and insuring workers against the unemployment risk.

Compared to the first-best optimum, search effort e and total net output Y are

lower. Tightness θ and net income in employment ω are higher.

To end this section, let us briefly emphasize how this analysis enriches stud-

ies such as Baily (1977), where both θ and w are exogenous. Let us assume that
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they are fixed at their second best optimal value 5. The loss in efficiency when

search effort is unobservable can then be captured by the distance between the

second-best optimum e2 and the solution e to equation G(θ2, e) = 0 (see Figure

1 where this distance is A− B). In our framework, the loss due to the unob-

servability of search effort is larger because now the second-best outcome, A in

Figure 1, has to be compared to the first-best C.

V.2 Decentralization of the second best

To decentralize the second-best optimum, the policy parameters should nec-

essarily solve z = z2, T2 = φ (θ2) − ω2 and WS (θ2,φ (θ2) , e2) = 0. This

obviously gives a single vector of policy parameters (z2, T2, Tm,2). According to

Proposition 1, we know that a single equilibrium exists for any vector of policy

parameters. Hence for the policy parameters (z2, T2, Tm,2), we know that the

second-best optimum is decentralized. To give unemployed workers an incentive

to search, employees should extract some rent from a match. Therefore, the

levels of the actual bargaining power can be ranked:

γ̂2 > γ̂1 = 0.

According to Equation (14), for any positive value of the bargaining power γ,

implementing such an equilibrium requires:

Tm,2 < 1 = Tm,1.

However, the position of Tm,2 with respect to 0 and to the average tax rate

T2/w2 is ambiguous. Finally, since θ2 > θ1 and ω2 > ω1, one has

T2 < T1.

The level of tax required to decentralize the second-best optimum is lower than

the first-best one. This follows from two effects. First, employed workers’
5The second-best value of the wage rate will be made precise in the following sub-section.
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income has to be higher at the second best. Second, the inequality θ2 > θ1

implies that the gross wage is lower at the second best. From this, we can

conclude that T2/ω2 < T1/ω1, so T2/w2 < T1/w1.

Knowing how the second-best optimum can be decentralized, it is now

possible to characterize the tax schedule in a more precise way. First, from

WS (θ2,φ (θ2) , e2) = 0, it is immediately seen that Tm increases with γ. Sec-

ond, from the definition of γ̂,

Tm,2 ≶ 0⇐⇒ γ ≶ γ̂2

Third, combining (13) successively with (8), (2), (3) and again (8) it can be

checked that:

1− Tm
1− (T/w) =

1− γ

γ

v (ω)− v (z − d (e))
ω · v0(ω)

m(θ) · y − c · q
c(q + e · α (θ)) (22)

where (1 − Tm)/(1 − (T/w)) is the so-called coefficient of residual income
progression CRIP 6. Consequently, for (θ, w, e) = (θ2,φ (θ2) , e2)), the CRIP

would be equal to 1 if γ = eγ, with:
eγ

1− eγ = v (ω2)− v (z2 − d (e2))
ω2 · v0(ω2)

m(θ2) · y − c · q
c(q + e2 · α (θ2)) ⇒ eγ ∈ (0, 1) (23)

For this particular value of γ, the tax schedule needed to decentralize the second-

best optimum would actually be linear. Otherwise, a non linear tax schedule is

required.

Proposition 5 The decentralization of the second best requires a labor tax

schedule which is typically neither linear nor lump sum. The optimal marginal

tax rate is an increasing function of workers’ bargaining power, ranging from

negative to first-best values (100%). The average tax rate is lower than at the

first best.
6The latter measures the elasticity of after-tax wage with respect to pre-tax wage. This is

a standard indicator of the progressivity of the tax schedule.
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VI Numerical simulations

These simulations have three motives. First, we would like to quantify to what

extent imperfect information affects optimal policies. Second, the analytically

ambiguous effects of imperfect information on unemployment rates, V-U ratios

and expected lifetime utilities should be signed numerically. Finally, from a pol-

icy point of view, it is essential to measure to what extent changes in structural

parameters affect optimal unemployment insurance and labor income taxation.

In the following subsections, three parameters will be allowed to vary, namely

risk aversion σ, the separation rate q and the workers’ bargaining power γ. For

the latter, we contrast the second-best outcomes with third-best ones accessi-

ble only through a linear tax schedule. Most of the simulation results will be

summarized by way of a panel showing twelve figures. Each panel will have the

same structure and will use the same conventions. Solid lines will correspond

to the first best, dotted lines to the second best and dashed lines to the third

best. Each panel will display tightness θ, search intensity e, the υ/u ratio, the

unemployment rate u, the net output Y , the budget surplus χ, the net income

of employed workers ω, the unemployment benefits z, the after-tax replacement

ratio ρ = z/ω, the utility flows V , the average tax rate T/w and the marginal

tax rate Tm. The figure related to the V ’s will show three dotted curves for

the second best. The upper (respectively, the lower, the intermediate) curve

will represent the employed workers’ (respectively the unemployed workers’, the

average) instantaneous utility expressed in certainty equivalent.

VI.1 Calibration

The year is the unit of time. We consider a representative labor market segment

of the French economy. The matching function is m0 (e · u)0.5 υ0.5. The utility
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function is v (x) = x1−σ
1−σ

7. The disutility function of search effort is d (e) = eβ.

The separation rate q equals 0.15, the net wage amounts to 18 000 Euros, and

the after-tax replacement ratio is 0.7 (see Martin, 1996). For our benchmark

economy, the relative risk aversion σ is put to 1 and the bargaining power γ =

0.5. To reproduce a microeconomic elasticity of unemployment duration with

respect to the level of unemployment benefits of 0.5 (consistent with estimations

surveyed by Layard et al (1991) and Holmlund (1998)), β is set to 2.8. Then,

to match an unemployment rate of 0.1 and an average duration of vacancies of

0.1 year (see Maillard, 1997), m0 is fixed to 0.96. The remaining parameters

are such that the observed equilibrium is a second-best optimum. This leads to

y = 22 959, η = η0 = 0.00006 and c = 171 876.
8

VI.2 General results

The following properties were found in all (reported and unreported) simula-

tions. First, the υ/u ratio is higher and the unemployment rate u is lower at the

first-best than at the second-best optimum. Recall that unemployed workers

search less in the second best but that the labor market is then also tighter.

The increase in tightness is generally less important than the decrease in search

intensity 9.

Second, compared to their first-best values, the budget surplus χ is lower

and the workers’ expected utility (1− u) v (ω) + u · v (z − d (e)) is higher. To
understand these results, consider the dual problems of maximizing workers’

7 If σ = 1, we take v (x) = ln (x) .
8Following e.g. Romer (1996), c can also be interpreted as the cost of maintaining a job

(either filled or vacant). Under this interpretation, y stands for gross output per worker minus
the cost of maintaining a job.

9 In the binary case where search intensity can equal zero or a fixed positive value, it can
be shown that search intensity is the same at the first and the second best, whereas tightness
remains higher at the second best. Hence, at the second best, unemployment is lower and the
υ/u ratio is higher.
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expected utility given a budget surplus χ ≥ χ̄. The first-best problem is then:

max
θ,ω,u,z,e

(1− u) v (ω) + u · v (z − d (e)) + η [(1− u) (y − ω)− (z + c · e · θ)u]

e · α (θ) · u− q (1− u) = 0

χ ≥ χ̄ (24)

The second-best problem consists in adding (20) to the previous one. Denoting

ηi (χ̄) the Lagrange multiplier of constraint (24) in the i
th-best program, one

has the same first-order conditions as the previous ones except that now, the

budget surplus χ’s are exogenous whereas the multipliers ηi’s are endogenous. It

is then intuitive that: 1) a higher requirement for the budget surplus raises both

first-best and second-best values of ηi (χ̄); 2) it is harder to fulfill a given budget

requirement χ ≥ χ̄ at the second best, so η2 (χ̄) > η1 (χ̄). Putting these two

features together imply that χ2 (η) < χ1 (η) when we allow the budget surplus

to vary but keep η exogenous (as we did). It turns out that this favorable effect

on workers’ expected utility outweighs two others. First, total net output is

lower at the second best. So, fewer resources are available to insure workers

against the unemployment risk. Second, net income levels in unemployment

and in employment are different at the second best. So, risk-sharing is less

efficient.

VI.3 Risk aversion σ

Figure 2 displays first- and second-best optima and their implementation in a

decentralized economy for different values of the relative risk aversion parameter

(σ ∈ [0.05, 3]). As σ increases, the weight given to insurance increases too. We
normalize the value of η so that first-best values of incomes ω and z remain

unchanged when σ varies 10. So doing, changes in σ do not affect the relative

weight attributed to the budget surplus at the first best.
10That is we impose η = (η0)

σ.
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Figure 2: Simulations with respect to risk aversion

When σ increases the central planner put less incentive on search effort.

Search intensity e, the υ/u ratio and net output Y decrease while the unem-

ployment rate u and tightness θ increase with σ. While the previous variables

move away from their first-best counterpart as σ increases, employed and unem-

ployed workers’ net incomes and utility levels converge to their first best values.

This was expected as insurance matters more and more. Starting from quite

high values for extremely low risk averseness, the after-tax replacement ratio

and the marginal tax rate increase a lot with σ, respectively from 0.38 to around

0.8 and from 0.26 to 0.7. From a policy viewpoint, these results highlight the

complementarity between tax progressivity and unemployment insurance. The
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order of magnitude for the after-tax replacement ratio observed in Continental

Europe (namely, between 0.7 and 0.8) is obtained for a wide range of relative

risk aversion values (namely for σ ∈ [1, 3]). As expenditures for unemployed
workers z · u rises, the level of taxes increases and so does the average tax rate

T/w.

VI.4 Separation rate q
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Figure 3: Simulations with respect to the separation rate.

A rise in the separation rate q has similar effects as a decrease in the scale

parameter of the matching function m0. Both capture a rise in the frictional

determinants of unemployment. First, when q increases, both first and second-
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best optima become somehow less “efficient”. This means that total net out-

put, tightness, search intensity, the V − U ratio decrease and unemployment

increases. Second, it turns out that employed and unemployment utility levels

increase. Since total output decreases, this can be only achieved through a

dramatic decrease in the budget surplus and in average tax rates. Third, the

marginal tax rate decreases very slightly, whereas the after tax replacement

ratio remains unchanged. In sum, increases in the separation rate have large

effects on the unemployment rate. Conversely, the generosity of the unemploy-

ment insurance system and the marginal tax rate are roughly constant.

VI.5 Non-linear versus proportional taxation

This section illustrates to what extent non-linear taxation is a key ingredient

to decentralize the second-best optimum. For our benchmark economy, it turns

out that second-best tax schedule is proportional when workers’ bargaining

power equals to eγ = 0.3. Two cases will now be contrasted when γ 6= γ̃: first,

the already considered case where non-linear taxation is allowed; second, the

so-called third-best case where taxation has to be proportional to wages. The

latter setting is the one typically considered in the literature.
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Figure 4: Proportional versus non-linear taxation

Figure 4 compares second- (dotted lines) and third-best policies (dashed

lines) when γ varies. Obviously, policies are identical when γ = γ̃. When γ > γ̃

(respectively when γ < γ̃), the second-best requires a progressive (regressive)
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tax schedule that is no more available at the third best. Consequently, workers

extract too much (too few) rent, so the after tax replacement ratio has to

decrease (increase).

VII Conclusion

We have contrasted a first-best optimum where the State can perfectly monitor

unemployed workers’ search intensity and a second-best optimum with moral

hazard. In the first-best setting, efficiency can be achieved independently of

the redistributive issues and the State can perfectly insure workers against

the unemployment risk. The implementation of the first best requires a 100%

marginal tax rate. In the second-best case, search intensity and total net output

are lower and tightness is higher. Marginal tax rate, average tax rates and

typically unemployment benefits are lower. Whether, income taxation should be

progressive or regressive heavily depends on the value of the workers’ bargaining

power. For sufficiently low values of the latter, the marginal tax rate could even

become negative in order to provide appropriate incentives to search and to

create vacancies. A non proportional tax schedule is a necessary complement

to unemployment insurance in a second-best world. Numerical simulations

confirm this conclusion. They also show that the optimal replacement ratio

and marginal tax rate are very sensitive to changes in risk aversion but very

inelastic to the separation rate.

In a more realistic framework, the State can imperfectly observe search

behavior. So, reality lies somewhere between our first and second best. A con-

tinuity argument suggests that as search behavior becomes better observed, the

social optimum would be characterized by higher search intensity and unem-

ployment benefits and lower tightness. A less expected result is that marginal

tax rates should also increase. International institutions such as the OECD
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and the academic profession (see Boadway and Cuff, 1999, Boone and van Ours

2000, or Boone et al 2001) work more and more on the effects of monitoring

search effort. From our paper, it can be concluded that a better control of

job-search effort should not only lead to better insurance against the unem-

ployment risk (conditional on the income tax schedule). To be optimal, such

reforms should also be accompanied by an increase in tax progressivity.

This paper could be extended in different ways. First, the introduction

has cited several papers that have been concerned with the optimal profile of

unemployment benefits over the unemployment spell rather than a single level

of unemployment benefits. Second, we could consider heterogeneity in workers

productivity as in Mirrlees (1971), Saez (2002), Hungerbühler et alii (2003) and

Boone and Bovenberg (2004). Finally, it would be interesting to analyze the

same issues from a political economy viewpoint instead of a normative one.
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A Appendix

A.1 Partial Derivatives

From (11), one has:

S0e =
³
−d00 (e) · v0 (z − d (e)) + £d0 (e)¤2 v” (z − d (e))´ (q + e · α (θ))

S0w = α (θ) · v0 (w − T ) > 0

S0θ = α0 (θ)
£
v (w − T )− v (z − d (e))− e · d0 (e) · v0 (z − d (e))¤

Since, v00 (.) < 0 and d00 (.) ≥ 0, it is easily checked that S0e < 0. Equation

S (., ., .) = 0, can be rearranged to yield:

v (w − T )− v (z − d (e)) = q + e · α (θ)
α (θ)

d0 (e) · v0 (z − d (e))

Therefore,

S0θ =
α0 (θ)
α (θ)

· q · d0 (e) · v0 (z − d (e)) > 0

Finally, one has:

S0Tm = 0

S0T = −α (θ) · v0 (w− T (w)) = −S0w < 0

S0z = −α (θ) · v0 (z − d (e))− d0 (e) (q + e · α (θ)) v00 (z − d (e))

From (15), the following partial derivatives can be computed:

WS0θ = − c · γ
1− γ

· 1− Tm
m (θ)

µ
e · α0 (θ)− m

0 (θ) (q + e · α (θ))
m (θ)

¶
< 0

WS0w = v0 (w− T )− c · γ
1− γ

(1− Tm) q + e · α (θ)
m (θ)

· v00 (w− T ) > 0

WS0e = d0 (e) · v0 (z − d (e))− c · γ
1− γ

(1− Tm) α (θ)
m (θ)

· v0 (w − T )

After some manipulation, WS (., ., .) = 0 becomes:

c · γ
1− γ

· (1− Tm) · v
0 (w − T )

m (θ)
=
v (w − T )− v (z − d (e))

q + e · α (θ)
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Taking this equality into account leads to:

WS0e = d
0 (e) · v0 (z − d (e))− α (θ)

v (w − T )− v (z − d (e))
q + e · α (θ) = − S (θ, w, e)

q + e · α (θ)

Hence, WS0e is equal to zero in equilibrium. Finally, one has:

WS0T = −v0 (w− T ) + c · γ
1− γ

(1− Tm) q + e · α (θ)
m (θ)

· v00 (w− T ) < 0

WS0Tm =
c · γ
1− γ

q + e · α (θ)
m (θ)

· v0 (w− T ) > 0

WS0z = −v0 (z − d (e)) < 0

A.2 Uniqueness of the equilibrium and comparative statics

We define

W (θ, e) ≡WS (θ,φ (θ) , e) S (θ, e) ≡ S (θ,φ (θ) , e)

and show that the system S (θ, e) = W (θ, e) = 0 admits at most one solu-

tion. Since equation (8) depends neither on search intensity e nor on policy

parameters (z, T, Tm), one gets

S0e (θ, e) = S0e (θ,φ (θ) , e) < 0 S0x (θ, e) = S0x (θ,φ (θ) , e) for x = z, T, Tm

Similarly, one has

W0
θ (θ, e) = WS0θ (θ,φ (θ) , e) + φ0θ ·WS0w (θ,φ (θ) , e) < 0

W0
e (θ, e) = WS0e (θ,φ (θ) , e) = −

S (θ, e)
q + e · α (θ)

W0
x (θ, e) = W 0

x (θ,φ (θ) , e) for x = z, T, Tm

First, we prove uniqueness. Since S0e (θ, e) < 0, for any θ, the equation

S (θ, e) = 0 admits at most one solution. Call this solution E (θ) if it ex-

ists. The implicit function theorem insures that function E (θ) is continuous

and differentiable wherever it is defined. Now, let W (θ) ≡ W (θ,E (θ)). An
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equilibrium necessarily solves W (θ) = 0. Differentiating function W (.) yields

W 0 (θ) =W0
θ (θ,E (θ)) +E0 (θ) ·W0

e (θ,E (θ)). Since E (θ) solves S (θ,E (θ)) = 0,

one has W0
e (θ,E (θ)) = 0. Hence, W 0 (θ) = W0

θ (θ,E (θ)) < 0. So, equation

W (θ) = 0 admits at most one solution. The equilibrium, if any, is therefore

unique.

Second, we look at the comparative statics of the equilibrium. Differenti-

ating S (θ, e) = W (θ, e) = 0 and taking into account that W0
e = 0 around the

equilibrium, one has:

µ
W0

θ 0
S0θ S0e

¶µ
dθ
de

¶
= −

µ
WS0z WS0T WS0Tm
S0z S0T S0Tm

¶ dz
dT
dTm


Hence:

dθ = −WS
0
z

W0
θ

dz − WS
0
T

W0
θ

dT − WS
0
Tm

W0
θ

dTm

Since W0
θ < 0, WS

0
z < 0, WS

0
T < 0, WS

0
Tm
> 0 one has dθ/dz < 0, dθ/dT < 0

and dθ/dTm > 0. Moreover,

de =
S0θ ·WS0z −W0

θ · S0z
S0e ·W0

θ

dz +
S0θ ·WS0T −W0

θ · S0T
S0e ·W0

θ

dT +
S0θ ·WS0Tm −W0

θ · S0Tm
S0e ·W0

θ

dTm

S0θ = S0θ + φ0 (θ) · S0w =
α0 (θ)
α (θ)

q · d0 (e) · v0 (z − d (e)) + c · q
m (θ)

· m
0 (θ)
m (θ)

α (θ) v0 (w − T )

By equations (10), (8) and (13), one has

S0θ = q · v (w− T )− v (z − d (e))
q + eα (θ)

½
α0 (θ) + θm0 (θ)

1− γ

γ (1− Tm)
¾

= q ·m (θ) · v (w − T )− v (z − d (e))
q + eα (θ)

½
1 +

θm0 (θ)
m (θ)

µ
1 +

1− γ

γ (1− Tm)
¶¾

Recall that γ̂/ (1− γ̂) = γ (1− Tm) / (1− γ). Then:

S0θ = q ·m (θ) ·
v (w− T )− v (z − d (e))

q + eα (θ)

½
1 +

θm0 (θ)
m (θ)

· 1
γ̂

¾
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So, under the Hosios condition, γ̂ = −θm0(θ)
m(θ) , one gets S

0
θ = 0 around the

equilibrium, and:

de = − S
0
z

W0
θ

dz − S0T
W0

θ

dT − S
0
Tm

S0e
dTm

Hence, one has dedT < 0,
de
dTm

= 0 but dedz remains ambiguous. However, whenever

γ̂ 6= −θm0(θ)
m(θ) , S

0
θ has an ambiguous sign, so the marginal effect of z, T , Tm on e

cannot be signed.

A.3 First Best and decentralization

Denoting δ1 the Lagrange multiplier, the first-order conditions of program (17)

with respect to ω, z, e, u, θ are respectively:

0 = (1− u1)
£
v0 (ω1)− η

¤
(25)

0 = u1
£
v0 (z1 − d (e1))− η

¤
(26)

0 = u1
£−v0 (z1 − d (e1)) · d0 (e1)− η · c · θ1 + δ1 · α (θ1)

¤
(27)

0 = v (z − d (e1))− v (ω1) + η (ω1 − y − z1 − c · e1 · θ1) + δ1 (e1 · α (θ1) + q)(28)

0 = −c · e1 · η · u1 + δ1 · e1 · α0 (θ1) · u1 (29)

Equations (25) and (26) lead to equalities (18). Conditions (27) (28) and (29)

can therefore be respectively rewritten as:µ
δ1
η
=

¶
d0 (e1) + c · θ1

α (θ1)
=
y + d (e1) + e1 · c · θ1

e1 · α (θ1) + q =
c

α0 (θ1)
(30)

From the equalities in (30), we get that the social optimum is determined by

either F (θ1, e1) = G (θ1, e1) = 0, or F (θ1, e1) = H (θ1, e1) = 0 or G (θ1, e1) =

H (θ1, e1) = 0, where:

F (θ, e) ≡ α0 (θ)
¡
d0 (e) + c · θ¢− c · α (θ)

G (θ, e) ≡ α (θ) (y + d (e) + c · θ · e)− ¡c · θ + d0 (e)¢ (e · α (θ) + q)
H (θ, e) ≡ α0 (θ) (y + d (e) + e · c · θ)− c (e · α (θ) + q)
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These functions are independent of η. The partial derivatives of F have unam-

biguous signs:

F 0θ = α00 (θ)
¡
d0 (e) + c · θ¢+ c · α0 (θ)− c · α0 (θ) < 0

F 0e = α0 (θ) · d00 (e) > 0

Consequently, function F (., .) is upward-sloping in the (θ, e) plane (see Figure

1). Second,

G0e = −d00 (e) (e · α (θ) + q) < 0

G0θ = α0 (θ)
¡
y + d (e)− e · d0 (e)¢− c · q

However, along G (θ, e) = 0, one has:

y + d (e) =
c · θ · q + d0 (e) (e · α (θ) + q)

α (θ)
=

q

α (θ)
· ¡c · θ + d0 (e)¢+ e · d0 (e)

Therefore,

G0θ = α0 (θ) · q

α (θ)
· ¡c · θ + d0 (e)¢− c · q = q

α (θ)
F (θ, e) (31)

Consequently, in the (θ, e) plane function G (., .) is upward-sloping (respectively

downward-sloping) at the left (respectively at the right) of function F (., .) and

intersects function F (., .) horizontally (see Figure 1). Third,

H 0
θ = α00 (θ) (y + d (e) + e · c · θ) + e · c · α0 (θ)− e · c · α0 (θ) < 0

H 0
e = α0 (θ)

¡
d0 (e) + c · θ¢− c · α (θ) = F (θ, e)

Hence, in the (θ, e) space, functionH (., .) is upward-sloping (respectively downward-

sloping) above (respectively below) function F (., .) and intersects function F (., .)

vertically (see Figure 1). This configuration guarantees the uniqueness of a so-

lution to the system (30) 11.

11The proof is similar to the one of the uniqueness of equilibrium. One simply has to replace
S by −F and W by H.
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We now show that the first-best solution (e1, θ1, u1) maximizes total output

net of search costs Y :

max
e,u,θ

Y = (1− u) y − u · d (e)− c · e · θ · u (32)

s.t. : e · α (θ) · u = q (1− u)

Denoting δY the Lagrange multiplier, the first-order conditions are:

¡
δY =

¢ d0 (e) + c · θ
α (θ)

=
y + d (e) + e · c · θ
e · α (θ) + q =

c

α0 (θ)

Comparing these expressions with (30), it is obvious that the solution (e, θ)

to problem (32) is exactly the first-best optimum (e1,θ1). Hence, the unem-

ployment rate u is equal to u1. At the first-best optimum, total output net of

costs is therefore maximized. Consequently, efficiency and equity goals can be

achieved separately.

To decentralize the first best, the State fixes the level of unemployment

benefits to z1. By assumption, it is also able to impose a search intensity

e1. Knowing the optimal value θ1, let then the level of tax be given by T1 =

φ (θ1) − ω1. Since, γ̂1 = 0, z = z1 and e = e1, the wage bargaining process

implies ω1 = z1 − d (e1) . So, w = φ(θ1) = ω1 + T1 according to (15). Given

this gross wage, the representative firm chooses its optimal level of vacancies so

that θ = θ1.

A.4 The second-best optimum

Let δ2 (respectively ψ2) denote the Lagrange multiplier associated with the flow

equilibrium (respectively the incentive constraint). The first order conditions
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of problem (19) with respect to ω, z, e, u and θ are:

0 = (1− u2)
£
v0 (ω2)− η

¤
+ ψ2 · α (θ2) · v0 (ω2) (33)

0 = u2
£
v0 (z2 − d (e2))− η

¤
(34)

−ψ2
©
α (θ2) · v0 (z2 − d (e2)) + v00 (z2 − d (e2)) · d0 (e2) · (q + e2 · α (θ2))

ª
0 = u2

£−d0 (e2) · v0 (z2 − d (e2))− η · c · θ2 + δ2 · α (θ2)
¤

(35)

+ψ2

n
−d00 (e2) · v0 (z2 − d (e2)) +

¡
d0 (e2)

¢2 · v00 (z2 − d (e2))o (q + e2 · α (θ2))
0 = v (z2 − d (e2))− v (ω2) + η (ω2 − y − z2 − c · e2 · θ2) + δ2 (e2 · α (θ2) + q) (36)

0 = −c · e2 · η · u2 + δ2 · α0 (θ2) · e2 · u2 + (37)

ψ2 · α0 (θ2) ·
©
v (ω2)− v (z2 − d (e2))− e2 · d0 (e2) · v0 (z2 − d (e2))

ª
Let us first show that ψ2 > 0. At the second best, the unemployed choose

a search intensity e that solves:

0 = α (θ2) (v (ω2)− v (z2 − d (e)))− d0 (e) · v0 (z2 − d (e)) (q + e · α (θ2))

The incentive constraint (20) evaluated at the second best encompasses two

constraints, namely

0 ≤ α (θ2) (v (ω2)− v (z2 − d (e2)))− d0 (e2) · v0 (z2 − d (e2)) (q + e2 · α (θ2))
(38)

and

0 ≥ α (θ2) (v (ω2)− v (z2 − d (e2)))− d0 (e2) · v0 (z2 − d (e2)) (q + e2 · α (θ2))
(39)

Equation (38) (respectively (39)) requires that the chosen search intensity

e be at least (at most) equal to e2. According to Kuhn and Tucker conditions,

the former (latter) constraint is associated with a Lagrange multiplier ψ+2 ≥ 0
(ψ−2 ≤ 0). Obviously, one has ψ2 = ψ+2 +ψ

−
2 and either ψ

−
2 = 0 or ψ

+
2 = 0. From

an economic point of view, only the constraint e ≥ e2, namely (38), matters.
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For the constraint e ≥ e2 (e ≤ e2) means that the net earnings ω2 should be
sufficiently (not too) higher than z2− d(e2) which is detrimental (beneficial) to
the insurance objective. So ψ−2 = 0 and ψ2 = ψ+2 ≥ 0. Finally, the incentive
constraint (20) implies that ω2 > z2− d (e2), thereby v0 (ω2) < v0 (z2 − d (e2)).

Therefore, ψ2 6= 0 according to (33) and (34). Consequently, ψ2 > 0.

It will now be shown that one has G (θ2, e2) > 0 at the second-best opti-

mum. Dividing first-order condition (36) by η, adding d(e2) on both sides and

rearranging yields:

y + d(e2) + c · e2 · θ2 = δ2
η
(e2 · α (θ2) + q)− v (ω2)− v (z2 − d (e2))

η2
+ ω2 − z2 + d(e2)

(40)

Multiplying both sides by α (θ2) yields:

α (θ2) (y + d (e2) + c · e2 · θ2) = δ2 · α (θ2)
η

(e2 · α (θ2) + q)

−α (θ2) [v (ω2)− v (z2 − d (e2))]
η

+ α (θ2) (ω2 − z2 + d (e2))

Taking the incentive constraint (20) into account, the previous equality can be

rewritten:

α (θ2) (y + d (e2) + c · e2 · θ2) =
e2 · α (θ2) + q

η

£
δ2 · α (θ2)− d0 (e2) · v0 (z2 − d (e2))

¤
+α (θ2) (ω2 − z2 + d (e2))

The right-hand side of the last equality can be substituted in the definition of

function G evaluated at (θ2, e2). After some manipulations, this yields:

G(θ2, e2) =
e2 · α (θ2) + q

η

£
δ2 · α (θ2)− d0 (e2) · v0 (z2 − d (e2))− c · θ2 · η

¤
+α (θ2) (ω2 − z2 + d (e2))− (e2 · α (θ2) + q)d0 (e2)

Using once again the incentive constraint, G(θ2, e2) can be restated as:

G(θ2, e2) =
e2 · α (θ2) + q

η

£
δ2 · α (θ2)− d0 (e2) · v0 (z2 − d (e2))− c · θ2 · η

¤
(41)

+
α (θ2)

v0 (z2 − d (e2))
£
v0 (z2 − d (e2)) · (ω2 − z2 + d (e2))− v (ω2) + v (z2 − d (e2))

¤
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However, the first-order condition (35) insures that:

δ2 · α (θ2)− d0 (e2) · v0 (z2 − d (e2))− c · θ2 · η

=
ψ2
u2

h
d00 (e2) · v0 (z2 − d (e2))−

¡
d0 (e2)

¢2 · v00 (z2 − d (e2))i (q + e2 · α (θ2)) > 0
So, the first term on the right hand side of (41) is positive. In addition, the

concavity of v (.) implies that :

v (ω2)− v (z2 − d (e2)) < v0 (z2 − d (e2)) · (ω2 − z2 + d (e2))

by which the second term on the right hand side of (41) is positive too. There-

fore, function G evaluated at the second-best optimum is positive while the

same function was zero and reached a maximum evaluated at the first-best

optimum. So, e2 < e1.

Next, it will be shown that H (θ, e) < 0 at the second-best optimum. The

first-order condition (37) together with the incentive constraint (20) gives:

c · e2 · η · u2 = δ2 · α0 (θ2) · e2 · u2 + ψ2 · α0 (θ2) ·
q

α (θ2)
· v0 (z2 − d (e2)) · d0 (e2)

Substituting the flow equilibrium (1) yields:

c = α0 (θ2)
½
δ2
η
+

ψ2
η
· 1

1− u2 · v
0 (z2 − d (e2)) · d0 (e2)

¾
Substituting this expression and equation (40) intoH (θ2, e2), i.e. in α0 (θ2) (y + d (e2) +c · e2 · θ2)−

c (e2 · α (θ2) + q) leads to

H (θ2, e2) = α0 (θ2)
½
ω2 − z2 + d (e2)− v (ω2)− v (z2 − d (e2))

η

− ψ2
η (1− u2) · v

0 (z2 − d (e2)) · d0 (e2) · (e2 · α (θ2) + q)
¾

Taking (20) into account, this expression can be rewritten as:

H (θ2, e2) = α0 (θ2)
½
ω2 − z2 + d (e2)− v (ω2)− v (z2 − d (e2))

η

−ψ2 · α (θ2)
η (1− u2) [v (ω2)− v (z2 − d (e2))]

¾
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From first-order condition (33)

ψ2 · α (θ2)
η (1− u2) =

1

v0 (ω2)
− 1

η

Consequently,

H (θ2, e2) = α0 (θ2)
½
ω2 − z2 + d (e2)− v (ω2)− v (z2 − d (e2))

v0 (ω2)

¾
Finally, concavity of function v (.) implies that:

0 < v0 (ω2) · (ω2 − z2 + d (e2)) < v (ω2)− v (z2 − d (e2)) < v0 (z2 − d (e2)) · (ω2 − z2 + d (e2))

Therefore, function H evaluated at the second-best optimum (θ2, e2) is always

negative. This implies that θ2 > θ1.
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