
Discussion PaPer series

IZA DP No. 10925

Manuel Sanchez
Felix Wellschmied

Modeling Life-Cycle Earnings Risk with
Positive and Negative Shocks

july 2017



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

Discussion PaPer series

IZA DP No. 10925

Modeling Life-Cycle Earnings Risk with
Positive and Negative Shocks

july 2017

Manuel Sanchez
University of Bristol

Felix Wellschmied
Universidad Carlos III de Madrid and IZA



AbstrAct

july 2017IZA DP No. 10925

Modeling Life-Cycle Earnings Risk with
Positive and Negative Shocks*

We study workers’ idiosyncratic earnings risk over the life-cycle using a German 

administrative data set. Positive and negative earnings shocks both contain a highly 

persistent component. The variance and average size of positive persistent shocks is 

decreasing over the life-cycle. The (absolute) size of negative persistent shocks is increasing. 

The probability to experience either of these shocks is U-shaped in age; during prime-age 

it is around 35 percent. Negative transitory shocks are relatively larger and more dispersed 

than positive transitory shocks. Their size and variance are increasing over the life-cycle. 

Large persistent positive shocks early in life generate large wealth holdings for the top one 

percent of workers in an incomplete markets model. Moreover, age-varying risk implies a 

linear increase in consumption inequality late in working life.

JEL Classification: E21, E24, J31

Keywords: life-cycle, earnings risk, wealth dispersion

Corresponding author:
Felix Wellschmied
Universidad Carlos III de Madrid
Calle Madrid 126
28903, Getafe
Spain

E-mail: fwellsch@eco.uc3m.es

* This paper uses the Sample of Integrated Labour Market Biographies - Regional File 1975-2010, SIAB R 7510. The 
data was provided via the Cornell Restricted Access Data Center, previous authorization of the Research Data Centre 
of the German Federal Employment Agency at the Institute for Employment Research, under the project ‘Labour 
Income Profiles are not heterogeneous: a European test’. Felix Wellschmied gratefully acknowledges support from 
the Spanish Ministry of Economics through research grants ECO2014-56384-P, MDM 2014-0431, and Comunidad de 
Madrid MadEco-CM (S2015/HUM- 3444). We thank Andrés Erosa, Etienne Lalé, Mariacristina De Nardi, Serdar Ozkan, 
Kjetil Storesletten, Hélène Turon, Carlos Velasco, and participants of the Economics Department at the University of 
Bristol, the 2017 Royal Economic Society Conference, and the XXII Workshop on Dynamic Macroeconomics for 
helpful comments and suggestions.



1 Introduction

Workers face considerable earnings fluctuations during their working life. Observ-
ables, such as age, time effects or regional specific developments explain some of
those fluctuations. However, most earnings variations cannot be traced back to
such predictable patterns and are specific to an individual worker: Some workers
become promoted, other demoted, health shocks limit the type of available work,
unemployment reduces earnings, and a worker may find a firm paying a better
wage than his current employer.
Early empirical studies such as Lillard and Weiss (1979), MaCurdy (1982), and

Abowd and Card (1989) propose time series models where idiosyncratic log earn-
ings changes result from a mean zero combination of persistent and transitory
shocks that are independent of age. Yet, a large body of work on the labor market
shows that the size and the nature of risk is age-varying. Topel and Ward (1992)
show that workers’ early careers are characterized by a large amount of job-to-
job transitions and periods of non-employment. Jung and Kuhn (2015) find that
prime-aged workers’ careers are relatively stable, until, late in their working life,
the risk of losing a high tenured job increases.
We use a German administrative data set for males1 to highlight stylized facts

of age-varying non-predicable earnings fluctuations. Positive residual earnings
growth is relatively rare early in life but growth rates are large in magnitude and
highly dispersed. Contrary, negative residual earnings growth is rare late in life
but changes are large in magnitude2. As workers age, positive residual earnings
innovations become more likely, but the size and dispersion of these innovations
shrinks. Moreover, the probability of experiencing a small -or no earnings change
whatsoever- becomes initially larger as workers age, which leads to an increase in
the kurtosis of the distribution of residual earnings growth over the life-cycle.
Motivated by these age-varying patterns, we estimate a time series model of

earnings dynamics that allows us to identify idiosyncratic earnings risk. In the
model, workers’ log earnings have a positive and a negative component. With
age-varying probabilities, workers draw either an innovation to their positive com-
ponent, an innovation to their negative component, or a purely transitory shock.
An innovation to the positive (negative) component is a mixture of a transitory
and a persistent log-normally distributed shock. We allow the means and variances
of these shocks to vary by age.

1The moments for females are available upon request.
2Earnings rise on average when young and decline when old. We study deviations from this

predictable age pattern.
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The model provides a rich framework to study age-varying earnings risk. It al-
lows the probability to receive large positive shocks (i.e., promotions) to vary over
the life-cycle. Analogously, it allows for age-varying probabilities in large nega-
tive shocks (i.e., health shocks). Modeling shocks as mixtures of persistent and
transitory shocks captures a wide range of labor market phenomena. Consider for
example the earnings pattern Jacobson et al. (1993) document for displaced work-
ers. Earnings, resulting from non-employment, are lowest in the year of displace-
ment, recuperate somewhat afterwards, but stay permanently lower than before
the displacement. Our model would identify this as an innovation to the negative
component of log earnings. The initial reduction in hours would be identified as
the transitory shock. The longer lasting earnings losses would be identified as the
persistent shock. The model estimation yields the following set of results:

1. Both persistent positive and negative shocks are close to permanent.
2. The variance of persistent positive shocks is decreasing over the life-cycle.

It is small and close to constant for negative shocks.
3. The average size of positive (negative) shocks is decreasing (increasing) over

the life-cycle.
4. The probability to draw a negative shock is initially larger but decreases over

the life-cycle. The probability to draw a positive shock is initially smaller
but increases over the life-cycle.

5. At prime age, only 35 percent of workers receive any persistent shock.
6. Transitory shocks are quantitatively more important to explain negative

earnings growth and their variance increases with age.

Our findings contribute to the existing literature on age-varying idiosyncratic
earnings risk. Blundell et al. (2015), using Norwegian data, and Karahan and
Ozkan (2013) and Lopez-Daneri (2016), using US data, find that the variance
of shocks declines over the worker’s life-cycle. However, they do not differenti-
ate between positive and negative innovations. Guvenen et al. (2016) allow the
probability to sample from different type of shocks to depend on age, but assume
the mean and variance of these shocks to be constant over the life-cycle. Our
results imply that the decreasing variance is driven by a decreasing variance of
positive shocks that become more likely as workers age. Negative shocks, particu-
larly transitory shocks, become more dispersed with age. This shift from rare but
large positive shocks towards rare but large negative shocks over the life-cycle also
implies that the skewness of earnings growth becomes more negative as workers
age, a phenomenon also documented by Guvenen et al. (2016).
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Workers that experience neither an innovation to their positive nor negative
component of earnings receive a transitory shock that we estimate to have little
dispersion and to be small in magnitude. We think of such a shock to arise
for example from temporary fixed wages in the presence of inflation, or small
temporary changes in hours. This type of shock represents the only source of
contemporaneous earnings risk for 65 percent of workers at age 45.
To understand the implications of age-varying risk for consumption and savings

decisions, we introduce the estimated earnings uncertainty into a model of incom-
plete insurance markets. We contrast the results to the literature that studies
the consequences of normally distributed transitory and persistent shocks for con-
sumption inequality (Deaton and Paxson (1994), Blundell et al. (2008), Kaplan
and Violante (2010)), wealth inequality (Aiyagari (1994)), and the welfare costs
of incomplete insurance markets (Heathcote et al. (2010b)). Regarding the latter,
we find that the welfare losses are of similar magnitude across the different risk
processes. In our age-varying risk process, large negative shocks are unlikely early
in life when precautionary savings are lowest. Moreover, a large fraction of work-
ers do not receive any persistent shock in a given year, particularly at prime-age.
Both factors decrease the welfare costs of incomplete markets. Working in the op-
posite direction, shocks have heavy tails which increases the welfare costs. These
opposing effects almost cancel each other.
At the same time, allowing jointly for age-varying shocks and sampling probabil-

ities helps our model to reconcile two stylized patterns of inequality from the data.
First, large but rare positive persistent shocks early in life lead to a small frac-
tion of workers who become extremely rich relative to the median worker. These
workers have incentives to accumulate large life-cycle wealth. As a consequence,
our model features substantially more wealth inequality at the top of the distri-
bution relative to a standard risk process. Second, as pointed out by Guvenen
(2007), an increasing amount of precautionary savings over the life-cycle together
with an age-invariant earnings risk implies a counterfactual concave consumption
inequality profile in the standard model. Guvenen (2007) proposes learning over
deterministic differences in earnings growth as one possible solution. In our model,
a shift towards more persistent and large negative shocks offsets the increase in
self-insurance late in life.
The rest of the paper is organized as follows. Section 2 describes the German

data set. Section 3 presents a set of moments of residual earnings growth over the
life-cycle and Section 4 the econometric model. Finally, Section 5 introduces our
earnings process to a life-cycle savings model.
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2 Data and Sample Construction

2.1 Data Description

We use the German labor income and demographic data from the Sample of In-
tegrated Labour Market Biographies for the years 1975-2010 (SIAB R 7510 ). The
data originates from the German notification procedure for social security. This
requires employers to inform social security agencies about any of their employees’
working spells. The data covers the population of German employment liable to
social security, which excludes civil servants, self employment and regular students
(about 20% of the employment population). From this population, the German
employment agency draws a 2% random sample of individuals’ careers. In total,
the data has information on 1,594,466 individuals and 41,390,318 unique person-
year records. It includes demographic information (such as gender, year of birth
and region), socioeconomic information (such as education level and daily wage)
and industrial information (such as occupation, economic activity and firm iden-
tifiers). Table A1 in the Appendix provides some selected summary statistics of
the data.
The SIAB R 7510 data set has several advantages over common survey data.

First, it does not suffer from attrition. Second, it provides a large number of career-
long earnings profiles for different cohorts. And third, administrative data entail
less measurement error compared to survey data sets. The main disadvantage of
the data arises from earnings (daily wages) that are top-coded by the limit liable
to social security. This affects on average around 11% of observations by year.
We follow Daly et al. (2016) and impute daily wages from an extrapolated Pareto
density fitted to the non top-coded upper end of the observed distribution for each
year. By doing so, we assume earnings growth behaves similar for the top decile of
the German earnings distribution. Alternatively, we could drop workers affected
by top-coding. The moments of residual earnings growth are almost identical
for the two approaches. We opt for the former approach because it allows us to
infer the entire cross-sectional earnings distribution of the German employment
population.

2.2 Sample Construction

Our analysis focuses on earnings risk for the subset of workers with a high at-
tachment to the labor force. Put differently, we omit any selection resulting from
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earnings shocks3. We drop all observations on apprenticeships, partial retirement,
and part-time workers not eligible for unemployment benefits. Moreover, we con-
sider only German male workers to avoid female decisions over maternity leave.
We consider a worker employed within a year when he is contracted for at least 90
days of that year. Thus, our analysis abstracts from earnings shocks arising from
long-term unemployment.
Following the past literature that focuses on workers with high attachment to

the labor market, we keep for each individual the longest consecutive spell of
earnings with at least 7 years of observations (see Meghir and Pistaferri (2004),
Guvenen (2009) and Hryshko (2012)). The age range under consideration is of
some importance because we want to avoid misinterpreting predictable earnings
changes as shocks. For the time period of our sample in Germany, a high school
degree takes from 9 to 13 years of schooling and male workers are obliged to
perform military service (1 year), afterwards. Most workers enter professional
training (2-3 years), thereafter. As a result, we can expect that workers have
made a full transition to the labor market by the age of 24. Also, the intended
retirement age in Germany used to be 65. Arnds and Bonin (2002) show that
the average retirement age is around the age of 60 in Germany. They find that
early retirement benefits targeted to those of age 60 and older lead to substantial
early retirement. Moreover, generous unemployment benefits for high tenured
workers often lead to an effective retirement age of 55. To avoid these endogenous
decisions, we restrict the panel to workers aged 24 to 55.
We adjust earnings for inflation using the German consumer price index of 2010

(i.e. divide annual earnings by the consumer price index)4. Following Dustmann
et al. (2009), we drop real daily earnings that are below 5 euros. Finally, we restrict
the data to individuals working in West-Germany, as East-German observations
are available only after 1991. We assign each individual to a birth cohort, defined
as being born in a 7 year interval starting in 1923. On average, we have 27,928
individuals per birth cohort. Our final sample contains information for 251,352
individuals with a total of 3,566,212 person-year observations.
For each year, we aggregate an individual’s earnings across all job spells. There-

fore, changes in earnings may arise from a change in working hours, a change of
employer, an unemployment spell, bonuses, promotions, etc. Workers entering the
sample for the first time are statistically expected to enter in the middle of the

3See Low et al. (2010) for an analysis that allows employment selection upon earnings shocks.
4We obtain the consumer price index from OECD data; https://data.oecd.org/price/

inflation-cpi.htm.
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year. Daly et al. (2016) show that this may lead to a bias in the estimates of
permanent shocks. To avoid the bias, we assume that earnings in the months the
individual is not observed are the same as for those observed.
Most studies of earnings dynamics focus on US data. Figure A2 in the Appendix

shows that key life-cycle moments of earnings growth are remarkably similar for
the two economies. Yet, some institutional differences are worth highlighting.
OECD (2011) shows that employment protection legislation plays an important
role in shaping cross-country earnings uncertainty. Germany has a strong em-
ployment protection for high tenured workers that leads to a lower probability of
becoming unemployed but also to a lower probability to find a new job for the
non-employed. Moreover, for many sectors, wage floors are centrally bargained
in Germany implying downward nominal wage rigidity and more concentrated
earnings variations for workers. The relatively tighter institutional framework in
Germany leads to a considerable lower labor turnover in comparison to the US.
Bachmann et al. (2013) show that both the German accession and separation rate
of workers within establishments are only 60% of the US level. Topel and Ward
(1992) show that switching firms is a major source of earnings volatility. Resulting
from these institutions, the variance of earnings growth is two to three times larger
in US data.
Our interest is in annual earnings changes that are idiosyncratic to the individ-

ual. To this end, we remove predictable changes in earnings growth by running
cross-sectional regressions on a dummy of workers’ education, age, interaction of
the two5, year, region of residence, and 14 major industries6. Figure A1 in the
Appendix, shows that residual earnings growth features both a calendar time and
cohort effect. Following Blundell et al. (2015), we average all moments of residual
earnings growth across cohorts to eliminate these types of time effects, assigning
equal weight to all cohorts7. Therefore, our results can be interpreted as the risk
a typical cohort is facing.

5In this way, we allow for an arbitrary amount of non-linearities.
6Quite likely, it is impossible for the worker to predict wage changes conditional on all these

observables; therefore, we may underestimate earnings shocks. However, our moments are almost
unchanged when excluding some of the observables.

7Averaging moments across cohorts, also partially controls for the fact that before 1984 one
time payments were not reported in the data set.
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(a) V ar[gi,h] (b) V ar[gi,h|gi,h ≷ 0]
Notes: Figure Ia displays the variance of residual earnings growth by age. Figure Ib displays
the variance of residual earnings growth by age conditional on residual earnings growth being
positive (negative).

Figure I: Variance of Residual Earnings Growth

3 Moments of Residual Earnings Growth

This section highlights the salient features of residual earnings over the life-cycle
that we want our econometric model to match. Our focus is on the dynamics of
individual earnings; thus, we mostly concentrate on residual earnings growth (we
use interchangeably the terms residual earnings growth/innovations/changes). We
show that early in workers’ working-life, positive residual earnings growth is rare
but large and highly dispersed. Positive changes become more likely as workers
age, and the size and variance of these changes become smaller. Contrary, negative
changes are most likely early in life. Their variance increase throughout the life-
cycle. Earnings growth is auto-correlated up to lag two, but the magnitude is
relatively larger for negative changes. The kurtosis of earnings growth is well
above a normal distribution and increases concavely over the life-cycle. Finally,
cross-sectional earnings inequality increases close to linear over the life-cycle. We
now discuss each of these points in more detail.
A common way to identify earnings shocks is studying the covariance structure

of residual earnings growth, gi,h, where i denotes individual and h denotes age.
Figure Ia plots its cross-sectional variance over age. Residual earnings growth
becomes significantly less dispersed over the life-cycle; its variance declines by
almost 50% between the age of 25 and 55. Guvenen et al. (2016) demonstrates a
similar pattern for the US.
In a standard decomposition into a mean zero persistent and transitory com-

ponent, as in Blundell et al. (2015), one would conclude that the size of earnings
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(a) E[gi,h|gi,h ≷ 0] (b) Prob (gi,h > 0) (c) Skew[gi,h]
Notes: Figure IIa displays the average of residual earnings growth conditional on residual earn-
ings growth being positive (negative) at each age. Figure IIb displays the fraction of residual
earnings growth that is positive by age. Figure IIc displays the skewness of residual earnings
growth by age.

Figure II: Conditional Means, Probabilities, and Skewness

shocks gradually decrease over the life-cycle. To get a richer understanding of the
decreasing variance, consider conditional changes (positive, g+

i,h, and negative, g−i,h,
residual earnings growth, with gi,h 6= 0 = 1{gi,h, > 0}g+

i,h + 1{gi,h, < 0}g−i,h). Fig-
ure Ib displays the conditional variances of these innovations, V ar[gi,h|gi,h, > 0]
and V ar[gi,h|gi,h, < 0]. The figure unveils an opposed behavior of the variance
of positive and negative changes. The variance of positive growth decreases over
the life-cycle, most pronounced early in life. The variance of negative growth is
linearly increasing in age, reaching its peak at the end of the working life.
Figure IIa shows that the average size of conditional earnings innovations closely

tracks their variances. Positive residual earnings growth is on average large early
in life, and it becomes smaller throughout the life-cycle. Mean negative residual
earnings growth is close to constant until the age of 50 and becomes larger in
absolute size, afterwards. Figure IIb plots the probability of observing a positive
innovation at each age, Prob (gi,h > 0). There is large heterogeneity over the
life-cycle that reconciles the different means of conditional shocks. Early in life,
close to 70% of innovations are negative, but the probability of a positive change
is increasing throughout the working life, reaching 63% at the age of 55.
Both the age-varying sampling probabilities and the average size of innovations

naturally map onto an age-varying skewness of these innovations. Figure IIc shows
that the cross-sectional distribution of residual earnings growth is initially posi-
tively skewed, and skewness turns negative around the age of 40. The fall in
skewness accelerates after the age of 48, representing the increased occurrence of
large negative innovations. Guvenen et al. (2016) show a similar declining pat-
tern of skewness in US earnings growth data, although they find that skewness
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(a) E[gi,h+1gi,h|gi,h ≷ 0] (b) E[gi,h+2gi,h|gi,h ≷ 0] (c) E[gi,h+kgi,h]
Notes: Figure IIIa and IIIb display the first and second order autocovariance of residual earnings
growth by age conditional on residual earnings growth today being positive (negative). Figure
IIIc displays the unconditional autocovariance of residual earnings growth for leads 2 and beyond.

Figure III: Autocovariances of Residual Earnings Growth

is more negative throughout the life-cycle8. Negative skewness is mostly driven
by hours changes. We employ a more stringent employment definition than they
do; a worker needs to be contracted at least 90 days per year. As a result, hours
variation in our sample is smaller and skewness less negative.
So far, we have not differentiated between different types of positive and nega-

tive changes. The literature on earnings dynamics commonly decomposes shocks
into a persistent (promotions, large health shocks) and a transitory (bonuses, tem-
porary sickness, temporary demand shifts) component. In order to delve into the
different types of shocks, we study the first and second conditional autocovariance.
A negative first autocovariance of residual earnings growth implies that part of
the current residual earnings growth is offset next year, i.e., it provides infor-
mation regarding the amount of mean reversion following a shock. The second
autocovariance identifies whether this mean reversion lasts longer than one year.
Figures IIIa and IIIb display the conditional first and second autocovariances of

residual earnings growth, respectively. The positive first autocovariance is small
relatively to the negative first autocovariance. Put differently, mean reversion is
more prevalent for negative earnings growth. The second autocovariance is nega-
tive suggesting mean reversion takes at least an extra year. Figure IIIc displays
the (unconditional) autocovariance for longer lags. Quantitatively speaking, mod-
eling persistence in transitory shocks beyond lags 1-2 is of little importance; all
autocovariances are close to zero.
The distant lags of the unconditional autocovariance also provide information

concerning the presence of heterogeneity in deterministic (but unobserved) earn-
ings growth rates. As discussed in Hryshko (2012), the autocovariance function

8Figure A2b displays their data.
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(a) Kurt[gi,h] (b) Prob(|gi,h| > 5%)
Notes: Figure IVa displays the kurtosis of residual earnings growth by age. The black dashed
line displays the kurtosis of a normal distribution. Figure IVb displays the fraction of residual
earnings growth that are larger than 5% in absolute value by age.

Figure IV: Kurtosis of Residual Earnings Growth

of earnings growth converges to the variance of these heterogeneous profiles. As
indicated by Figure IIIc, the scope for deterministic profiles playing an important
role in labor earnings dynamics is limited. The distant lags of the autocovariance
oscillate around zero and we do not observe convergence to a positive constant.
Guvenen et al. (2016) highlight that earnings uncertainty features fat tail be-

havior. Figure IVa shows that the magnitude and life-cycle behavior of kurtosis
in residual earnings growth is very similar in Germany. Kurtosis increases in a
concave fashion throughout the life-cycle. At its peak, it is 5 times larger than
what is suggested by a normally distributed shock. The large kurtosis implies that
a substantial fraction of workers experience none, or very small residual earnings
changes. Figure IVb displays the fraction of residual earnings growth by age that
are above 5% in magnitude. The profile is an inverse image of kurtosis over the
life-cycle. Strikingly, at prime-age, 50% of workers experience residual earnings
changes of a magnitude smaller than 5 percent (in absolute value). In contrast,
early in life, close to 80% of innovations are of a magnitude above 5%.
Finally, Figure V shows how these residual earnings dynamics map onto cross-

sectional residual earnings inequality. Inequality is falling for the first three years
and reaches a low of 0.1. Cross-sectional inequality is substantially lower than
in the US. Guvenen et al. (2016) report a value of 0.47 at the same point of
the life-cycle. Inequality accelerates up to age 40 when its growth slows down
somewhat. In total, between the age of 27 and 55, similar to US data, residual
earnings inequality more than doubles.
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Notes: Figure V displays the variance of log residual earnings by age. The figure displays the age
component obtained from regressing the variance of log earnings on a cohort and age dummies.

Figure V: Cross-sectional Residual Earnings Dispersion

3.1 Sources of Earnings Innovations

Taken together, the data suggests that earnings fluctuations are particularly large
early and late in life. At prime-age, most workers experience no, or only small,
changes in earnings. We finish this section by relating large earnings changes early
(before age 30) and late (after age 50) in life to observable labor market outcomes.
First, we consider workers younger than age 30. We define a large positive

innovation as a positive change in residual log earnings of 0.4 (or approximately
50%) or above. Starting with the work of Topel and Ward (1992), a large literature
studies the role of job-ladder effects for early career building. Consistent with this
idea, we find that in 30% of cases where we observe a large positive earnings change
early in life, the individual changed his employer. Topel andWard (1992) also show
that young workers’ careers are characterized by repeated non-employment spells
between jobs. In this vein, we ask how many of the large positive innovations in
the data can be explained by workers increasing the amount of days worked in a
year9. We define a “substantial” increase in days worked as one where the amount
of contracted days increases by more than 30 days from one year to the next.
Around 33% of large positive earnings innovations early in life are associated with
such an increase in working days.
Turning to workers older than age 50, we define a large negative innovation as

a negative change of residual log earnings of -0.6931 (or approximately -50%) or
below. Jacobson et al. (1993) show that in incidences where workers lose a highly

9Optimally we would like to study the change in work hours. However, our data has only
information on the amount of days contracted.
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tenured job, their wages at reemployment are substantially lower. To understand
the importance of this effect for elderly workers in our data, we calculate the share
of large negative earnings changes associated with the worker changing employers.
We find that in only 8% of cases where we observe a large negative innovation the
worker changed employers. Put differently, losing a high paying job and reentering
with a lower paying job is not a common phenomenon of elderly German workers.
Instead, large negative residual earnings changes are predominantly associated
with a reduction in working days. In 72% of the cases where we observe a large
negative earnings change workers reduce their amount of working days by at least
30 per year.

4 A Time Series Model of Earnings Dynamics

We now present our time series model of residual log earnings and discuss its
implications in comparison to other models of idiosyncratic earnings uncertainty.

4.1 Model

We model residual log earnings as the sum of a deterministic and a stochastic
component:

yi,h = αi + βih︸ ︷︷ ︸
profile heterogeneity

+ ui,h︸︷︷︸
stochastic component

(1)

where αi ∼ N(0, σ2
α) reflects individual initial heterogeneity and βi ∼ N(0, σ2

β)
reflects deterministic (unobserved) heterogeneity in life-cycle earnings growth. For
simplicity, we impose Corr(α, β) = 010. Motivated by the different dynamics that
positive and negative residual earnings growth displays throughout the life-cycle,
we allow the stochastic component (ui,h) to consist of a positive and a negative
component and an i.i.d. error:

ui,h = W+
i,h︸ ︷︷ ︸

positive

+ W−
i,h︸ ︷︷ ︸

negative

+ ιni,h︸︷︷︸
neutral

, (2)

where ιni,h ∼ N(µιn,h, σ2
ιn,h) is a transitory shock to earnings that realizes at each

age. By differentiating between a positive and a negative component in residual
10As already hinted at by the autocovariance function of residual earnings growth, we find

σβ close to zero. Hence, any possible correlation with individual initial heterogeneity is of little
importance.
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log earnings, we allow positive and negative shocks to have different time series
properties. Specifically, the positive component, W+

i,h, and the negative compo-
nent, W−

i,h, contain both a persistent and a transitory part:

W+
i,h = w+

i,h︸︷︷︸
persistent

+ τ+
i,h︸︷︷︸

transitory

(3)

W−
i,h = w−i,h︸︷︷︸

persistent

+ τ−i,h︸︷︷︸
transitory

(4)

wji,h = ρjwji,h−1 + ξji,h for j = −,+ (5)

τ ji,h = θjιji,h−1 + ιji,h for j = −,+. (6)

Thus, innovations to the positive and the negative component are a mixture of a
persistent (ξji,h) and a transitory (ιji,h) shock. We model the transitory components
as aMA(1) processes to account for the first and second order conditional autoco-
variances that we observe in the data11. The mixture of persistent and transitory
shocks allows us to capture a wide range of economic phenomena. For example, a
bad health shock may reduce earnings persistently by restricting the type of per-
formable work, and additionally reduces earnings transitionally by lowering the
amount of days worked initially.
We allow the probability to receive innovations from the positive and negative

components to vary with age. This allows us to capture the age variation in the
fraction of positive and negative earnings changes observed in Figure IIb. Mutually
exclusive, and at each age, an individual draws with probability p−i,h an innovation
to his negative component, (both ξ−i,h, ι−i,h), and with probability p+

i,h an innovation
to his positive component, (both ξ+

i,h, ι
+
i,h). With probability 1−p+

i,h−p−i,h he draws
neither12. We specify second order polynomials in age for these probabilities to
capture possible non-linearities in the data13:

pji,h = δjI + δjIIh+ δjIIIh
2 for j = −,+. (7)

The persistent and the transitory shocks to the positive and negative components

11We assume that shocks are independent across time. Meghir and Pistaferri (2004) allow
the variance of shocks to follow an ARCH process. Arellano et al. (2015) allow the properties of
past shocks to be altered by today’s shocks

12In particular, we obtain a draw from a uniform distribution, si,h ∼ U(0, 1), for each worker
at each age, and assign the innovation to the negative component of that worker when si,h ∈
[0, p−]. Similarly, we assign an innovation to the positive component of that worker when si,h ∈
(p−, p+ + p−]. Finally, we assign no innovation to these components when si,h ∈ (p+ + p−, 1].

13We found that moving to a third order polynomial provides little improvement in the model.
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follow age-varying log-normal distributions14:

ξ+
i,h ∼ exp(N(µ+

h , σ
2
ξ+,h)), ξ−i,h ∼ −exp(N(µ−h , σ2

ξ−,h)) (8)

ι+i,h ∼ exp(N(µ+
h , σ

2
ι+,h)), ι−i,h ∼ −exp(N(µ−h , σ2

ι−,h)) (9)

We opt for a log-normal distribution partly for convenience. With the log-normal
specification, the tail of the positive (negative) shock distribution does not cross
into the negative (positive) domain, providing stability in the implied moments
of the process, particularly the autocovariances. What is more, the log-normal
assumption implies that our model is able to match the shape of the distribution
of residual earnings growth. The large kurtosis and the fraction of shocks smaller
than 5% (Figures IVa and IVb) imply that residual earnings growth is centered
around zero and exhibits fat tails. Figure A3 in the Appendix displays the resulting
density function of residual earnings growth at age 36. The figure also shows that
the tail behavior of the two log-normally distributed transitory shocks together
with the normally distributed shock, ιni,h, imply a similar density function.
Figure Ib shows that the dispersion of positive and negative residual earnings

growth varies significantly by age. To accommodate for these age-varying condi-
tional variances, we allow the dispersion parameters in equations (8) and (9) to
vary with age in linear fashions:

σjk,h = γja,k + γjb,kh for j = −,+ and k = ξ, ι. (10)

Also, to allow for an age-varying conditional mean (Figure IIa), we model the
location parameters of these shocks to be age-varying:

µjh = λja + λjbh for j = −,+. (11)

Age-varying location parameters are also crucial for us to match the age variation
in the kurtosis we observe in the data. Simply speaking, increasing either location
parameter stretches out the distribution of earnings growth; thereby, increases the
kurtosis. We restrict the autocorrelation parameters of persistent shocks to be age-
invariant. However, the age-varying probabilities to sample different shocks from
age-varying distributions imply that the persistence of residual earnings growth is
varying with age, a fact documented by Karahan and Ozkan (2013).
We also allow the purely transitory shock, ιni,h, to have an age-varying mean and

14To keep the number of parameters manageable, we impose the same means for transitory
and persistent shocks.
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variance:

σιn,h = γa,ιn + γb,ιnh (12)

µιn,h = λa,ιn + λb,ιnh. (13)

We do not impose it in the estimation, but it is natural to think of these shocks as
mostly representing small changes in real earnings that are close to zero (nominal
contracts, small changes in hours, etc...). Thus, the probability of only drawing
such a shock, 1− p+

i,h− p−i,h, together with their age-varying variance, is crucial for
us to match the age-varying share of individuals experiencing only small earnings
changes (Figure IVb).
As workers accumulate different shocks over their life-cycles, our process implies

that the variance of log residual earnings is increasing over the life-cycle. However,
Figure V shows that residual earnings inequality is decreasing during the first
years. We interpret this initial decline resulting from heterogeneity in the initial
transitory components:

ιji,0 ∼ exp(N(µj0, σj0)), for j = −,+. (14)

The above equation completes our model specification. Our econometric pro-
cess resembles several features from Guvenen et al. (2016). In particular, we adopt
deterministic heterogeneity (αi, βi), mixture probabilities of two persistent compo-
nents, and i.i.d shocks. However, our model places more emphasis on the life-cycle
features of the data by incorporating age-varying shocks (µjh, σ

j
k,h for j = −,+;

k = ξ, ι). Their only source of age dependence results from the age-varying prob-
ability of drawing a particular shock. Besides that, we have departed from their
normality assumption of shocks and we allow shocks to the positive and negative
components of log residual earnings to be a mixture of persistent and transitory
shocks, instead of only a persistent component. In the following, we show that
age-varying heterogeneity in positive and negative shocks explains fairly well the
higher order moments that residual earnings growth displays in the data.

4.2 Empirical Results

This section presents the estimates of the labor income process described in Equa-
tions (1) to (14). We estimate the model by the method of simulated moments
(MSM) and use the block bootstrapping procedure suggested by Horowitz (2003)
to obtain standard errors that we report in Table A4.
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Table 1: Parameter Estimates of the Labor Income Process

Model: (1) (2) (3) (4) (5) (6)
Full No No No Macro Micro

Parameters Model ι h {σβ, θ}
ρ− 0.9667 0.0360 0.9881 0.9531 0.9905 0.9465
ρ+ 0.9857 0.9999 0.9820 0.9818
σβ 0.0000 0.0030 0.0003 - - -
σα 0.0053 0.1262 0.0944 0.0072 0.2149 -
θ+ 0.1783 - 0.1322 - - -
θ− 0.0443 - 0.0567 - - -
σι̂ - - - - 0.1860 0.1751
σξ̂ - - - - 0.0797 0.1670
Obj. Function 95.62 152.17 188.95 128.61 - -

Notes: The table displays selected parameter estimates of the earn-
ings process described by Equations (1)-(14). Additional parameter
estimates are displayed in Table A3. Table A4 displays standard er-
rors. The process is estimated by the method of simulated moments.
We use the SIAB R 7510 sample selection described in Section 2.2.
Column (1) is the full model. Columns (2)-(4) shut down transitory
shocks, age-dependence, and both profile growth rates and persistence
of transitory shocks, respectively. The last two columns display pa-
rameter estimates of the model in equation (15).

We target three main sets of empirical moments over the life-cycle: (i) moments
of unconditional residual earnings growth: the mean, skewness, kurtosis, fraction
of shocks above 5%, and the autocovariance function; (ii) moments of conditional
positive and negative residual earnings growth: the means, variances, share of
positive changes, and the first two autocovariances; and (iii) the variance of un-
conditional residual log earnings15. In total, we estimate 32 parameters using
461 moments. Section A.1 in the Appendix describes further details about the
estimation procedure and the set of moments.
Table 1 reports selected parameter estimates of the stochastic process of labor

earnings. Table A3 in the Appendix reports the remaining parameter values.
Column (1) is the full specification of our econometric model. We estimate that
persistent shocks, both positive and negative, follow close to a unit-root processes.

15We also include as moment that mean residual log earnings are zero at age 24.
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(a) V ar[ξji,h|j] (b) V ar[ιji,h|j] (c) pz, px

(d) E[ξji,h|j] (e) E[ιji,h|j]
Notes: The Figures display age specific estimates from the earnings process described
by Equations (1)-(14). Figure VIa displays the estimates of the variances of persistent shocks to
the positive and negative components. Figure VIb displays the estimates of the variances of the
three transitory shocks. Figure VIc displays the probabilities of drawing a shock to the positive
and negative components. Figure VId displays the estimates for the means of persistent shocks.
Figure VIe displays the estimates for the means of transitory shocks.

Figure VI: Model Predictions

Transitory positive shocks are mildly persistent, θ+ = 0.18, and negative transitory
shocks are close to i.i.d. We estimate that there is no unobserved heterogeneity in
individual earnings growth rates, σβ = 0.
Figure VI displays the age variation in the mean and variance of the differ-

ent shocks. We find large heterogeneity between positive and negative persistent
shocks. Positive persistent shocks are heavily dispersed early in life. Their vari-
ance decreases from 0.08 at age 24 to 0.01 at age 50. In contrast, the dispersion
of negative persistent shocks is close to zero for most of the life-cycle, reaching
0.002 at age 50. The range of the mean for both positive and negative persistent
shocks is somewhat similar, but their life-cycle behavior differs. While positive
shocks decrease in size throughout the life-cycle, negative persistent shocks are
relatively small early in life but become relatively large late in life. A close to zero
variance in negative persistent shocks does not imply that there is no risk from
the individual perspective with regard to those. Figure VIc shows that early in
life, up to 44% of individuals receive such a shock and this probability decreases
to 10% late in life. Therefore, given their size, there is substantial risk associated
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with negative persistent shocks throughout the life-cycle.
Transitory shocks are quantitatively more important to understand negative

rather than positive residual earnings growth. Negative transitory shocks are
of larger size than their positive counterparts, particularly late in life. Moreover,
their variance is larger. The mean and variance of purely transitory shocks, ιni,h, are
close to zero for most of the life-cycle. Put differently, in years where individuals
are unlikely to receive shocks to their positive or negative component, they face
little earnings risk. Figure VIc shows that these probabilities are particularly low
around the age of 40; 65% of workers only receive a small transitory shock during
a year.
Figure A4 in the Appendix compares the targeted moments in the model with

the data. Moreover, Table A2 shows the loss function with respect to different mo-
ments. While the overall fit is good, we briefly discuss one shortcoming. Positive
shocks are highly dispersed early in life; yet, cross-sectional inequality does not
increase fast; if any it decreases for the first 2-3 years. Our model can rationalize
a non-increasing profile only when these positive shocks are mostly transitory. As
a result, the first autocovariance of positive earnings growth is too negative in our
model compared to the data.

4.3 Discussion of the Empirical Results

Consistent with Blundell et al. (2015), we find no unobserved heterogeneity in
individual earnings growth rates. Similar to us, their identification comes from
the autocovariance function of earnings growth with sufficient long lags. At the
same time, ruling out σ2

β > 0 from this moment is difficult because the autocovari-
ance function is measured with some noise. Yet, we can provide some plausible
ranges. Table A4 shows that within two standard errors, σ2

β < 10−4. This value
is significantly smaller than the values found by the literature that estimates this
parameter jointly with modestly persistent earnings shocks (see Guvenen (2009)
for a review).
We find that a rich specification of transitory shocks is crucial for correct identi-

fication of unobserved heterogeneity in individual earnings growth rates. Hryshko
(2012) shows in a simpler model that omitting transitory shocks downward biases
the estimate for persistent shocks and upward biases σ2

β. Following this idea, Col-
umn (2) of Table 1 displays estimates of a model where there are no transitory
shocks. We find a much lower AR(1) estimate for the negative persistent param-
eter: ρ− = 0.04. This, in turn, leads to a larger estimate of profile heterogeneity,
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σβ = 0.3%. The intuition is simple. When neglecting transitory shocks, the mo-
ments estimator implies ρ << 1 to match the negative autocovariance function at
lags one and two. Yet, ρ << 1 alone implies that the autocovariance function is
negative at intermediate lags. To obtain an autocovariance function which is closer
to zero at those lags, σβ >> 0 is required. Table A2 shows that relative to our full
model, this specification does worse in matching the (conditional) autocovariance
function.
One of the novelties in our econometric process are parameters that are age-

varying. We find this to be key in fitting the moments of residual earnings growth
over the life-cycle. In Column (3), we restrict the mean and variances of all
shocks to a constant across ages. In this case, all life-cycle dynamics are driven
by changes in the sampling probabilities of these age-invariant shocks, similar to
Guvenen et al. (2016). Relative to our full model, the loss function almost doubles.
Figure A5 in the Appendix shows that the model generates little age variation in
the moments of residual earnings growth. In particular, the model fails to match
the decrease in the variance of positive shocks, the age variation in the share of
positive shocks, and the resulting decrease in skewness over the life-cycle.
Finally, we compare our model that features a positive and negative component

to the earlier literature that models a single mean zero AR(1) shock process:

ŷi,h = αi + Ẑi,h + ι̂i,h, E(ι̂i) = 0, V ar(ι̂i) = σ2
ι̂ (15)

Ẑi,h = ρẐi,h−1 + ξ̂i,h, E(ξ̂i) = 0, V ar(ξ̂i) = σ2
ξ̂
. (16)

This earlier literature identifies transitory and persistent shocks from either the
autocovariance function of residual earnings growth, or the variance of log residual
earnings over the life-cycle. Heathcote et al. (2010a) show that what they refer to
as Micro estimation (targeting moments of the autocovariance function of earnings
growth) leads to substantially larger persistent shocks than a Macro estimation
(targeting cross-sectional inequality over the life-cycle). As a consequence, the Mi-
cro estimation leads to a too large increase in cross-sectional inequality over the
life-cycle and the Macro estimation implies too much mean reversion of shocks16.
Columns (5) and (6) present the parameter estimates resulting from GMM es-
timators of the two identification strategies. Both strategies imply that shocks
are highly persistent. As expected, the standard deviation of persistent shocks is
almost twice as large in the Micro approach.

16Daly et al. (2016) show that eliminating beginning and end of earnings spell observations
helps to reconcile the two approaches within the AR(1) framework.

19



In the estimation of our full model, we target both sets of moments. Figure A4
in the Appendix shows that our full model is able to match the increase in residual
earnings inequality over the life-cycle and the autocovariance function of residual
earnings growth jointly. As in the data, the steepest increase in cross-sectional
residual earnings inequality occurs before the age of 35 when the probability of
large persistent positive shocks is high. Thereafter, earnings inequality grows
at a rather slow rate. The reason for the relatively modest increase in earnings
inequality over the life-cycle (compared to the Micro model) is not that the average
persistent shocks is small in size, but that in a given year a substantial fraction of
workers receive no persistent shock.
We compare the implications of our age-varying risk model to those of the two

standard earnings processes using a structural model of consumption-savings de-
cisions in the section below. Provided that our full model finds no heterogeneity
in earnings profiles and low persistence in transitory shocks, we simplify our full
model and exclude these parameters. Column (4) shows the resulting parameter
values. Table A2 in the Appendix shows that this model does worse with respect
to all moments. As expected, it matches poorly the autocovariance at lag 2. At
the same time, the model matches most salient features which makes us confident
to use it in a consumption-savings model.

5 Life-Cycle Consumption and Savings Model

We now turn to the implications of our earnings process for consumption and
wealth inequality, and the degree to which workers can insure against idiosyn-
cratic shocks. To this end, we introduce the estimated earnings uncertainty into
a structural model with incomplete insurance markets17.

5.1 Environment

For simplicity, we consider a partial equilibrium model with exogenous wages and
interest rates. Individuals work for HW years in the labor market, and die with
certainty at age H > HW . They have CRRA preferences over consumption with
risk aversion parameter γ and discount the future with factor β. They have access
to a one period risk free asset a that pays certain returns R = 1 + r, and they face
a zero borrowing constrained ah+1 ≥ 0. Workers make consumption decisions to

17Similar to Aiyagari (1994), Hubbard et al. (1995), Imrohoroglu et al. (1995), Rios-Rull
(1995), Huggett (1993), and Carroll (1997).
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maximize expected life-time utility:

max
ci

h=1...H
,ai

h=1...H

{
E0

H∑
h=1

βh−1 c
1−γ
i,h

1− γ

}

aih+1 = (1 + r)aih + Y i
h − cih

aih+1 ≥ 0,

where Y i
h is post tax income of individual i at age h. During working life, log

gross earnings follow the sum of a common deterministic and an individual specific
stochastic component:

Ei
h = exp(dh + vi,h) if h ≤ HW . (17)

The government reduces earnings inequality by applying a progressive income
tax schedule. We apply the statutory income and social security tax schedule from
Germany to map gross earnings into after tax income:

Y i
h = G(Ei

h). (18)

During retirement, workers face no further uncertainty and receive social security
benefits. To avoid keeping track of individuals’ average earnings, we assume social
security benefits depend only on the fixed type αi18:

Y i
h = F (αi) if h > HW . (19)

Calibration

We calibrate the coefficient of relative risk aversion and the interest rate outside of
our data. The former, γ, is set to 1.5, consistent with Attanasio and Weber (1995).
Following Siegel (2002), we fix the value of r to imply a yearly interest rate of 4%.
To ensure that households have on average an adequate level of self-insurance, we
match median wealth to earnings ratios reported by Bundesbank (2014). First,
we calibrate β to match a median wealth-to-earnings ratio of 2.5 at age 55, and
second, we assign individuals initial assets equal to initial gross earnings implying
a wealth-to-earnings ratio of one.
Workers work up to age 55 and spend ten years in retirement, thereafter. We
18Bundesministerium (2015) shows that the retirement replacement rate has decreased over

the last decades and is projected to continue to do so. We assume households expect the
replacement rate from 2010.
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match average earnings during working life, dh, by estimating cohort average age
profiles as in Deaton and Paxson (1994). In what we call our Baseline model, the
stochastic log earnings component, vi,h, follows the process estimated in Column
(4) of Table 1.
We compare the implications of this model to those from the standard ap-

proaches used in the literature, the Macro and Micro approach. In those models,
vi,h follows the process estimated in Columns (5) and (6), and we assume shocks
follow normal distributions19. To make the models comparable, we recalibrate β
in each model to match the median wealth-to-income ratio of 2.5 at age 5520.

5.2 Counterfactual Experiment

Before discussing the quantitative implications of the models, let us briefly discuss
which earnings process entails more risk for the individual. As can be seen in Fig-
ure VIIa, the Micro model implies substantially more earnings inequality, thereby
risk, than our Baseline model and the Macro model. Our Baseline model features
tail risk not present in the other two models. This feature alone makes earn-
ings more risky to the individual. However, in our Baseline model, a substantial
fraction of workers, particular those in prime-age, receive no persistent earnings
shocks in a given year making earnings relatively less risky. Moreover, early in life
when the buffer stock of savings is at its lowest, earnings risk is positively skewed,
implying that large negative shocks are relatively unlikely. The opposite is true
late in life.
How well do precautionary savings insure workers against earnings uncertainty?

One way the literature addresses this question is by studying how fast consump-
tion dispersion increases over the life-cycle. Figure VIIb displays the correspond-
ing profiles for our three models. Unfortunately, cross-sectional consumption data
is sparse in Germany. Fuchs-Schúndeln et al. (2010) find that consumption in-
equality increases between 5 and 10 log points from age 25 to 55, depending on
the econometric specification. The Micro model implies an increase at the upper
end, and our Baseline model implies an increase at the lower end of this range.
The increase implied by the Macro model is slightly below this estimated range.
Both the Macro and Micro model imply that consumption inequality increases
in a concave fashion over the life-cycle. In contrast, our Baseline model shows

19We ensure that mean earnings by age are the same in all three models
20The discount factor, β, is smallest in our Baseline model and largest in the Micro model.

Put different, for the same discount factor, workers accumulate on average the most savings in
our Baseline model.
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(a) V ar[log Earnings] (b) V ar[log Consumption]
Notes: Figure VIIa displays the variance of log earnings by age from the structural models
described in Section 5.1. Figure VIIb displays the corresponding variance of log consumption
by age.

Figure VII: Earnings and Consumption Inequality

no flattening of the increase in inequality late in life which is consistent with the
evidence shown by Fuchs-Schúndeln et al. (2010). Guvenen (2007) discusses that
standard earnings risk models generate concave consumption profiles because pre-
cautionary savings are growing with age, but risk is not age-varying. He shows
that learning about deterministic differences in individual earnings growth pro-
files can reconcile the model with the data. We find that age-varying earnings
risk achieves the same objective. Particularly, age-varying sampling probabilities
are key. Late in life, the probability to receive a persistent shock, particularly a
positive shock, increases. This extra risk, relative to prime-aged workers, offsets
the extra amount of precautionary savings that individuals have.
Not only the shape of consumption inequality over the life-cycle, but also the

overall level of inequality is different in the three models. Consumption inequality
is largest in the Micro model and smallest in the Baseline model. The large con-
sumption inequality in the Micro model is little surprising given its large earnings
inequality. More surprising is that consumption inequality is larger for most of
the life-cycle in the Macro model compared to our Baseline model, even though
the life-cycle profiles of earnings inequality are similar.
To better understand these differences in consumption and earnings inequal-

ity, we now turn to inequality at the top and at the bottom of the distribution.
The first two panels of Figure VIII show bottom inequality (50/10 ratio), upper
inequality (90/50 ratio), and top inequality (99/50 ratio) for consumption and
earnings. For most of the life-cycle, both lower and upper consumption inequality
are larger in the Macro model than in our Baseline model. These patterns closely
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(a) 50/10 Consumption
Ratio

(b) 90/50 Consumption
Ratio

(c) 99/50 Consumption
Ratio

(d) 50/10 Earnings Ratio (e) 90/50 Earnings Ratio (f) 99/50 Earnings Ratio

(g) 50/20 Wealth Ratio (h) 90/50 Wealth Ratio (i) 99/50 Wealth Ratio

Notes: Figure VIII displays selected percentile ratios of consumption, earnings and wealth by
age from the structural models described in Section 5.1.

Figure VIII: Inequality over the Life-Cycle

follow upper and lower earnings inequality. The figures also show the same ratios
for earnings inequality in the data. Our Baseline model nicely fits the fact that
bottom inequality does not increase at all over the life-cycle and upper inequality
grows at a moderate pace. At the same time, our Baseline model implies rela-
tively large and rapidly increasing top-consumption inequality. Those in the top
1% consume more than 3 times more than the median at age 55, but only 2.1
times more in the Macro model (2.6 in the Micro model). Again, top earnings
inequality shows a very similar pattern. The increase in top earnings inequality
over the life-cycle is similar to the data in our Baseline model; yet, the overall
level is somewhat too large.
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De Nardi et al. (2016) show that existing life-cycle savings models fail to ra-
tionalize sufficient cross-sectional wealth inequality given the observed earnings
inequality in US data. Particularly, the models imply too little wealth holdings of
the richest workers. Bundesbank (2014) shows that wealth is also top-concentrated
in Germany: The 95th percentile owns 12 times more wealth than the median.
The bottom panel of Figure VIII shows that our Baseline model implies much
more top wealth inequality than the Micro and Macro models21. We find that the
age variation in positive shocks is key to understand this phenomenon. Large (Fig-
ures VIa, VId) but rare (Figure VIc) persistent positive shocks early in life lead
to high earnings for a lucky few. These workers have the incentives to accumulate
high life-cycle savings. Looking at the cross-section of all workers, we find that the
99/50 wealth percentile is 3.4 in the Macro model, 5.8 in the Micro model, and
10.0 in the Baseline model. This number still falls short of the inequality reported
by Bundesbank (2014), but this data includes business owners. Cagetti and Nardi
(2006) show that they have incentives to accumulate wealth not present in our
model. Large top inequality also implies larger overall cross-sectional wealth in-
equality. The Gini coefficient of wealth is 0.50 in our Baseline model, 0.46 in the
Micro model, and 0.33 in the Macro model. Again, inequality is yet larger in the
data (0.76). Part of this difference is likely to result from our sample selection; we
have discarded workers with low labor market attachment which decreases bottom
inequality.
Temporary and persistent shocks should affect consumption in different ways.

Kaplan and Violante (2010) propose an alternative way to measure the insurability
of shocks that allows us to differentiate between the two types of shocks and that
partially takes into account the variance of shocks:

φξ = 1− Cov(∆ln(ci,h), ξi,h)
V ar(ξ) (20)

φι = 1− Cov(∆ln(ci,h), ιi,h)
V ar(ι) (21)

φξ and φι measure how much persistent and transitory shocks affect consumption,
respectively. A φ close to one implies that a worker is well insured against the
respective shocks.
The left panel of Table 2 shows how consumption fluctuates in response to per-

manent earnings shocks over a worker’s life-cycle. One needs to be careful in

21For wealth, due to the financially constrained households at the beginning of their working
life, we use the 50/20 ratio for bottom inequality.
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Table 2: Insurance Coefficients and Welfare

φξ φι Welfare Cost
Age: Age:

Model φξ 30 35 45 55 φι 30 35 45 55
Macro 56 41 45 59 94 91 87 87 94 94 5.75
Micro 59 50 49 60 92 88 88 82 90 92 9.11
Baseline 38 4 14 46 94 56 25 33 66 87 5.77
Notes: Values are in percentage points. The insurance coefficients, φξ
and φι, are calculated following Equations 20-21, respectively. φξ and
φι are their respective population averages. The welfare cost is specified
in Equation 22. The models are described in Section 5.1

comparing the coefficients across models because the risk structures are different.
In the Baseline model, receiving a negative persistent shock implies that the indi-
vidual also receives a negative transitory shock. This is not true in the other two
specifications where the signs of persistent and transitory shocks are independent.
The three models imply that consumption responses to persistent earnings hocks

become smaller as workers age. This has two reasons. First, workers accumulate
assets over the life-cycle that serve as self-insurance. Second, shocks become effec-
tively more transitory as workers move closer to retirement because a smaller share
of future earnings consists of labor market earnings. Across models, consumption
responses are largest in our Baseline model for most of the life-cycle. The differ-
ence between the models is largest around age 30 when precautionary savings are
low. Recall that in our Baseline model persistent shocks are more extreme than
in the other two models. As a result, when hit by a negative persistent shock,
workers are more likely to come close to their borrowing constraints, triggering
larger consumption responses.
A similar picture emerges with regard to transitory shocks. Both the Macro

and Micro model imply that workers are well insured against transitory shocks,
particularly late in life. On average, about 10 percent of transitory shocks translate
into consumption within the same year. Insurance in our Baseline model is much
lower. On average, 44 percent of transitory shocks translate into consumption22.
Again, shocks in our Baseline model have fatter tails, as a consequence, workers

22Empirical studies for Germany are missing. Commault (2017) reviews US literature on
tax rebates that finds between 9 to 38 percent of a transitory income change translate into
contemporaneous consumption. Our model is at the upper end of this range. One has to keep
in mind that we abstract from all insurance mechanism besides progressive taxation and self-
insurance.
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are more likely to come close to their borrowing constrained after an adverse
transitory shock.
A yet further measure of uninsurable idiosyncratic risk is the amount of con-

sumption an unborn worker is willing to give up to gain access to full insurance
markets. To this end, define by cs(a, w−, w+, ι, α) the optimal consumption func-
tion of an agent without complete markets at age s. Under complete markets,
consumption does not depend on the idiosyncratic states, but only on the aggre-
gate distribution of idiosyncratic states, i.e., the amount of aggregate resources.
Call this aggregate distribution λ̂s and let ĉs be the corresponding consumption
function. Hence, we are interested in the ωU that solves

∫
E0

H∑
s=0

βsU([1 + ωUs ]cs(a, w−, w+, ι, α))dλs(a, w−, w+, ι, α)

=
∫
E0

H∑
s=0

βsU(ĉs)dλ̂s, (22)

where λsis the distribution functions of workers over states in out Baseline model.
The last column in Table 2 shows that the Micro model has the largest welfare
losses; an unborn worker is willing to pay around 9 percent of life-time consump-
tion to gain access to complete markets. This is not surprising provided the Micro
approach generates an exaggerated increase of cross-sectional inequality in earn-
ings and hence in consumption. The welfare costs implied by our Baseline model
and the Macro model are around 5.8 percent of life-time consumption. Put differ-
ently, in our Baseline model, workers react stronger to shocks which increases their
willingness to pay to insure against these shocks. Yet, this effect almost cancels
with the welfare improving effect stemming from a low probability to experience
in a given year a shock to the positive or negative component of log earnings.

6 Conclusion

In this paper, we estimate age variation in earnings risk. Early in working-life,
workers experience rare but large positive shocks, both transitory and persistent
in nature. As workers move into prime-age, the probability of receiving persistent
shocks becomes small and most earnings changes result from small transitory
shocks. For elderly workers, rare, but large (persistent and transitory) negative
earnings shocks become the main source of uncertainty.
Though more complex than an age-invariantAR(1) process with Gaussian shocks,
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our parametric process is still simple enough to introduce it into a model of con-
sumption decisions with incomplete financial markets. The age-varying risk struc-
ture help us to reconcile two stylized facts from the data. First, large persistent
positive shocks early in life imply high life-time income for a small group of work-
ers. These workers have incentives to accumulate large life-cycle savings. In the
cross-section, the 99/50 wealth ratio increases by a factor of 2.9 relative to a
model with an AR(1) process with Gaussian shocks. Second, relative to prime-
age, workers face more risk late in their working life. As a result, even though
precautionary savings are highest, cross-sectional consumption inequality keeps
growing in a linear fashion at the end of working-life.
In our framework, residual earnings growth results from exogenous shocks to

individuals. However, many of the features in our risk process resemble outcomes
from individuals choices under labor market risk, as in Low et al. (2010). Large
positive shocks (job-to-job transitions, finding stable employment) occur early in
life. Large negative shocks (losing a high tenured job, periods of non-employment)
occur late in life. However, the degree to which models of endogenous labor
market choices can match the full dynamics of earnings growth over the life-cycle
documented here is still an open question.
Our age-varying risk process also raises several questions regarding social in-

surance. On average, earnings risk is negatively skewed, implying that insurance
against catastrophic events is highly valuable to society. Yet, early in life, when
self-insurance is lowest, earnings risk is positively skewed; thus, decreasing the
need of insurance. The optimal size and design of the welfare state is, therefore,
an even more complex question than that of age independent Gaussian shocks.
Finally, the risk structure also has implications on the level of attainable private
(and public) insurance. Krueger and Perri (2006) analyze privately efficient risk
sharing contracts. We show that prime-aged workers face close to no risk; thus,
have little incentives to enter into any private, or support large public, risk sharing.
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A Appendix

A.1 Estimation

A.1.1 Constructing the Moments

We model log earnings as the sum of deterministic and stochastic components
that may depend on cohort and time effects23. Let Y c

i,h,t be the log earnings of
individual i, at age h, belonging to the birth cohort c, in year t:

Y c
i,h,t = f(πt, Xi,h,t) + yci,h,t, (A.23)

where f(πt, Xi,t,h) are predictable differences in earnings such as education, region,
age and industrial sector, and yci,h,t represents the process of earnings. Rewriting
the above process in first differences yields

∆Y c
i,h,t = ∆f(πt, Xi,t,h) + ∆yci,h,t. (A.24)

First, we remove predictable changes in log earnings, such as calendar and age
effects, by running for each year cross-sectional regressions on a dummy of workers’
education, age, interaction of the two, region of residence, and 14 major industries.
Denote the corresponding residual by gci,h,t:

gci,h,t ≡ ∆yci,h,t (A.25)

So far, our specification allows the moments of residual earnings growth to be
calendar year and birth cohort specific. As an illustration of such effects, Figure
A1 presents the variance of residual earnings growth for each of our 9 cohorts.
There are two salient features. First, there is a calendar year effect with large
variances for all cohorts about 5 years after the German reunification. For ex-
ample, for the 5th birth cohort, born between 1951-1957 (green line) the German
reunification occurs at ages 34-40, and the time effect increases the variances after
age 45. Second, there is also a visible cohort effect, with later cohorts facing sub-
stantial higher variances than earlier cohorts. As mentioned in the main text, we
follow Blundell et al. (2015) and eliminate these effects by averaging all moments
(variance, skewness, kurtosis, etc.) across cohorts, assigning equal weight to each.
Therefore, our results can be interpreted as the risk a typical cohort faces.

23Both cohort and time effects are present in Germany. The Hartz reforms after 2003 and
the reunification of West and East Germany are a few examples.
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Notes: Figure A1 displays the variance of residual earnings growth by age and birth cohorts.
Birth cohorts 1-9 belong to years of birth 1923-1929,1930-1936,...,1980-1986, respectively.

Figure A1: By Cohort Variance of Residual Earnings Growth

Regarding the variance of log residual earnings over the life-cycle we follow
Deaton and Paxson (1994) and obtain the age component from regressing the
variance of log earnings on a cohort and age dummies.

A.1.2 Moments Selection and Estimation

We simulate life-cycle employment histories for 20,000 workers who enter the labor
market at the age of 24 and work until the age of 55. Denote by fn(θ) the nth

model moment and by mn the nth data moment. Similar to Guvenen et al. (2016),
define

F (θ)n = fn(θ)−mn

ωn
, (A.26)

where ωn is an adjustment factor. We use a moment specific adjustment factor
to jointly deal with two issues presented by the data. First, the moments are
measured on different scales. For example, kurtosis is in absolute value about
500 times larger than the second autocovariance. Had we minimized the sum
of absolute squared deviations (ωn = 0), the optimization would not have put
emphasis on moments with low absolute sizes. At the same time, we have several
moments which are close to zero, such as the autocovariance function, but fluctuate
substantially in relative terms from one age to the next. Thus, had we minimized
the sum of relative squared deviations (ωn = abs(mn)), the optimization would
have concentrated almost exclusively on these large relative deviations close to
zero that are likely generated by small samples.
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Using moment specific adjustment factors allows us to use absolute deviations
but reduce the emphasis on moments with large absolute numbers. Unfortunately,
it gives us a degree of discretion. We choose the adjustment factors in an iterative
fashion such that the implied loss function displayed in Table A2 is consistent
with the model fit we observe in Figure A4. We opt to give the variance of log
earnings over the life-cycle and the mean earnings growth by age (which is zero by
construction in the data) somewhat larger weights as we want to ensure a good
fit with these moments. The resulting simulated minimum distance estimator is
given by:

θ̂ = argmin
θ

F (θ)′IF (θ) (A.27)

Most sets of moments contain 31 year moments. This is the case for the skew-
ness, kurtosis, fraction of positive shocks, fraction of shocks above 5%, uncondi-
tional mean, variance of log earnings, unconditional autocovariance, conditional
mean and conditional variance. This amounts to 31 × 11 = 341 moments. The
conditional first and second autocovariances are observed for 30 and 29 years, re-
spectively. These amount to 30 × 2 + 29 × 2 = 118 moments. Lastly, the mean
and the variance of log residual earnings at age 24 amounts to 2 moments. The
total number of moments that we target is then N = 341 + 118 + 2 = 461.
Given our large parameter set, the issue of finding a global minimum arises.

We first obtain reasonable starting values by experimenting with different com-
binations of parameters. We tested different global minimum algorithms and a
pattern search algorithm performed best in finding a minimum. Provided the op-
timal parameters, we compare the minimum to (possibly) other minima where we
start the algorithm from different starting points. We find that the pattern search
algorithm, in general, is able to converge to the same minimum from different
starting points.
We obtain standard errors by 100 block bootstraps. Re-optimizing in each iter-

ation using a global search algorithm is infeasible numerically. Therefore, we use
a local optimizer, more specific, a sequential quadratic programming algorithm.
Implicitly, we assume that a change in the data sample does not lead to a too
large change in our estimates; therefore, possibly downward biasing the standard
errors.

A.2 Additional Figures and Tables
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Table A1: Summary Statistics, SIAB R 7510.

Average e Average e Average
Year Daily Wage Annual Earnings Age Observations
1975 89 31,093 38 84,520
1976 91 32,159 38 93,163
1977 94 33,317 39 100,266
1978 96 34,157 39 106,533
1979 100 35,200 40 113,825
1980 101 35,565 40 120,347
1981 100 35,287 41 126,584
1982 98 34,486 41 126,436
1983 98 34,419 41 125,288
1984 103 36,186 41 125,263
1985 106 36,931 40 124,294
1986 108 37,702 40 124,976
1987 112 39,068 40 124,888
1988 104 35,988 39 112,372
1989 109 38,289 39 119,823
1990 113 39,321 39 121,520
1991 116 40,564 39 122,187
1992 117 40,813 39 122,513
1993 115 40,268 39 121,614
1994 114 39,941 39 118,973
1995 117 41,023 39 116,538
1996 118 41,025 39 112,438
1997 117 40,539 39 110,949
1998 119 41,764 40 107,283
1999 123 41,937 40 100,374
2000 122 42,873 40 96,059
2001 122 41,410 41 91,234
2002 122 42,032 41 85,807
2003 123 41,768 41 80,718
2004 104 34,948 40 59,828
2005 105 36,056 41 54,846
2006 106 36,765 41 50,814
2007 107 36,835 42 47,290
2008 108 37,610 42 43,542
2009 107 37,035 43 38,947
2010 109 37,116 44 34,160

Notes: Summary Statistics of the SIAB R 7510. See Section
2.2 for the description of the sample selection. All Euro values
are deflated using the CPI to 2010 values.
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Table A2: Objective Function Decomposition

Model: (1) (2) (3) (4)
Full No No No

Moments Model ι h {σβ, θ}
E[g+] 6.17 11.40 12.11 7.70
E[g−] 4.62 5.83 20.84 3.88
V ar[g+] 8.37 7.21 14.28 9.07
V ar[g−] 7.21 7.86 14.48 7.79
Skew[g] 4.12 5.92 19.15 3.67
Kurt[g] 9.24 10.38 10.78 8.51
% of Positive Innovations 4.93 10.57 20.73 6.43
E[g−h gh+1] 0.89 8.51 2.87 1.20
E[g+

h gh+1] 29.13 49.67 22.83 34.37
E[g−h gh+2] 5.80 4.71 5.88 21.10
E[g+

h gh+2] 3.08 12.86 1.81 9.58
E[g] 2.31 1.15 4.86 3.27
% of Innovations > 5% 3.86 8.56 33.57 4.73
Uncond. Autocovariance 2.23 5.11 2.53 3.96
Initial E[log earnings] 0.01 0.01 0.00 0.00
Initial V ar[log earnings] 0.00 0.00 0.00 0.00
V ar[log earnings] 3.65 2.39 2.22 3.35
Total 95.62 152.17 188.95 128.61

Notes: The table displays a decomposition of the loss func-
tion. The process is estimated by the method of simulated
moments. We use the SIAB R 7510 sample selection de-
scribed in Section 2.2. Column (1) estimates our Baseline
specification outlined in 4.1. Columns (2)-(4) shut down tran-
sitory shocks, age-dependence, and both profile growth rates
and persistence of transitory shocks, respectively.
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Table A3: Additional Parameter Estimates from
Table 1

Model: (1) (2) (3) (4)
Full No No No

Parameters Model ι h {σβ, θ}
δ−I 0.4692 0.4856 0.5220 0.4691
δ−II -0.0295 -0.0300 -0.0273 -0.0295
δ−III 0.0006 0.0006 0.0006 0.0006
δ+
I 0.1252 0.0574 0.2920 0.1252
δ+
II -0.0034 -0.0022 -0.0072 -0.0034
δ+
III 0.0004 0.0004 0.0002 0.0004
γ+
a,ι 0.7086 - 1.4064 0.5519
γ+
b,ι 0.0258 - - 0.0269
γ−a,ι 1.1785 - 1.0987 1.1654
γ−b,ι -0.0127 - - -0.0111
γ−a,ξ 0.0059 0.8546 0.0456 0.0046
γ−b,ξ 0.0022 -0.0100 - 0.0052
γ+
a,ξ 0.9780 1.0829 1.4180 0.9729
γ+
b,ξ 0.0054 0.0003 - 0.0075
λ+
a -1.9084 -1.7075 -3.5051 -1.8867
λ+
b -0.0534 -0.0667 - -0.0496
λ−a -2.5392 -1.6768 -2.2860 -2.5621
λ−b 0.0397 0.0351 - 0.0389
γa,ιn 0.0000 0.0039 0.0069 0.0022
γb,ιn 0.0004 0.0014 - 0.0004
λa,ιn 0.0769 0.1426 0.1164 0.0735
λb,ιn -0.0059 -0.0164 - -0.0098
γ+

0,ι 0.4201 0.0000 0.0387 0.0015
γ−0,ι 1.0023 0.8487 0.9769 0.0004
λ+

0,ι -0.8590 -0.8442 -1.8794 0.0716
λ−0,ι -1.6969 -1.3769 -1.6114 -0.0061
Objective Function 95.62 152.17 188.95 128.61

Notes: The table displays complementary estimates to Ta-
ble 1.
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(a) Variance (b) Skewness (c) Kurtosis
Figures A2a, A2b and A2c display, respectively, the variance, skewness and kurtosis of residual
earnings growth by age for the US and Germany. The German data is described in Section
2.2. For the US, we take for each age groups (25-29,...,50-54) the average over the percentiles
reported in Guvenen et al. (2016).

Figure A2: US and German Higher Order Moments

(a) Data (b) Model
Figure A3a displays the kernel distribution of residual earnings growth at the age of 36 in our
data described in Section 2.2. Figure A3b displays the densities of transitory shocks from the
model described in Section 4.1 at age 36.

Figure A3: Density of Residual Earnings Growth
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(a) E[gi,h|gi,h ≷ 0] (b) V ar[gi,h|gi,h ≷ 0] (c) V ar[gi,h]

(d) Skew[gi,h] (e) Kurt[gi,h] (f) Prob(gi,h > 0)

(g) Prob(|gi,h| > 5%) (h) E[gi,h+kgi,h] (i) E[gi,h+1gi,h|gi,h ≷ 0]

(j) E[gi,h+2gi,h|gi,h ≷ 0] (k) V ar[log Earnings] (l) E[gi,h]

Figure A4: Model Fit - Column (1), Table 1
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(a) E[gi,h|gi,h ≷ 0] (b) V ar[gi,h|gi,h ≷ 0] (c) V ar[gi,h]

(d) Skew[gi,h] (e) Kurt[gi,h] (f) Prob(gi,h > 0)

(g) Prob(|gi,h| > 5%) (h) E[gi,h+kgi,h] (i) E[gi,h+1gi,h|gi,h ≷ 0]

(j) E[gi,h+2gi,h|gi,h ≷ 0] (k) V ar[log Earnings] (l) E[gi,h]

Figure A5: Model Fit - Column (3), Table 1
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Table A4: Standard Errors, Column (1) Table 1.

Parameters SE Parameters SE
θ+ 0.0355∗∗∗ δ−I 0.0005∗∗∗

θ− 0.0177∗∗∗ δ−II 0.0003∗∗∗

ρ− 0.0116∗∗∗ δ−III 0.0001∗∗∗

ρ+ 0.0036∗∗∗ δ+
I 0.0016∗∗∗

σβ 0.0046 δ+
II 0.0007∗∗∗

σα 0.0314 δ+
III 0.0002∗∗

γ+
a,ι 0.0820∗∗∗ γ−a,ξ 0.1979
γ+
b,ι 0.0281 γ−b,ξ 0.0323
γ−a,ι 0.0823∗∗∗ γ+

a,ξ 0.0343∗∗∗

γ−b,ι 0.0177 γ+
b,ξ 0.0271

λ+
a 0.0911∗∗∗ λ−a 0.2571∗∗∗

λ+
b 0.0606 λ−b 0.0379

γa,ιn 0.0210 λa,ιn 0.0248∗∗∗

γb,ιn 0.0041 λb,ιn 0.0176
γ+

0,ι 0.3297 λ+
0,ι 0.9778

γ−0,ι 0.0752∗∗∗ λ−0,ι 0.3294∗∗∗

Notes: The table displays standard errors for the esti-
mated model of Column (1) in Tables 1 and A3. Stan-
dard errors are obtained by 100 block bootstraps. Esti-
mates with superscripts {∗,∗∗ ,∗∗∗ } imply the parameter
is different from zero at the 10, 5, and 1 percent signif-
icance level, respectively.
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